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1. Introduction

Despite a wealth of proposed phases [1, 2, 3, 4, 5, 6, 7], the actually realized form of matter
at high density still presents a largely unsolved puzzle. Since compact stars constitute the most
dense form of matter in nature they could provide detailed information on its specific properties.
An important feature of compact stars in this regard is that they represent relatively cold objects.
The matter in their cores - which may consist of quarks if the density is sufficiently high - becomes
ultradegenerate basically within the first minutes after the formation of the proto-neutron star, as
the temperature drops to values of the orderT/µ ∼1/1000 and decreases further at later times.
Therefore, only low energy modes in the immediate vicinity of the Fermi surface are present and
determine many properties of the star.
As argued recently the dynamics of low energy modes in dense matter is strongly restricted due
to the special kinematics of unscreened magnetic gauge interactions and the corresponding scaling
relations near the Fermi surface. In particular, there exists a systematic low energy expansion for
ungapped infrared modes in powers of(ω/m)1/3, whereω is the characteristic energy scale of the
considered process andm is the screening scale [8]. This perturbative approach does not rely on
the weak coupling limit which is only realized at densities that are much larger than the densi-
ties that can be achieved deep inside a neutron star. The low energy dynamics is described by an
effective theory for unscreened magnetic interactions which involves a few low energy constants
that parametrize the unknown ultraviolet physics of strongly coupled modes away from the Fermi
surface.
An important source of information obtained from the observation of compact stars is their cooling
behavior [9, 10]. For the first∼ 105 years after the star is born neutrino emission from the bulk is
the most efficient energy loss mechanism. The neutrino emission from fully gapped phases, like
the CFL-phase [2] realized at asymptotically large densities, is exponentially suppressed [11] and
thereby hardly detectable against a background from hadronic processes. In contrast, the neutrino
emission from ungapped quark modes via the direct URCA process presents presumably the most
efficient cooling mechanism with a neutrino emissivityε ∼ T6 [12]. Since other known mech-
anisms [13, 14, 15, 16] including those of hadronic processes yield an emissivity that is either
suppressed by higher powers ofT or other small factors, this cooling scenario could provide a clear
signature for ungapped quark matter in astrophysical observations.
In this paper we show that due to the low temperatures present in a compact star the neutrino emis-
sivity can be computed in a low energy expansion and has the weak coupling form even in the
physical case where the coupling is not small. Moreover, the emissivity is further enhanced by
unscreened magnetic interactions and has the dependenceε ∼ T6 log2T at small temperature, as
shown recently [17].

2. Low energy dynamics in dense matter

We we will start with an analysis of correlation functions at low energiesω � m which are
required for the subsequent computation of astrophysical observables. This will be done within
an effective theory for the unscreened low energy dynamics at high density valid below an UV
cutoff scaleΛ < m. The dominant dynamical mechanism that influences the form of the low energy
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BCS

g(µ) g
2π

N1/2
f µ

g2

3π2 µ 1 1− g2

6π2 log
(

25/2e2/3m
πΛ

)
1+ g2

9π2 log
(

25/2m
πΛ

)
2g2

9 log
(

25/2m
πΛ

)
g2

9 log
(

211/2µ6

πm5Λ

)
Table 1: Leading order expressions for the low energy constants appearing in the effective Lagrangian for
magnetic modes in the weak coupling limit.

excitations stems from hard dense quark loops (HDLs) [18] in purely gluonic correlation functions.
Although these fluctuations involve hard momenta in a narrow interval around the Fermi surface,
they are sensitive to soft energies and thereby induce infrared non-analyticities. However, as far
as the fluctuations aboveΛ do not change the symmetries of the groundstate all other corrections
should be analytic even at strong coupling. As argued by Hong [19] this fermionic part of the
effective action allows a low energy expansion in derivatives over the large scaleµ. Thereby the
effective Lagrangian reads to lowest order

L = ψ
†
±~v

(
iZ‖v±·D−Z⊥

D2
⊥

2µ
+δ µ

)
ψ±~v−

1
4

Ga
µνGµν

a +LHDL

+
VΓ

ZS

µ2 (ψ†
~v Γψ~v)(ψ

†
~v Γψ~v)+

VΓ
BCS

µ2 (ψ†
~v Γψ~v)(ψ

†
−~vΓψ−~v)+· · · , (2.1)

wherevµ

±=(1,±~v) labels the local Fermi velocity of the fieldsψ±~v which describe particles and
holes with momentap= ±µ~v+ l , where l � µ, in two opposite patches on the Fermi surface
entering the only kinematically allowed interactions. We will writel = l0+l‖+l⊥ with~l‖=~v(~l ·~v) and
~l⊥=~l−~l‖. Suppressing a constant contribution to the pressure, the effect of quantum fluctuations
above the cutoffΛ is encoded in a few "low energy constants". In particular, these are given by
a shift δ µ of the Fermi surface, the Fermi velocity|~v| and the renormalization factorsZ‖ and
Z⊥, the gauge couplingg at the scaleΛ and further induced higher order parameters like the four
quark couplingsVΓ

ZS andVΓ
BCS in the forward (Zero Sound) and backward (BCS) channels. The

perturbative values for these parameters are given in Tab.1. LHDL denotes the HDL generating
functional [20]

LHDL =−m2

2 ∑
v

Ga
µα

vαvβ

(v·D)2Gb
µβ

. (2.2)

This term describes screening and damping of soft gluon modes due to particle-hole pairs on the
entire Fermi surface. In perturbation theory the dynamical gluon mass is given bym2=Nf αsµ

2/π

and involves the gauge coupling at the scaleµ. The presence of the HDL term can also be estab-
lished using renormalization group arguments [21] or effective action techniques [22].
We now analyze the dynamics of the theory governed by eq. (2.1,2.2). We first note that particle-
hole loops have already been integrated out and are represented by the HDL term. The effective
theory describes the interaction of particles and holes with soft gluons which do not significantly
change their velocity~v. Since electric fields are screened the interaction at low energies is domi-
nated by the exchange of magnetic gluons. Magnetic gluons are weakly damped in the kinematic
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regime|k0|�|~k|. In this regime

D(m)
i j (k) =

δi j − k̂i k̂ j

k2
0−~k2 + i π

2m2|k0
~k
|
. (2.3)

and we observe that the propagator becomes large if

|~k| ∼ (m2|k0|)1/3� |k0| . (2.4)

This implies that the gluon is very far off its energy shell and not a propagating state. We will
compute a general diagram by picking up the pole in the quark propagator, and integrate over the
cut in the gluon propagator using the kinematics dictated by eq. (2.4). In order for a quark to
absorb the large momentum carried by a gluon and stay close to the Fermi surface this momentum
has to be transverse to the momentum of the quark. This means that the termk2

⊥/(2µ) in the quark
propagator is relevant and has to be kept at leading order. Equation (2.4) shows thatk2

⊥/(2µ)�k0

ask0→ 0. This means that the pole of the quark propagator is governed by the conditionk||∼
k2
⊥/(2µ). We conclude that quark and gluon momenta scale with respect to an external energy

scaleω according to
k0∼ ω , k|| ∼m

4
3 ω

2
3 /µ , k⊥ ∼m

2
3 ω

1
3 . (2.5)

We will refer to the regime in which all momenta, including external ones, satisfy the scaling
relation (2.5) as the magnetic regime. A similar regime was identified in the context of gauge
theories of condensed matter systems [23]. The scaling relations (2.5) are the basis of the low
energy expansion in ultradegenerate matter.
In the low energy regime propagators and vertices can be simplified even further. The quark and
gluon propagators are

Sαβ

±~v (p) =
iδαβ

Z‖
(
p0∓vF p||

)
−Z⊥

p2
⊥

2µ
+ iεsgn(p0)

, (2.6)

vµ

+vν
±D(m)

µν (k) =∓ iv2
F

k2
⊥+ i π

2m2 |k0|
k⊥

, (2.7)

and the quark gluon vertex isgZ‖vi(λ a/2). Higher order corrections can be found by expanding
the quark and gluon propagators as well as the HDL vertices in powers of the small parameter
ε≡ω/m [21]. We observe that the transverse projector in the gluon propagator simplifies because
k⊥� k||. We also note that in the magnetic regime the factorp0 in the quark propagator can
be dropped sincep0� p||. From the above scaling rules it follows that the magnetic regime is
completely perturbative, i.e. graphs with extra loops are always suppressed by extra powers of
ε1/3. Quark propagators scale asε−2/3, gluon propagators scale asε−2/3, and every loop integral
givesε7/3. The quark-gluon vertex scales asε0 and the HDL three-gluon vertex scales asε1/3.
Using these results we can show that additional loops always increase the power ofε associated
with the diagram.
The analysis of the cooling behavior requires the fermionic self energy as dynamical input. The
one-loop diagram gives

Σ(p) = g2CF

∫
dk0

2π

∫
dk2
⊥

(2π)2

k⊥
k3
⊥+ i π

2m2|k0|

∫ dk||
2π

Θ(p0 +k0)

(k||+ p||)+ Z⊥(k⊥+p⊥)2

2Z‖vF µ
+ iε

, (2.8)
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with CF =(N2
c−1)/(2Nc). This expression shows a number of interesting features. First we observe

that the longitudinal and transverse momentum integrations factorize. The longitudinal momentum
integral can be performed by picking up the pole in the quark propagator. The result is independent
of the external momenta and only depends on the external energy. The transverse momentum
integral is logarithmically divergent. We find the non-Fermi liquid correction [24]

Σ(p) =
CFαs

3π

(
ω log

(
ΛΣ

|ω|

)
+ω+i

π

2
|ω|

)
+O

(
ε

5
3

)
, (2.9)

whereω≡p0. We have absorbed the logarithmic cutoff dependence into the low energy constantZ‖.
In the general case this result depends on two unknown parametersg andΛΣ which is connected to
the low energy constants byΛΣ =Λexp(9π2(Z‖−1)/(g2Z‖vF)), whereΛ = 2Λ3

⊥/(πm2) is related
to the transverse momentum cutoff. If in addition the coupling is small, the scale is determined
by the exchange of electric gluons and we findΛΣ = 25/2m/π. We observe that the self energy
correction is large and has to be included in the propagator whenever the energy dependence of the
propagator is relevant. We showed previously that rainbow diagrams do not give corrections of the
form g2nω log(ω)n [25]. Eq. (2.9) shows that higher order corrections are suppressed by powers of
ε2/3.
Collecting the contributions from the tree level and loop corrections eqs. (2.1,2.9) in the effective
field theory, the fermionic dispersion relation is given by

ω−vF l +
δ µ

Z‖
+Σ(ω) = 0, (2.10)

which depends on four low energy constants that are known in the weak coupling limit Tab.1.
The scaling arguments apply to arbitrary Green functions in the magnetic regime. Exceptions occur
if the external fields have small momenta of the order of the external energy scale. This situation
can occur in quark-quark scattering amplitudes or in vertex functions for external currents like the
weak interaction which represents the other required correlation function for the computation of the
neutrino emissivity in the next section. Consider the one-loop vertex correction for a color singlet
vertexΓµ = eZ‖vµ . In the magnetic regime the graph scales likeε1/3 . In the time-like regime
p0−q0 > |~p−~q|

Γµ (p,q) = eg2CF v̂µ

+

∫
dk0

2π

∫
d2k⊥
(2π)2vρ

+vσ
+D(m)

ρσ (k)
∫ dk||

2π
Z2
‖S~v(k+ p)S~v(k+q) , (2.11)

wherep, q are the momenta of the external quarks. The important point is that if we combine the
fermionic propagators using Fermi’s trick in order to resolve the pole in the longitudinal momentum
integration, the large componentsk|| andk2

⊥/(2µ) of the propagators cancel and the result becomes
sensitive to the small scalesp, q

S~v(k+p)S~v(k+q)=
S~v(k+ p)−S~v(k+q)

S−1
~v (p)−S−1

~v (q)− 2~k⊥·(~p⊥+~q⊥)
µ

,

where constant factors are suppressed. As a consequence the result is enhanced by a factor 1/ε1/3.
This enhancement is analogous to the one occurring in the HDL case. In the limitp0−q0→0 the
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Figure 1: The complete dynamics contributing to the Dyson-Schwinger equation for the BCS kernel in
the low energy limit. The dark blob represents the full scattering amplitude and the shaded blob the full
propagator. An analog but independent equation is obtained for the forward channel.

k|| integral gives a factorδ (p0−k0) and the vertex correction is [26]

Γµ(p,q) =
eg2

9π2 v̂µ

+ log

(
ΛZS

|ω|

)
, (2.12)

whereω =(p0+q0)/2. The logarithmic divergence was removed by adding the contribution from
the four-fermion vertex in the zero sound channel. If the coupling is weak the scale inside the log-
arithm is again determined by electric gluon exchange. We find that in this case the scale is equal
to the scale in the quark self energy.
The cancellation that occurs in the one-loop diagram repeats itself at any loop order if additional
gluon ladders are added. This implies that ladder diagrams have to be summed. We also note that
quark propagators in the ladders are sensitive to the small scaleω. This implies that the full fermion
self energy has to be included. A detailed analysis shows that all other corrections like crossed
ladders, vertex corrections, interconnections between the gluon ladders, etc. introduce extra trans-
verse momenta and follow the scaling relations in the magnetic regime. Actually, a comprehensive
study of the low energy dynamics shows that correlation functions within the effective theory can
be classified completely [21]. The only other correlation functions that involve irreducible non-
perturbative contributions are the four fermion vertices where a similar mechanism requires the
summation of the corresponding ladder sum [8]. The non-perturbative part of the dynamics in the
low energy regime is thereby described by a closed set of Dyson-Schwinger equations shown in
Fig. 1.

3. Neutrino emissivity

The dominant contribution to the emission of neutrinos from ungapped quarks is given by the
quark analogs ofβ -decay (β ) and electron capture (ec)

d → u+e−+ ν̄e, (3.1)

u+e− → d+νe. (3.2)

It is straightforward to introduce weak interactions into the effective theory. The charged current
interaction is given by

L =
g2√

2
cosθcψ

†
τ
±v·W∓

ψ (3.3)
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Figure 2: Kinematics for the quark direct Urca process. In a free quark gas (upper panel) energy momentum
conservation forces all momenta to be collinear. If Fermi liquid corrections are taken into account (lower
panel) the outgoing quark has a non-zero transverse momentum ł2

⊥ ∼ αsµ
2
e . The dashed dispersion relations

give the HDL result whereas the solid lines show the change when non-Fermi liquid corrections are included.
These lead to a flattening of the dispersion relation in the vicinity of the Fermi surface.

where cosθc is the Cabbibo angle andg2 is related to the Fermi coupling byGF/
√

2 = g2
2/(8M2

W).
The dependence on the Cabbibo angle suppresses the processes involving the strange quark [12].
Therefore we will restrict our analysis toNf = 2 massless quarks. We have seen in the previous
section that almost collinear gluon exchanges can generate large logarithmic corrections to both the
fermion self energy and the vertex correction in the time-like regime. In particular, the coefficients
of the respective logarithms are exactly equal. Since the kinematics in the case of the neutrino pro-
cesses eq. (3.1,3.2) is timelike the logarithms cancel and the renormalized effective weak coupling
remains unchanged.
The neutrino emissivity is given by the total energy loss due to neutrino emission averaged over
the initial quark helicities and summed over the final state phase space and helicities

ε ≡ Nc
1
2 ∑

σu,σd,σe

∫
d3pd

(2π)3

1
2Ed

∫
d3pu

(2π)3

1
2Eu

∫
d3pe

(2π)3

1
2Ee

∫
d3pν

(2π)3

1
2Eν

Eν (3.4)

·
(
|Mβ |2(2π)4

δ
(4)(pd− pu− pe− pν)n(pd)(1−n(pu))(1−n(pe))

+|Mec|2(2π)4
δ

(4)(pu + pe− pd− pν)n(pu)n(pe)(1−n(pd))
)

whereEi , pi represent the full energies and momenta instead of the corresponding quantities relative
to the Fermi surface appearing in the effective theory. The weak matrix element for theβ andec
processes is given by

1
2 ∑

σu,σd,σe

|Mβ/ec|2 = 64G2
F cos2 θcp2

F(v· pe)(v· pν), (3.5)
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wherepe, pν are the momenta of the electron and the neutrino. Weak processes establishβ equi-
librium in the star. In three flavor quark matter with a massive strange quark the resulting electron
chemical potential is small. In the following we shall assume that(T ∼ Eν)� (µe∼ Ee)� pF .
This assumption is appropriate in all cases except during the first few seconds of the proto-neutron
star evolution.
In this case we can neglect the neutrino energy and momentum when applying the energy-momentum
conservation relation to the matrix element. As a consequence we find(v · pν) ' Eν after averag-
ing over the direction of the outgoing neutrino. The matrix element is mainly determined by the
factor (v · pe). To leading order in the effective theory the weak decay is exactly collinear and
(v · pe) = (Ee− vF le) = 0 up to terms of orderO(T/µe), see Fig.2. The modification of the dis-
persion relation due to interactions opens phase space for the URCA processes. The leading effect
which makes the integral finite comes from Fermi liquid corrections, whereas non-Fermi liquid
corrections only appear in the phase space integral. To leading order inT/µ the sum of the rates
for electron capture andβ decay is given by

ε ≈ 3G2
F cos2 θc

2π5 T6
∫ ∞

−∞
dxd

∫ ∞

−∞
dxu

∫ ∞

0
dxν x3

ν n(xd)n(−xu)n(xu−xd+xν)

·
[

p(Ed)
Ed

∂ p(Ed)
∂Ed

p(Eu)
Eu

∂ p(Eu)
∂Eu

(
p(Eu)2−E2

u− p(Ed)2 +E2
d

)]
Ei→µi+Txi

. (3.6)

In the considered caseT � µ the distribution functions cut off the integration at scales of the order
T which allows the application of the low energy expansion. Thereby the expression in the square
brackets is determined by the quark dispersion relation given in eq. (2.10) and can be expressed by
the low energy constants. In the general case when the coupling is not small the integral cannot be
done analytically but has to be performed numerically which would require values for the unknown
low energy constants. The important point is, however, that in the considered case the leading term
arising from the bracket depends only logarithmically on the temperature and thereby does not
change the genericT6 behavior.
In weak coupling, terms ofO(αs(αs log(T))n) with n = 0,1,2 are independent of log(xi) and leave
the integral ∫ ∞

−∞
dxd

∫ ∞

−∞
dxu

∫ ∞

0
dxνx3

ν n(xd)n(−xu)n(xd−xu +xν) =
457π6

5040
. (3.7)

In this case the neutrino emissivity from the quark direct Urca process reads at leading order in
T/µ

ε ≈ 457
630

G2
F cos2 θc αsµ

2
q µeT6

(
1+

CF αs

3π
log

(
eΛΣ

T

))2

. (3.8)

The first term is the standard result by Iwamoto [12], and the logarithmic terms are non-Fermi
liquid corrections. We note that these terms have to be included because at very low temperature
αs log(T) becomes large compared to one. We also note that if the scale inside the logarithm is on
the order of the screening scale∼ gµ, thenαs(µ) log(Λ/T) stays finite in the limitµ → ∞ at fixed
T.

8
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Figure 3: Neutrino emissivityε and specific heatcv of quark matter. The dashed line shows the Fermi
liquid results and the dotted lines show the anomalous corrections. The solid line gives the sum of the two
contributions and the gray band shows an estimate of the uncertainties.

4. Compact star cooling

In this section we wish to study the impact of non-Fermi liquid effects on the cooling history
of an isolated quark phase in the weak coupling limit. Our aim is not to provide a thorough analysis
of the cooling behavior of an actual quark or hybrid star, but to give a numerical estimate of the size
of the non-Fermi liquid corrections. The thermal evolution of the star is governed by the neutrino
emissivity, the specific heat and the thermal conductivity. Non-Fermi liquid corrections to the
specific heat were initially considered by Holstein et al. [27] in the case of QED. The calculation
was recently refined and extended to QCD by Ipp et al. [28]. They find

cv =
NcNf

3
µ

2
q T

(
1+

CF αs

3π
log

(
Λc

T

))
, (4.1)

where the first term is the free gas result and the second term is the non-Fermi liquid correction.
Ipp et al. also determined the scale inside the logarithm as well as fractional powers ofT. From the
completeO(αs) result we findΛc ' 0.28m which is substantially smaller than the effective scale
e·ΛΣ ' 4.98m found for the self energy.
The thermal conductivity of degenerate quark matter was studied by Pethick and Heiselberg [29].
Their result suggests that equilibration is fast and that the quark phase is isothermal. In this case
the cooling behavior is governed by

∂u
∂ t

=
∂u
∂T

∂T
∂ t

= cv(T)
∂T
∂ t

=−ε(T), (4.2)

whereu is the internal energy,t is time and we have assumed that there is no surface emission.
Without non-Fermi liquid effects we haveε ∼ T6 andcv∼ T. In this case the temperature scales as
T ∝ 1/t

1
4 . With logarithmic corrections included there is no simple analytic solution and we have

studied eq. (4.2) numerically.
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We take the quark chemical potential to beµq = 500 MeV corresponding to densitiesρB ≈ 6ρ0

whereρ0 is nuclear matter saturation density. We note that bothcv andε are proportional toµ2

and the main dependence of the cooling behavior onµ cancels. We evaluate the strong coupling
constant using the one loop renormalization group solution at a scaleµ. We take the scale parameter
to be ΛQCD = 250 MeV which givesαs ' 1 at µ = 500 MeV. It is clear that the naive use of
perturbation theory is in doubt if the coupling is this large. In practice we estimate the uncertainty
by varying αs between 1 and 0.4 which is the value used by Iwamoto [12]. We take the weak
coupling result for the scale in the logarithms and assess the uncertainty by varyingΛ within a
factor of 2. Finally, we took the initial temperature to beT0=15 MeV.
The electron chemical potential is determined by the requirements of charge neutrality andβ -
equilibrium. In a non-interacting quark gas we findµe' m2

s/(4pF). With a strange quark mass
ms=150 MeV this relation givesµe≈11 MeV. This result, however, is very sensitive to interactions.
To first order inαs the chemical potential for a massive strange quark is [30]

µs = E0
Fs+

2αs

3π

(
pFs−

3m2
s

E0
Fs

log

(
pFs+E0

Fs

ms

))
(4.3)

whereE0
Fs =

√
p2

Fs+m2
s. The important point is that theO(αsm2

s) term is negative and enhanced
by a large logarithm log(pF/ms). The sign is related to the fact that the correlation energy changes
sign in going from the relativistic to the non-relativistic limit.
Equation (4.3) implies that the strange quark chemical potential can become equal to or even
smaller than the up quark chemical potential. To leading order inm2

s/p2
F the electron chemical

potential is given by

µe'
m2

s

4pF

(
1− 4αs

π
log

(
2pF

ms

))
. (4.4)

For the values of the parameters given above this equation gives a negative electron chemical po-
tentialµe≈−14 MeV. In this case the quark phase contains a Fermi sea of positrons and the quark
direct Urca process is

u→ d+e+ +ν , d+e+ → u+ ν̄ . (4.5)

The neutrino emissivity is again governed by eq. (3.8) whereµe has to replaced by−µe. We observe
that despite the large correction toµe the emissivity is not strongly affected. The large variation in
µe when perturbative corrections are included implies, however, that the electron chemical potential
is very uncertain. In particular, there is a possibility thatµe is much smaller thanm2

s/(4pF). If
αsµe < T then the neutrino emissivity is no longer proportional toαsµeT6 but to T7 [31]. In
the following we shall use the valueµe=14 MeV corresponding to interacting quarks. In Fig.3
we show the temperature dependence of both the neutrino emissivity and the specific heat (solid)
compared to the Fermi liquid result (dashed). The gray band shows an estimate of the uncertainties
which are dominated by the uncertainty in the value of the strong coupling. For bothcv andε the
anomalous logarithmic terms (dotted) dominate in the relevant temperature range and exceed the
Fermi liquid result considerably. The cooling behavior is controlled by the ratioε/cv. Sinceε ∼
log2(T) andcv∼ log(T) this ratio is logarithmically enhanced. However, because the temperature
at late times scales roughly as the fourth root of the numerical coefficient inε/cv this logarithmic
enhancement only translates into a modest reduction of the temperature. This can be seen in more
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Figure 4: Cooling behavior of ungapped quark matter. We show the temperatureT9 in units of 109 K as
a function of the age of the star in years. The dashed line shows the Fermi liquid result whereas the solid
line gives the result including non-Fermi liquid effects with the estimated uncertainty range. Although the
non-Fermi liquid corrections to both the specific heat and the neutrino emissivity are significant, there is only
a modest reduction in the temperature at late times. However, for both cases the cooling of quark matter is
considerably faster than the cooling of neutron matter via the modified Urca process given by the dotted line.

detail in Fig.4. We observe that compared to the Fermi liquid result (dashed) the non-Fermi liquid
effects (solid) lead to a reduction of the temperature at late times which is nearly independent of
time. The magnitude of the effect is on the order of 20%. For comparison, we also show the cooling
behavior of normal nuclear matter via the modified Urca processn+n→ n+ p+e−+ ν̄ [13]. We
have chosen the same density and initial temperature and the effective baryon masses given in [10].
We clearly see the difference between the fast∼ T6 quark direct Urca process and the slow∼ T8

modified Urca process.

5. Summary and Discussion

In this work, we have discussed the influence of ungapped quark modes on the cooling behav-
ior of compact stars. We find that the functional form and in particular the temperature dependence
of the neutrino emissivity found in the weak coupling limit generalizes to the physical case where
the coupling is of order one. This result is obtained within an independent low energy expansion
and should be valid basically during the entire cooling process except for the initial part. The low
energy expansion shares many features with the ordinary weak coupling expansion and depends on
only a few unknown low energy constants whose size should roughly be given by the perturbative
values. We expect a similar qualitative agreement between the weak coupling and the low energy
expansion for the case of the specific heat. A more precise result will require a detailed study of
both the emissivity and the specific heat within the effective low energy theory.
In the weak coupling limit non-Fermi liquid effects lead to a logarithmic enhancement in both the
neutrino emissivity and the specific heat. The net result of these two effects is a mild logarithmic
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enhancement in the cooling rate. As our rate is even larger than the Iwamoto rate we confirm
and sharpen earlier bounds on the existence of ungapped quark matter in neutron stars [32]. More
quantitative statements will require detailed studies of realistic models in which the quark core is
in contact with a hadronic phase or an atmosphere which is beyond the scope of the present paper.
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