PROCEEDINGS

oF SCIENCE

Reconciling resummation and renormalization

Antal Jakovac *
BME, Institute of Physics, Budafoki Ut 8, H-1111 Budapest , Hungary

E-mail: Antal.Jakovac@cern.ch

In the naive form of most resummations we get into conflict with order-by-order renormalization.
We present a method that is capable to ensure UV consistency of any resummations satisfying
certain conditions. The method is based on the observation that resummation is equivalent with a
calculation in an adequate perturbation scheme, followed by a renormalization scheme changing.
This framework works both in static and momentum-dependent cases. In particular it is possible
to establish finite infrared 2Pl resummation.
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1. Introduction

In a theory with small coupling constants we expect that perturbation theory works well; ir
fact what we understand under this sentence is that renormalized perturbation theory with sor
standard renormalizations scheme (€& or on-mass-shell scheme) provides small corrections as
compared to the leading order. When this approach fails, we tend to speak about the failure of p
turbation theory itself. This failure can sometimes be associated to certain class of diagrams in t
chosen scheme. Then we have the hope that after resummation of this subset of diagrams we
still give analytic predictions for the observable in question. We can give several examples whe
we need resummation: self-energy resummations (Schwinger-Dyson equation) is needed to de
mine mass shift, daisy resummatidij [s needed at high temperatures in a scalar field theory, HTL
resummation?] should be used in gauge theories at high temperatures. In 2Pl and higher poir
irreducible resummation we can work with exact propagators/vertgleand also the renormal-
ization group flow defines a set of resummed theories parameterized by the renormalization sc
[4].

In most cases resummations are designed to solve some infrared (IR) problems, ie. it resu
diagrams that are the most sensitive in the IR regime. The corresponding counterterm diagrams t
are needed to ensure finiteness of the perturbation theory at high momenta, are often neglected.
has a consequence that ultraviolet (UV) consistency becomes a serious problem in the resumn
theories. The problem becomes even deeper in case of momentum dependent resummations,
the 2Pl resummation. There are different approaches published recently to overcome this difficul
primarily in the static and 2P resummation caSk [

In the present paper we try to describe an approach different from the above, mainly diagrar
matic methods. The idea is that the only reliable analytic method to treat UV divergences is tr
renormalized perturbation theoryl][ In some way all the consistent resummations have to be
linked to a specific scheme. The task is to find this link for each specific resummation method.

To understand the relation between the resummation methods and renormalization schen
we recall that renormalized perturbation theory has a large freedom in choosing the finite par
of the counterterms. We can use this freedom to choose finite parts such a way that mostly |
duces the IR sensitivity of the system. The so-defined scheme will depend on the environmen
parameters (like temperature). In order to have results in a reference schenMSege must
perform a matching between the parameters of the perturbation scheme and the reference sche
using the requirement that thare Lagrangiarare the same. Both being renormalization schemes,
this is sufficient to match all of the observables to the given order in perturbation thgohe
difference of thenigher order termgs the resummation. The idea of fitting the perturbation the-
ory to the environment was used already6hWhere the authors tuned the renormalization scale
appropriately.

This strategy will be described in this contribution in more detail. First we examine the prob-
lem in the simplest static mass resummation case, and we show how the method sketched ab
will solve the UV consistency problem, in principle and in thé theory. For a more elaborated
description of these section cf7][ Then we change to the momentum dependent case, where
basically the same method works, but we have to take care some details. As a special appli
tion we present how a 2P| resummation can be represented by a scheme, and how can it solve
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renormalizability problem. Finally we give a short summary of the method.

2. Thermal mass resummation — the naive method

A nice and well-known example of a system that needs resummation is the high temperatu
®* theory. In this model, as was shown by Dolan and JacKiwdt n-th order of perturbation
theory we obtain a mass correction of orddr?(AT2/n?)"1, which is a growing function of the
coupling constant i > m. In this case the class of daisy diagrams was the adequate subset whic
was needed to sum up. To facilitate the treatment, the same effect could have been achieved v
the thermal counterterm metho#],[ where we subtracted from and added to the Lagrangian the
same term, but treating them at different loop order. In this way it was possible to change the tre
level mass without the change of the Lagrangian. If we denote the free mass-squan@ay
the resummed mass b2 = n? +AM2, then the mass terms of the Lagrangian will be written as

M2 M2 — m? Sm?
— Zmass= 7T(P2 +(-— (P2‘|‘ (Pz . (2.1)
2 2 2
——
tree level one loop

To determine the ideal value of the added-subtracted mass one should use an additional requ
ment, for example that the one-loop level mass term is\l§stDenoting the complete unresummed
one-loop self energy at momentunand withM? mass-squared on the internal linesfigk; M?)
we find

M2 = n? + M (k= 0,M?). (2.2)

This is an implicit (gap) equation for the magg as a function ofr?. In other models, or for other
infrared (IR) problems other type of resummations proved to be useful (like super-daisy, HTL, 2P
RG etc.)

This appealing method has, however, a severe drawback: taking it really seriously it provide
ultraviolet (UV) divergent result. The symb@l in (2.2), in fact has contributions from the tad-
pole diagram and the mass counterterm. The tadpole contribution, accordidg)tchés to be
computed with internal propagators with¢ mass-squared; it reads

M2 1 M2 1 T
2y T |_= _ T el 2_ M2
Te(M7) = 162 [ - -1+ 47fli2] +53 M/da)\/a) M2Zn(w). (2.3)

The mass counterterm, on the other hand, has a value fixed by the renormalization scheme; if
useMS then we have

AP 1 M2
5mZ_—ﬁ [—8+VE—1+In 4nu2] (2.4)
The self-energy therefore
A A(MZ2 —m?) 1
_ 2y _ A 2 _ _ T -
Nk=0,Ms) = 2TB(MT)+6m2 3972 8+... (2.5)

is UV divergent.
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3. Treating UV divergences in perturbation theory

The main reason for this divergence is that the finiteness of perturbation theory depends or
very sensitive balance between the counterterms and 2PI diagfhrirsfact only a small subclass
of all conceivable perturbation theories can fulfill all the requirements to provide order-by-orde
finiteness: these are the renormalized perturbation series of a renormalizable theory. So when |
finiteness is a crucial issue, then we must remain within this subclass, we must use renormaliz
perturbation theory for resummation, too.

Fortunately this subclass is rather wide, as we can freely choose the finite part of all the cou
terterms at all orders. All choices yield different renormalized perturbation series; ie. they provid
different results at any fixed order as a function of the renormalized parameters of the Lagrangic
One is common in all of these results: they are all finite. These span the space of “perturbative
reachable” domain in a given theory. We should speak about “non-perturbative effect” only if som
phenomenon lies outside of this domain.

As the example of the thermal mass resummation indicated, a generic perturbation theo
has a very small convergence radius (in the weak “asymptotic convergence” sense) because ol
sensitivity. Only schemes well adapted to the environmé@lrsghiow good convergence properties.
To give a well-known example: in thie* theory with negative mass-squared we do not work in the
original free Hilbert space, since there the masses are imaginary, instead we adapt the perturba
theory to the (expected) vacuum properties and use a Hilbert space built on the spontaneou
broken vacuum.

Usually we want to compare result coming from different environments: for example we wan
to know the thermal properties as a function of the zero temperature observables. Different envirc
ments need different schemes, whose results are not directly comparable. This is because diffel
choices of the finite parts formally yield different bare Lagrangian and so different physics. Bu
the bare Lagrangian is completely determined by the bare parameters (as bare masses, coupli
wave function renormalizations), so if we require that the bare parameters are equal we can h¢
the physics constant in the two schemes. Expressing as function of renormalized parameters
each specific schemes, the equality of bare parameters impose relations between the renormal
parameters of different schemes. For examp@4rtheory, where we have 3 renormalized param-
eters Z wave function renormalization constant’> mass-squared armid coupling constant), we
will have the following relations

Zpn = Zg, nﬁ+6nﬁ:m§+6m§, Aa+6Aa = Ag+ OAg. (3.1

If two schemes are related in this way, then there different results for a given observable can |
considered as eesummation effecsince at infinite loop order they both yield the same, exact
result.

4. Example: thermal mass resummation ind* theory

Using the ideas above we can work out the thermal mass resummation in a consistent way.
any perturbation schemes the one-loop self-energy reads

MNk=0) = ;TB(mz)+6mz, (4.1)
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whereTg was defined inZ.3). In MS scheme we choosg.) for the mass counterterm. However,
only the divergent part is really fixed by the condition of renormalizability, different schemes car
use different finite parts. A specific choice can be:

A
2
This scheme depend on the temperature, but only through the finite parts. At one hand this
allowed mathematically, on the other hand this is expected: the environment, we have to be adap
to, is represented by the temperature. In tagsscheme the one loop self energy is zero

anﬁ,res: TB(mz)' (4-2)

Mresk=0) =0, (4.3)

so itis in fact a finite temperature mass-shell scheme: the complete self energy is just the mass.

If we useMS at zero temperature amels scheme at finite temperature we have to ensure that
they describe the same physics, ie. they stem from the same bare Lagrangian. In this simple ex
ple this requirement reduces a relation between the renormalized mass values in the two schen
Expressing the bare mass to ordein both cases, we find

szgare rn’zes"‘ 5m2res mz*“‘amzf = n%znfes_TB,Ws(nfeQ’ (4.4)
where the last symbol means

st = i e L [ o7 (o 5

Mres

which is nothing but the tadpole diagram renormalizedi8 scheme, evaluated af = méq
point. So, in fact, the gap equatioR.) is true in the sense thét is the renormalized self energy
correction.

5. Momentum dependence

What was said so far applies for the momentum-independent resummation. In many cast
however, this is not enough to fully diminish IR sensitivity from the system. In these cases we hav
to apply momentum dependent resummations.

The way we have adapted the renormalization scheme to the environment was the prog
choice of finite parts of the counterterms. Momentum dependent resummations therefore img
usage of momentum dependent finite parts. Formally this is feasible, the only question is th
whether in this way we do not spoil renormalizability.

Let us concentrate on the mass resummation in this proceedings, the more elaborated cc
plete discussion will be published elsewhedk [We now choosén?(k), momentum dependent
counterterm. In this case the matching to a reference schem@Sgields the condition

Z2MBgre= Mg + OB = P + S(K). (5.1)

This enforces to work with momentum dependent tree level mass from the beginnimy, ie.

me(K).

023/5



Reconciling resummation and renormalization Antal Jakovac

We can maintain renormalizability, provided we satisfy some requirements. First the diverger
part of the counterterm should be unique, ie. the same as, say, fMShease. Secondly, the
momentum dependence of the tree level mass should not generate new divergences. We will assi
that for asymptotically large momentum the tree level mass behaves as

(k) = mg+ o(k). (5.2)

The most singular diagram is the tadpole. If there are no new divergences in the tadpole, then th
are no new divergences in any other diagrams. With momentum dependent mass the value of
tadpole reads

/ d*p 1 :/ d*p 1 _
(2m)* p?—n?(p) (2m)* p2—mg— O (p77)
4 -y
:/(gn?“ [pz—ln%+ﬁ<(p£ﬁ%)2>] (5:3)

The first term is the usual tadpole contribution. The second term is finige>if0. So if the

momentum dependent mass approaches its limiting value as a power law, then the diverger
structure remain untouched.

6. The 2PI resummation

Let us write the self energy as
M(k) = §m? + N (k, mP). (6.1)

In the mass-shell scheme we chodse? = —M(k = n?) at zero temperature. We have seen that if
we apply the same prescription at finite temperature, it leads to thermal mass resummation. Goi
on with this idea we may try to choose

S (k) = —M(k, m?(K)) (6.2)

atany momenta This has the consequence thitk) = 0, ie. there is no self-energy correction
whatsoever in this scheme! As a resummation, therefore, it provides self-energy correction resu
mation (also in the internal lines!), which is just the 2PI resummation. So we will call this scheme
as 2PI scheme.

If we compare with théIS scheme the requirement of the constant physics reads

mP(k) — M (k,MP(K)) = Mg + S (6.3)

Since the divergence structure-ofi (k, m?(k)) is the same as that 6h1fTS the expressiofl (k, m2(k)) +
SmeS is finite, and diag_rammatically it contains no self-energy correction in the internal lines;
therefore we will call itMop; since its meaning is really the self-energy renormalized in the 2PI
scheme.

In the language of the propaga®r'(k) = k? — n? the above relation can be written as

Gt (K) = Gy L (K) + Mzt (K, Gopi (K)). (6.4)
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If we identify Gy as the “free propagator” an@yp; as the “resummed propagator”, then this
equation is exactly the basic relation of the 2P resummatipn [

But in the light of renormalizability the above procedure is not satisfactory. In the perturbative
evaluation oﬂ‘_l(k) we will encounter terms lik&?Ink or m?Ink, which are not allowed contribu-
tions toSn?(k). Therefore the naive 2PI approach is not renormalizable — as it is well known in
the 2Pl literature 3].

It is possible to give a solution to the problem of 2PI renormalizability in the present context
We are not enforced now to choose exactly Fheelf energy; after all, resummation is needed
by IR sensitivity, ie. a low momenta phenomenon. It is enough to perform 2Pl resummation i
this domain, too. We can, therefore, simply omit the terms that high momentum terms that woul
violate renormalizability. We can do it with some (smooth) cutoff funct®(x), and choose, for
example

S(K) = —O(k/A)N(k,mP(K)) — (1— O(k/A)) 5. (6.5)

For another solution we realize that since the problem comes from asymptotically large momen
this is insensitive to the environment; in particular they appear in the same way at zero temperatu
and inMS scheme. If we subtract the zero temperature perturbative self energy renormalized
MS, the rest is already appropriate to play the role of a momentum dependent mass countertel
We should be careful, however, since asymptotically divergent contributions may come from sul
diagrams, and so the subtraction has to be repeated to every sub-diagram, in the spirit of the for
formula. After these subtractions we can write

6mz(k) = _r_lasympt subtr(k,mz(k))- (6.6)

7. Summary

To summarize the content of this contribution we repeat that we must not resum IR sensitiv
diagrams without respect of the UV consistency, otherwise we run into divergences even in the mc
simple cases. The perturbative method that is capable to ensure UV finiteness of a renormaliza
theory, is the renormalized perturbation theory. We have a freedom in the choice of the finite par
of the counterterms (which defines the scheme), and so we have the possibility to adapt the fin
parts to the environment. To compare result coming from different schemes we must ensure tt
the physics is the same; formally this means the requirement to keep the bare Lagrangian consti

This line of thought can be continued and apply to the momentum dependent resummatior
since formally the finite parts of the counterterms can be momentum dependent. To be consistt
we must allow the appearance of momentum dependent renormalized parameters, too. Renorn
izability can be maintained, if the momentum dependence is soft enough in the asymptotic mome
tum domain: in case of the mass term, for exampigk) = m2 + ¢ (k~¥) momentum dependence
is allowed for large momenta, wheye> 0.

In this way we can reproduce the 2Pl resummation with momentum dependent schemes. T
naive definition, however, turn out to be non-renormalizable — just like the usual 2PI resummatiol
In this context the problem of renormalizability can be solved by omitting the problematic terms ir
the asymptotic momentum region. In this way we should abandon the complete self-energy (2F
resummation, but we can still maintain the 2Pl resummation in the infrared regime.
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