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We describe how the coupling of the gluonic Polyakov loop to quarks solves different inconsis-

tencies in the standard treatment of chiral quark models at finite temperature at the one quark

loop level. Large gauge invariance is incorporated and an effective theory of quarks and Polyakov

loops as basic degrees of freedom is generated. From this analysis we find a strong suppression

of finite temperature effects in hadronic observables below the deconfinement phase transition

triggered by approximate triality conservation in a phase where chiral symmetry is spontaneously

broken (Polyakov cooling). We also propose a simple phenomenological model to describe the

available lattice data for the renormalized Polyakov loop in the deconfinement phase. Our analy-

sis shows that non perturbative contributions driven by dimension-2 gluon condensates dominate

the behaviour of the Polyakov loop in the regime Tc < T < 6Tc.
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1. Introduction

Pure gluodynamics formulated using the Imaginary Time Formalism of Finite Temperature
Field Theory has an extra discrete glogal symmetry Z(Nc), which is the center of the usual gauge
group SU(Nc). A natural order parameter for the transition from the confining phase, where Z(Nc)

is preserved, to the deconfining phase, where this symmetry is spontaneously broken, is the traced
Polyakov loop (for a comprehensive review see e.g. [1]), defined by

L(T ) = 〈trc Ω(x)〉 =
〈 1

Nc
trc P

(

eig
∫ 1/T

0 dx0A0(x,x0)
)〉

, (1.1)

where 〈 〉 denotes vacuum expectation value, trc is the (fundamental) color trace, and P denotes
path ordering. A0 is the gluon field in the (Euclidean) time direction. There have been many efforts
in studying the Polyakov loop. A perturbative evaluation of the Polyakov loop was carried out long
ago [2] at high temperatures. An update of these calculations was presented by us in [3]. Different
renormalization procedures have been proposed on the lattice simulations more recently [4, 5].

In full QCD, i.e. with dynamical fermions, the Polyakov loop appears to be an approximate
order parameter, as lattice simulations suggest [6]. This may look a bit puzzling since the cen-
ter symmetry is largely broken for current quarks. However, as discussed in [7] in the context of
chiral quark models, the relevant scale stemming from the fermion determinant is in fact the con-
stituent quark mass, generated by spontaneous chiral symmetry breaking. Thus, one expects large
violations of the center symmetry to correlate with chiral symmetry restoration.

We have analyzed the role of large gauge symmetry in a similar framework [8] yielding a
unique way of coupling the polyakov loop to effective constituent quarks. In Ref. [9], we have also
proposed a model to describe the available lattice data for the renormalized Polyakov loop in terms
of the dimension-2 gluon condensate [10, 11]. This model also describes consistently the lattice
results for the free energy [12].

2. Large gauge transformations

In the Matsubara formalism of Quantum Field Theory at Finite Temperature the space-time
manifold becomes a topological cylinder. In principle, only periodic gauge transformacions are
acceptable since the quark and gluon fields are stable under these transformations:

g(~x,x0) = g(~x,x0 +β ) , (2.1)

where β = 1/T . In the Polyakov gauge, where ∂0A0 = 0, A0 is a diagonal and traceless Nc ×Nc

matrix. Let us consider for instance the following periodic gauge transformation

g(x0) = ei2πx0Λ/β , (2.2)

where Λ is a color traceless diagonal matrix of integers. Note that it cannot be considered to be close
to the identity, and in that sense we call it a large gauge transformation. The gauge transformation
on the A0 component of the gluon field is

A0 → A0 +
2π
β

Λ , (2.3)
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and so gauge invariance manifests as the periodicity of the diagonal amplitudes of A0 of period
2π/β . This invariance is manifestly broken in perturbation theory, since a periodic function is
approximated by a polynomial. Nevertheless, we can implement this large gauge symmetry by
considering the Polyakov loop or untraced Wilson line as an independent degree of freedom, Ω(x),
which transforms covariantly at x

Ω(x) → g−1(x)Ω(x)g(x) , (2.4)

and, in the Polyakov gauge, Ω(x) = eiβA0(~x), it becomes gauge invariant.
Fermions break the center symmetry of the gauge group, which is present in all the pure gauge

theories. That means that we can only consider periodic gauge transformations (see Eq. (2.1)).
In pure gluodynamics at finite temperature one can smooth this condition, and consider aperiodic
gauge transformations:

g(~x,x0 +β ) = zg(~x,x0) , zNc = 1 . (2.5)

Note that z is not an arbitrary phase but an element of Z(Nc). An example of such a transformation
in the Polyakov gauge es given by

g(x0) = ei2πx0Λ/Ncβ , (2.6)

for which z = ei2π/Nc . The corresponding gauge transformation of the A0 field and the Polyakov
loop Ω is

A0 → A0 +
2π

Ncβ
Λ , Ω → zΩ . (2.7)

We observe that Ω transforms as the fundamental representation of the Z(Nc) group. From Eq. (2.7)
we deduce that 〈Ω〉 = z〈Ω〉 and hence 〈Ω〉 = 0 in the center symmetric or confining phase. More
generally, in this phase

〈Ωn〉 = 0 for n 6= mNc , (2.8)

with m an arbitrary integer. Obviously, in full QCD the fermion determinant changes the selection
rule Eq. (2.8). We will see in section 4 that this violation is large for massless quarks and the
usefulness of the center symmetry becomes doubtful.

3. Problems with Chiral Quark Models at finite temperature

The standard treatment of Chiral Quark Models at Finite Temperature presents some incon-
sistencies. To illustrate this point we will use the Nambu–Jona-Lasinio model. In the Matsubara
formalism we have the standard rule to pass from T = 0 formulas to T 6= 0,

∫ dk0

2π
F(~k,k0) → iT

∞

∑
n=−∞

F(~k, iωn) , (3.1)

where ωn = 2πT (n + 1/2) are the fermionic Matsubara frecuencies. Using this rule the chiral
condensate at finite temperature at the one loop level is given by

〈qq〉 = 4MT trc ∑
ωn

∫

d3k
(2π)3

1

ω2
n +~k2 +M2

, (3.2)
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where M is the constituent quark mass. Doing the integral and after a Poisson resummation, we
have the low temperature behaviour

〈qq〉T = 〈qq〉T=0 −2
NcM2T

π2

∞

∑
n=1

(−1)n

n
K1(nM/T )

Low T∼ 〈qq〉T=0 −
Nc

2

∞

∑
n=1

(−1)n
(

2MT
nπ

)3/2

e−nM/T , (3.3)

where we have used the asymptotic form of the Bessel function Kn(z). This formula can be inter-
preted in terms of the quark propagator in coordinate space

S(x) =
∫

d4k
(2π)4

e−ik·x

k/ −M
= (i ∂/ +M)

M2

4π2i

K1(
√
−M2x2)√

−M2x2
, (3.4)

so that at low temperature we get

S(~x, iβ )
Low T∼ e−M/T , (3.5)

which represents the exponential suppression for a single quark at low T . This means that we can
write the quark condensate in terms of statistical Boltzmann factors with mass Mn = nM. This is a
problem since it means that the heat bath is made out of free constituent quarks without any color
clustering. The calculation can be extended to any observables which are color singlets in the zero
temperature limit, and the general result is that quark models calculations at finite temperature in
the one loop aproximation generate all possible quark states, i.e.

O
T = O

T=0 +Oqe−M/T +Oqqe−2M/T + . . . . (3.6)

Note that while the term Oq corresponds to a single quark state, the next term Oqq must be a qq
diquark state, corresponding to a single quark line looping twice around the thermal cylinder. It
cannot be a qq meson state because at one loop this state comes from the quark like going upwards
and then downwards in imaginary time, so that the path does not wind around the thermal cylinder
and then it is already counted in the zero temperature term OT=0. From Eq. (3.3) we obtain

〈qq〉T =
∞

∑
n=−∞

(−1)n〈q(x0)q(0)〉|x0=inβ . (3.7)

Note that the zero temperature contribution corresponds to the term n = 0 in the sum. Under a
gauge transformation of the central type we have q(nβ )q(0) → z−nq(nβ )q(0). This means that
Eq. (3.7) is not gauge invariant, and the quark condensate can be decomposed as a sum of irre-
ducible representations of a given triality n.

Another problem comes from comparison with Chiral Perturbation Theory (ChPT) at Finite
Temperature. In the chiral limit the leading thermal corrections to the quark condensate for N f = 2,
for instance, are given by

〈qq〉T |ChPT = 〈qq〉T=0

(

1− T 2

8 f 2
π
− T 4

384 f 4
π

+ · · ·
)

. (3.8)

Thus, the finite temperature correction is Nc-suppressed as compared to the zero temperature value,
since f 2

π scales as Nc. This feature contradicts our result of Eq. (3.7) obtained by using the standard
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finite temperature treatment of chiral quark models, from which we deduce that in the large Nc

limit there is a finite temperature correction ∼ Nce−M/T . To obtain the ChPT result of Eq. (3.8)
pion loops have to be considered [13] and dominate for T � M. The problem is that already
without pion loops chiral quark models predict a chiral phase transition at about Tc ∼ 170 MeV, in
remarkable but perhaps unjustified agreement with lattice calculations.

4. The Polyakov loop Chiral Quark Model

We can formally keep track of large gauge invariance by coupling gluons to the model in a
minimal way. In the Nambu–Jona-Lasinio model the effective action takes the form

ΓNJL[S,P] = −iNcTrlog(iD)− 1
4G

∫

d4x tr f (S2 +P2) , (4.1)

where the Dirac operator is given by

iD = i ∂/ −M̂0 +(S + iγ5P) . (4.2)

It is obtained after using the standard bosonization procedure [14] with the introduction of auxiliary
bosonic fields (S,P) and after formally integrating out the quarks. The chiral quark model coupled
to the Polyakov loop corresponds to simply make the replacement

∂0 → ∂0 − iA0 (4.3)

in the Dirac operator (4.2). As we said in section 2, a perturbative treatment of the A0 component
of gluon field manifestly breaks gauge invariance at finite temperature, and we need to consider the
Polyakov loop as an independent degree of freedom. It appears naturally in any finite temperature
calculation in the presence of minimally coupled vector fields within a derivative or heat kernel
expansion [3, 15]. Our approach is similar to that of [7], except that there a global Polyakov loop is
suggested in analogy with the chemical potential. Instead we consider a local Polyakov loop Ω(~x)
coupled to the quarks [8]. From those calculations we deduce the rule of Eq. (3.1), but with the
modified fermionic Matsubara frequencies

ω̂n = 2πT (n+1/2+ ν̂) , ν̂ = (2πi)−1 logΩ , (4.4)

which are shifted by the logarithm of the Polyakov loop Ω = ei2πν̂ , i.e. ν̂(~x) = A0(~x)/(2πT ). The
effect of such a shift over a finite temperature fermionic propagator starting and ending at the same
point is

F̃(x;x) →
∞

∑
n=−∞

(−Ω(~x))nF̃(~x,x0 + inβ ;~x,x0) , (4.5)

instead of the (−1)n factor obtained from the standard rule Eq. (3.1) after using Poisson’s summa-
tion formula and Fourier transformation. 1

1This formula can be interpreted saying that in a quark loop at finite temperature, the quarks pick up a phase (−1)

due to Fermi-Dirac statistics, and a non Abelian Aharonov-Bohm factor Ω each time the quarks wind once around the
compactified thermal cylinder.
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If we integrate over the A0 gluon field of Eq. (4.3) in a gauge invariant manner [16], this yields
a partition function for the quiral quark model of the form

Z =
∫

dUdΩ eiΓG[Ω]eiΓQ[U,Ω] , (4.6)

where U is the nonlinearly transforming pion field, dU is the Haar measure of the chiral flavour
group SU(N f )R × SU(N f )L and dΩ the Haar measure of the colour group SU(Nc), ΓG is the ef-
fective gluon action whereas ΓQ stands for the quark effective action. If the gluonic measure is
left out A0 = 0 and Ω = 1 we recover the original form of the corresponding chiral quark model,
where there exists a one-to-one mapping between the loop expansion and the large Nc expansion
both at zero and finite temperature. Equivalently one can make a saddle point approximation and
corrections thereof. In the presence of the Polyakov loop such a correspondence does not hold, and
we proceed by a quark loop expansion, i.e. a saddle point approximation in the bosonic field U ,
keeping the integration over the Polyakov loop Ω. This integration must be done according to the
QCD dynamics and will restore gauge invariance. Effectively this implies an average over the local
Polyakov loop with some normalized weight σ(Ω;~x)dΩ. Here σ(Ω;~x) is the (temperature depen-
dent) probability distribution of Ω(~x) in the gauge group. For a general function f (Ω), meaning a
ordinary funcion f (z) evaluated at z = Ω, we have

〈

1
Nc

trc f (Ω)

〉

=
∫

SU(Nc)
dΩσ(Ω)

1
Nc

Nc

∑
j=1

f (eiφ j) =
∫ 2π

0

dφ
2π

σ̂(φ) f (eiφ ) , (4.7)

where eiφ j , j = 1, . . . ,Nc are the eigenvalues of Ω and

σ̂(φ) :=
∫

SU(Nc)
dΩσ(Ω)

1
Nc

Nc

∑
j=1

2πδ (φ −φ j) . (4.8)

By applying this formalism to the quark condensate, we deduce

〈qq〉T =
∞

∑
n=−∞

1
Nc

〈trc(−Ω)n〉〈q(x0)q(0)〉|x0=inβ . (4.9)

From Eq. (2.8) we observe that in the confining phase and in quenched approximation triality is
preserved, so that after gluon average Eq. (4.5) becomes

F̃(x;x) →
∞

∑
n=−∞

〈(−Ω(~x))nNc〉F̃(~x,x0 + inNcβ ;~x,x0) . (4.10)

At sufficiently low temperature the distribution of the Polyakov loop becomes just the Haar mea-
sure, and one can easily deduce the following result

〈trc(−Ω)n〉SU(Nc)
=











Nc , n = 0 (4.11)

−1 , n = ±Nc (4.12)

0 , otherwise (4.13)

.

Taking into account this formula in Eq. (4.9), we observe that the inclusion of the Polyakov loop
not only removes the triality breaking terms, but also the thermal contributions are Nc suppressed
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as compared to the zero temperature value, as is expected from ChPT (see Eq. (3.8)). The quark
condensate at finite temperature at one loop level and in quenched approximation is

〈qq〉T = 〈qq〉T=0 +
2M2T
π2Nc

K1(NcM/T )+ · · · Low T∼ 〈qq〉T=0 +4

(

MT
2πNc

)3/2

e−NcM/T . (4.14)

The dots indicate higher gluonic or sea quark effects. Due to the exponential suppression, the lead-
ing thermal corrections at one quark loop level start only at temperatures near the deconfinement
phase transition. We have named this effect Polyakov cooling [8], because it is triggered by a group
averaging of Polyakov loops. This means that in the quenched approximation we do not expect any
important finite temperature effect on quark observables below the deconfinement transition, and
the biggest change should come from pseudoscalar loops at low temperatures. This is precisely
what one expects from ChPT.

We have also studied in Ref. [8] the low energy effective chiral Lagrangian deduced from
different constituent quark models at one loop level. This is a local object, and after a derivative
expansion it takes the form

L (x) = ∑
n

tr [ fn(Ω(x))On(x)] , (4.15)

where tr acs on all internal degrees of freedom, n labels all possible local gauge invariant operators
On(x) (i.e. containing covariant derivatives), and fn(Ω(x)) are temperature dependent functions of
the Polyakov loop which replace the numerical coefficients present in the zero temperature case.
We focus only on the Polyakov loop with color degrees of freedom, and forget the requirement of
a chiral flavor Polyakov loop to maintain large flavour symmetry at finite temperature. The full
calculation of the low energy constants up tu order O(p4) in quenched approximation shows that
they become functions of temperature and the Polyakov loop, and after integration of gluons by
using Eq. (4.7) they have the same strong suppression at low temperatures observed in Eq. (4.14)

LT
i −LT=0

i
Low T∼ e−NcM/T .

In order to go beyond the quenched approximation, we will consider the computation of the
fermion determinant in the presence of a slowly varying Polyakov loop following the techniques
developed in [15]. Such an approximation makes sense in a confining region where there are very
strong correlations between Polyakov loops. The fermion determinant can be written as

Det(i D/ −M) = e−
∫

d4xL (x,Ω) , (4.16)

where L is the chiral Lagrangian as a function of the Polyakov loop which has been computed
at finite temperature in Ref. [8] in chiral quark models. Using this we can estimate the Polyakov
loop 2

L =
1

Nc

〈trcΩ(x) Det(i D/ −M)〉
〈Det(i D/ −M)〉

Low T∼ c
8πT 2B
N2

c σ3 e−M/T , (4.17)

where B is the vacuum energy density, σ is the string tension and c is a numerical factor which
depends on the model. Note that triality is not preserved due to the presence of dynamical quarks,
but the relevant scale is the constituent quark mass. So the Polyakov loop can be effectively used as
an order parameter. In Fig. 1 we confront such an exponential suppression with unquenched lattice

2The integration can be easily computed by using the formula 〈trcΩ(x) trcΩ−1(y)〉 = e−σ |x−y|/T .
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Nf=2,Nτ=4, Ref.[6]
Eq. (4.15)

Figure 1: Temperature dependence of the renormalized Polyakov loop in units of the critical temperature.
Lattice data correspond to 2-flavor QCD, and has been taken from [6]. The line represents our estimation of
the Polyakov loop in the low temperature regime, using c = 3 as a suitable value for this model-dependent
parameter.

calculations below the phase transition. We observe that Eq. (4.17) could be a good approximation
below 0.6Tc. In any case, lattice data for lower temperatures are desirable to do a more precise
analysis.

For the quark condensate we take into account the result of Eq. (4.9), so that

〈qq〉T =
〈qq Det(i D/ −M)〉
〈Det(i D/ −M)〉

Low T∼ 〈qq〉T=0 ×
(

1+ c′
8πT 2B
N2

c σ3 e−2M/T
)

, (4.18)

where again c′ depends on the particular model. In other chiral quark models, similar results are
obtained by replacing 2M → MV (the ρ meson mass) [8]. The Polyakov cooling persists although
is a bit less effective, and for instance the temperature dependence of the low energy constants of

the effective chiral Lagrangian becomes LT
i −LT=0

i
Low T∼ e−MV /T .

Finally, on top of this one must include higher quark loops, or equivalently mesonic excita-
tions. They yield exactly the results of ChPT [13] and for massless pions dominate at low tempera-
tures. Thus, we see that when suitably coupled to chiral quark models the Polyakov loop provides
a quite natural explanation of results found long ago on purely hadronic grounds.

5. Polyakov loop above Tc

In this section we focus on the behaviour of the Polyakov loop in the deconfining phase.
In that phase chiral symmetry is restored and the degrees of freedom are quarks and gluons. A
perturbative evaluation of the Polyakov loop was carried out in [2] in pure gluodynamics to NLO,
which corresponds to O(g4) in the Landau gauge. In the Polyakov gauge Eq. (1.1) becomes

L(T ) =
1

Nc

〈

trceigA0(~x)/T
〉

= 1− g2

2T 2

1
Nc

〈trc(A
2
0)〉+

g4

24T 4

1
Nc

〈trc(A
4
0)〉+ · · · , (5.1)
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where we have considered a series expansion in the gluon field.3 To describe the dynamics of the
A0(x) field we use the 3-dimensional reduced effective theory of QCD, obtained from the Euclidean
QCD action by integrating the non stationary Matsubara gluon modes and the quarks [3, 17]. Let
D00(k)δab denote the 3-dimensional propagator for the gluon field, then4

〈A2
0,a〉 = (N2

c −1)T
∫

d3k
(2π)3 D00(

~k) . (5.2)

To lowest order in perturbation theory the propagator becomes DP
00(

~k) = 1/(~k2 +m2
D), where mD is

the Debye mass, which to one loop [18] writes mD = gT (Nc/3 + N f /6)1/2. We can compute 〈A2
0〉

and 〈A4
0〉 by taking derivatives of the vacuum energy density of the 3-dimensional theory, already

computed to four loops in [19]. The contribution from g2〈A4
0〉 starts at O(g6), while that of g2〈A2

0〉
starts at O(g3). So, the replacement of Eq. (5.1) with

L(T ) = exp

[

−
g2〈A2

0,a〉
4NcT 2

]

(5.3)

becomes correct up to O(g5). This gaussian ansatz is exact in the large Nc limit. We obtain

〈A2
0,a〉P = −N2

c −1
4π

mDT − Nc(N2
c −1)

8π2 g2T 2
(

log
mD

2T
+

3
4

)

+O(g3) . (5.4)

This result can be deduced in two forms: by derivating the vacuum energy density [19], or by
identifying Eq. (5.3) with the perturbative result of Ref. [2]. Note that this formula holds also in the
unquenched theory, since to this order, N f only appears through the Debye mass. The perturbative
contributions to the Polyakov loop at O(g3) and O(g4) have been displayed in Fig. 2 and compared
to the lattice data of the renormalized Polyakov loop of Ref. [4]. It has a rather flat logarithmic
dependence with temperature and only seems to reproduce these data for the highest temperature
value 6Tc. The results of Ref. [19] would provide the O(g5) and O(g6) terms. Unfortunately,
this perturbative result is obtained in covariant gauges, generating a spurious gauge dependence
beyond O(g4). In any case, numerically these terms do not make a substantial contribution as they
are qualitatively and quantitatively similar to those in Ref. [2].

It is clear that perturbation theory cannot explain by itself lattice data, and we propose to
account for non perturbative contributions coming from condensates. We consider adding to the
propagator new phenomenological pieces driven by positive mass dimension parameters:

DNP
00 (~k) =

m2
G

(~k2 +m2
D)2

. (5.5)

This piece produces a non perturbative contribution to the gluon condensate, namely, 〈A2
0,a〉NP =

(N2
c − 1)T m2

G/(8πmD). If we assume that mG is temperature independent, the condensate will

3Note that the odd order terms vanish due to the conjugation symmetry of QCD, Aµ (x) →−AT
µ (x).

4We consider A0 = ∑a TaA0,a, with the standard normalization for the Hermitian generators of the SU(Nc) Lie
algebra in the fundamental representation, tr(TaTb) = δab/2.
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T/Tc

LO NLO

Nf=0,Nτ=4, Ref.[4]
Nf=0,Nτ=8, Ref.[4]

Figure 2: Temperature dependence of the renormalized Polyakov loop in units of the critical temperature.
Lattice data correspond to quenched QCD, and have been taken from [4]. We plot the prediction of pertur-
bation theory at LO O(g3) and up to NLO O(g4) in pure gluodynamics [2].

also be temperature independent, modulo radiative corrections. Adding the perturbative and non
perturbative contributions, we get for the Polyakov loop

−2logL =
g2〈A2

0,a〉P

2NcT 2 +
g2〈A2

0,a〉NP

2NcT 2 , (5.6)

where 〈A2
0,a〉P is given by Eq. (5.4). Note that, module radiative corrections, 〈A2

0,a〉P scales as T 2

while 〈A2
0,a〉NP is temperature independent. We will rewrite this formula as

−2logL = a+b

(

Tc

T

)2

, (5.7)

where the parameters a and b are expected to have only a weak temperature dependence.
The lattice data for −2logL versus (Tc/T )2 are displayed in Fig. 3. The nearly straight line

behaviour is clear, which means the unequivocal existence of a temperature power correction driven
by a dimension 2 gluon condensate. If we fit the lattice data by using the perturbative value of a up
to NLO, i.e. O(g4), one obtains:

b =

{

2.16(4) ,

2.99(12) ,
g2〈A2

0,a〉NP =

{

(0.97(1) GeV)2 , N f = 0
(0.86(2) GeV)2 , N f = 2

, (5.8)

with χ2/DOF = 1.05,1.87 respectively. A fit of the lattice data with a treated as a free parameter
gives

a =

{−0.23(1) ,

−0.31(6) ,
b =

{

1.72(5) ,

2.19(13) ,
g2〈A2

0,a〉NP =

{

(0.87(2) GeV)2 , N f = 0
(0.73(3) GeV)2 , N f = 2

, (5.9)

with χ2/DOF = 0.80,0.25 respectively. In our fits we include lattice data for temperatures above
1.03Tc in the N f = 0 case and above 1.15Tc in the N f = 2 case.
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Figure 3: The logarithmic dependence of the renormalized Polyakov loop versus the inverse temperature
squared. Lattice data from [4, 6]. Fits with a adjustable constant and predicted by NLO perturbation theory
are displayed. Purely perturbative LO and NLO results for N f = 0 are shown for comparison.

Recent analyses of the heavy quark free energy with the model proposed in Eq. (5.5) (see [12])
suggest the possibility that αs at finite temperature has a smoother behaviour than the predicted by
perturbation theory in the interval Tc < T < 6Tc. This is in contrast with existing analyses [6, 20],
where the authors find a very large value for αs in this regime.

We can compare our result for the gluon condensate with finite temperature determinations
based on the study of non perturbative contributions to the pressure in pure gluodynamics [21].
These results yield for the gluon condensate (0.93± 0.07 GeV)2 in the temperature region used
in our fit and in Landau gauge, which is in good agreement with Eqs. (5.8) and (5.9). We also
can compare with zero temperature determinations of the gluon condensate g2〈A2

µ,a〉 in the Landau
gauge and in quenched QCD. From the gluon propagator (2.4±0.6 GeV)2 [22] and from the quark
propagator (2.1±0.1 GeV)2 [11]. 5 We observe a remarkable agreement, taking into account that
these results refer to different temperatures and gauges.
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