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Modeling the self-organization and collective behavior of dislocation ensembles is of primary
concern in this work. Two dislocation species are considered: excess dislocations seen as a man-
ifestation of lattice incompatibility, and statistically distributed dislocations, which induce com-
patible deformation. Conventional slip-based crystal plasticity is used to model the behavior and
dynamics of the latter, while Field Dislocation Mechanics is employed to account for the former.
Coupling the dynamics of both species proceeds along two reciprocal ways: spatial gradients in
slip produced by mobile statistical dislocations leads to nucleation of excess dislocations, while
excess dislocations contribute to forest hardening. Illustration is given to the evolution of mobile
and excess dislocation density. Dislocation arrangements resulting from the model are presented.

International Conference on Statistical Mechanics of Plasticity and Related Instabilities
31 August - 2 September 2005
Bangalore, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:varadhan@uiuc.edu
mailto:abeaudoi@uiuc.edu
mailto:claude.fressengeas@univ-metz.fr


P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
0
4

Coupling the dynamics of statistical / excess dislocations Claude FRESSENGEAS

1. Introduction

In conventional theories of continuum crystal plasticity, the state variables are plastic strain rate
and stress. Dislocations - the underlying defects at the origin of plasticity - are usually overlooked
in the description, a valid point of view as long as their spatial distribution is uncorrelated. Such
an assumption loses validity when dislocation interactions become strong enough, which occurs
sooner or later in the course of plastic deformation. Then, self-organization of dislocation ensem-
bles and collective behavior involving large numbers of correlated events occur at intermediate
length scales. Prominent examples of such behavior are persistent slip bands in fatigue, Lüders
and Portevin - Le Chatelier bands, all characterized by strongly non-uniform spatial distributions
of dislocation ensembles.

Building a tractable link between these non-uniform distributions and macroscopic observable
manifestations of plasticity is currently a challenge addressed to the mechanical/material com-
munity. A recent advance in this respect has been to account for "excess dislocations" (EDs) as a
manifestation of lattice incompatibility, as opposed to "statistically distributed dislocations" (SDs),
which result in compatible deformation. These two concepts are scale-dependent, and at a suf-
ficiently fine scale of spatial resolution, all dislocations are EDs. Acharya recently developed a
continuum framework, Field Dislocation Mechanics (FDM), well suited to the fine scale of reso-
lution, with dislocation density and stress as state variables [1]. FDM provides for the dynamic
evolution of EDs and stress fields as the solution of a boundary value problem. In practice it is
applicable to systems with sufficiently small dimensions. At larger scales of resolution, EDs offset
each other and SDs are inevitably present. As both EDs and SDs contribute to plastic deformation,
building a combined model for the dynamic evolution of both EDs and SDs thus becomes desir-
able. A framework for such combined models has been set forth in [2], [3].

In this presentation, slip-based conventional crystal plasticity is used to model the behavior of SDs,
while FDM is used for ED dynamics. Coupling the compatible and incompatible parts of disloca-
tion dynamics is achieved in two reciprocal ways: differential slip of SDs leads to ED nucleation,
while EDs contribute to forest hardening. Evolution equations for the statistical dislocation den-
sities round out the proposed model. The paper is organized as follows. Section 2 is devoted
to a presentation of small strain Field Dislocation Mechanics. In Section 3, a model is outlined,
which combines conventional crystal plasticity with FDM. Application of this combined model to
the yield point phenomenon is shown in Section 4. Final remarks and an overall discussion are
provided in Section 5.

2. Field dislocation Mechanics

Dislocations have an interaction stress field, which results from their non homogeneous spatial dis-
tribution. In combination with the stress field due to the applied traction and displacement boundary
conditions, this stress field contributes to driving the motion of dislocations, which results in per-
manent deformation of the crystalline solid. The aim of FDM is to provide a continuum description
of this coupled process by using the mathematical framework of partial differential equations. As
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a result of the theory, the dynamic evolution of the dislocations and stress fields should emerge as
the solution of a boundary value problem.

Let us consider a crystalline domain D, subject to usual traction and displacement boundary condi-
tions on its outer surfaces ∂Dt and ∂Du. At small strains, the distortion (or displacement gradient)
U = grad u can be additively split into its elastic and plastic part, Ue and Up respectively. In turn,
each part can be split into its compatible (U‖

e ,U
‖
p) and incompatible (U⊥

e ,U⊥
p ) components, with

the combinations

grad u = U‖
e +U‖

p, U⊥
e +U⊥

p = 0 (2.1)

The continuum description of dislocations needed by FDM is based upon Nye’s dislocation density
tensor ααα [4]. Operating on the normal n to a unit surface S, ααα provides the net Burgers vector b =
ααα ·n of all dislocations lines threading S, i.e., the closure failure of the Burgers circuit surrounding
this surface. Using Nye’s tensor, which incorporates information on dislocation line direction, is
essential to the determination of the incompatible distortion tensors (Ue

⊥,Up
⊥) through equations

curl U⊥
e =−curl U⊥

p = ααα (2.2)

The solution to these equations is known up to a gradient. In order ensure that no component
belonging to the null-space of the curl operator is involved in the solution, the additional equation
div U⊥

e = 0 and boundary condition U⊥
e ·n = 0 on ∂D are imposed (say on U⊥

e ). In FDM, U̇‖
p is

constitutively specified as the null-space (compatible) component of the slip plastic distortion rate
U̇p

U̇p = ααα ×v+Lp (2.3)

Throughout this paper, a dot denotes the time derivative. v stands for the velocity of dislocations,
which will be provided constitutively later on (see Eqs. 2.7, 2.8, 3.5) in terms of stresses and
dislocation densities. Lp is a velocity gradient, taken to be identically zero in this Section. Unless
stated otherwise, the following statements are valid for a non zero Lp. The interpretation for Lp

will be given in the next Section. In the absence of Lp, the relation 2.3 between distortion slip
rate, dislocation density and velocity, has the interpretation of being a tensorial Orowan relation.
The tensor (ααα ×v) · dx is the flux of Burgers vectors across a curve element dx. Selected by the
curl operator, the incompatible part of U̇p feeds the increment of excess dislocations through the
equation of balance for closure defects

α̇αα =−curl U̇p (2.4)

Equation 2.4 expresses the conservation of closure failure in a Burgers circuit attached to the de-
forming crystal. It can also be seen as the evolution equation for the dislocation density α . The
stress field T is written in terms of the elastic or plastic distortions as

T = Ce : {U‖
e +U⊥

e }= Ce : {grad u−U‖
p−U⊥

p } (2.5)
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where Ce is the elastic constitutive tensor and {A} denotes the symmetric part of tensor A. The
stress tensor T satisfies the equilibrium equation

div T = 0 (2.6)

Based on thermodynamic guidelines resulting from the Clausius-Duhem inequality (the dissipation
should be non–negative), the dislocation velocity is taken to be of the form

v = v̄
ξ

|ξ |
(2.7)

ξ = X(T : ααα) (2.8)

where v̄ specifies its magnitude (see below Eq. 3.5) and X represents the permutation tensor. Eq.
2.8 prescribes the direction ξ of the dislocation velocity. The latter is found to be normal to the
dislocation line, as expected from common knowledge. Suitable boundary conditions are imposed
to ensure closure of the theory. In particular, no inward flux of dislocations across external surfaces
is allowed, whereas outflow of dislocations is unrestricted.

As such, FDM is a closed theory in the sense that it has enough statements to uniquely determine
the stress and dislocation fields. In principle, it can be applied to material systems at any scale.
In practice, due to limited computational resources, it only applies to micro-systems. However,
increasing the size of the Burgers circuits used to express incompatibility allows to deal with larger
systems, while smearing out the smallest details of dislocation distributions. This process is further
detailed in the next Section.

3. Combined model

The distortion rate Lp introduced above in Eq. 2.3 is now non zero. It is assumed to originate in the
motion of statistical dislocations, as is usual in conventional crystal plasticity. Through this term,
generation of excess dislocations is obtained from the non uniformity of the conventional distortion
rate field. Other sources of excess dislocation generation, such as line length increase, are included
in the flux term ααα ×v of the distortion rate U̇p [5]. Let the Schmid orientation tensor of slip system
s be

Ps = bs⊗ns (3.1)

where bs denotes the slip direction and ns is the unit normal to the slip plane. Combining all slip
systems, the distortion rate tensor is

Lp = ∑
s

ρmbvsPs (3.2)

Here ρm is a mobile statistical dislocation density, in units of dislocation line length per volume,
b is the Burgers vector modulus and vs a dislocation velocity. For simplicity, only one mobile
dislocation density common to all slip systems, is considered here. The total equivalent strain rate
from both ED and SD activity is
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Γ̇ = |U̇p| (3.3)

where the symbol |a| stands for the norm of a. The velocity vs is known from the resolved shear
stress τs = T : Ps, taken in this work as a power law

vs = v0sgn(τs)
∣∣∣∣ τs

τ0 + τh

∣∣∣∣m

(3.4)

Here v0 is a reference velocity and τ0 is an athermal contribution to the slip system obstacle
strength. The stress exponent m is taken as 20 in this work, providing a response that is rela-
tively insensitive to strain rate. The magnitude v̄ of the velocity of EDs (see Eq. 2.7) follows a
similar relationship

v̄ = v0sgn(τ)
∣∣∣∣ τ

τ0 + τh

∣∣∣∣m

(3.5)

τ =
ααα ×v
|ααα ×v|

: T (3.6)

The stress τh is needed to overcome forest obstacles to dislocation motion. According to the Bailey-
Hirsch formulation, it is taken as

τh = α̃µb
√

ρ f (3.7)

α̃ is a constant, µ the shear modulus, and ρ f stands for the statistical forest dislocation density. In
this work, the time evolution of both ρm and ρ f is obtained from the Kubin - Estrin model [6]

ρ̇m = ((C1/b2)−C2ρm− (C3/b)
√

ρ f )Γ̇ (3.8)

ρ̇ f = (C0b|α|+C2ρm +(C3/b)
√

ρ f −C4ρ f )Γ̇ (3.9)

In these equations, C1 accounts for mobile dislocation multiplication, C2 is for mutual annihilation
and concomitant debris generation, C3 stands for immobilization on forest obstacles and C4 for
dynamic recovery. We introduce in addition the term C0, meant to account for the contribution of
EDs to forest hardening [7]. Together with Eqs. 2.3, this term provides for the coupling between
ED and SD dynamics through work hardening. In the absence of EDs, obtained by setting ααα = 0
in the above equations, the present model reduces to a conventional crystal plasticity formulation.
In the absence of the distortion rate Lp, it reduces to FDM.

4. Numerical formulation and results

The equations for the combined model set forth in Section 3 form a coupled set of partial differen-
tial equations, which can be solved numerically by using a finite element scheme. A brief outline
of the algorithm we employed is provided in the following. A more detailed account can be found
in Ref. [8]. At time t, known dislocations densities lead to solving Eq. 2.2 for the incompatible
plastic distortion. In combination with the compatible part of Eq. 2.3, this solution leads to the
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b τa v0 ρm(0) ρ f (0)
0.27 [nm] 6.54 [MPa] 3.75 ×10−8 [m/s] 1012 [ m−2 ] 1011 [ m−2]

C0 C1 C2 C3 C4

20.0 2.43 ×10−5 3.03 8.18 ×10−3 3.33

Table 1: Parameters used in the simulations.

plastic distortion. The equilibrium equation 2.6 is then used to solve for the displacement u. The
rearrangement of the dislocations resulting from the stress field is obtained at time t +∆t from the
evolution equation 2.4. Finally, the slip plastic distortion is evolved to time t +∆t by using the rate
equation 2.3. Input from crystal plasticity at time t is taken in solving the equilibrium equation and
in this update.

Central to the design of the combined model is the production of ED sources through gradients in
the plastic deformation from crystal plasticity. In the numerical implementation, the distortion rate
Lp from time t enters into Eq. 2.3 for evaluation at the subsequent time step t +∆t. Integration of
Eq. 2.3 by parts reveals the formulation presented herein as one specific choice of possible bound-
ary conditions outlined in [2], with Lp×n specified on the entire boundary. In addition, we specify
ααα(v ·n) = 0 on the inflow boundary, as indicated above.

Standard Galerkin formulations are known to be unstable for first-order hyperbolic equations such
as the transport equation 2.4. Thus, a mixed Galerkin-Least-Squares finite element method is in-
troduced for 2.4 [5], while a Least-Squares formulation is used to solve for the incompatibility
equation 2.2. A standard Galerkin scheme is used for the rest of the equations. The integration
uses an explicit Euler scheme.

Illustration of the above developments is sought in the investigation of the yield point phenomenon
in simple tension of an idealized crystal with dimensions 1.5 [µm] × 1.5 [µm] × 3.0 [µm]. Four
different simulations were undertaken in order to illustrate features of the solutions following from
FDM, conventional crystal plasticity and the combined model.

• Using FDM, a single slip system with n =
[
− 1√

2
0 1√

2

]T
and b =

[
1√
2

0 1√
2

]T
is initialized

with a constant mobile edge density. Two simulations were performed with initial densities
of magnitude 10 [m−1] and 100 [m−1]. The specification of a spatially constant density leads
to a state of zero initial stress. A mesh of 12×12×24 elements is employed and kinematic
boundary conditions are prescribed representing a uniaxial tension.

• In a third simulation using only crystal plasticity, the usual FCC slip systems are taken with
a cube orientation. This leads to symmetric slip and a constant Lp. The mesh and boundary
conditions are taken as for the FDM case, above.

• Finally, we exercise the combined model by specifying the twelve (statistical) slip systems
such that a ’primary’ slip plane is coincident with the same FDM plane given above. A more
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refined mesh is taken, consisting of 24×24×48 elements. Additional displacement degrees
of freedom are constrained in the combined model simulation which promote a non-uniform
deformation, to be described.

Young’s modulus and Poisson’s ratio were taken as 70 GPa and 0.3, respectively. Other material
parameters are given in Table 1.

The stress strain response is plotted in figure 1. An applied strain rate of 10−3 s−1 is used in all
simualtions. The elasto-viscoplastic transition is predicted by conventional crystal plasticity and
the combined model. The apparent difference in the modulus for the combined model result is
due to the fact that this nominal stress is drawn from a non-uniform deformation. The stress strain
response obtained from FDM with lower initial density displays an apparently elastic response.
With increased density, an initial elastic increase is followed by a limited amount of plasticity
through Eq. 2.3, eventually ending in an exotic elastic increase. This behavior has its origin in
the exhaustion of the initial dislocation densities in the absence of a source term, which flow out
of the crystal through its external boundaries. This is shown in figure 2. The mobile edge density
flows along the prescribed slip plane and out of the crystal, providing only a very small plastic
strain commensurate with the initial density. Along with the boundary condition for zero inflow,
ααα(v ·n) = 0 this leads to an essentially defect-free (source starved) crystal.

Figure 1: Stress strain response for the simulations, normalized by τ0 + τh(0).

The behavior of the combined model is much more complex. The mobile components and
magnitude of the ED are shown in figure 3, corresponding to the end point of the stress–strain
curve of figure 1. The initial ED was specified as zero in this simulation, however, displacement
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(a) t = 0 ms (b) t = 0.08 ms (c) t = 0.16 ms (d) t = 0.24 ms

(e) t = 0.32 ms (f) t = 0.40 ms (g) t = 0.42 ms (h) t = 0.43 ms

Figure 2: Transport of initial edge density of 10m−1 using FDM.

components in the x and y directions were constrained on the top and bottom faces. [This is in
addition to the presciption of a zero and fixed vertical displacement rate on the bottom and top
surfaces, respectively, as was done in the other simulations.] Such constraint leads to a spatially
varying distortion Lp, setting off source evolution in the combined model through Eq. 2.3. The
slices shown in figure 3a reveal the mobile components of the ED with a pure screw and edge
character, on planes with normal in the x and y directions, respectively. The pattern of the edge
density magnitude is rotationally symmetric about the y axis (somewhat obstructed by the plane
showing screw density. For both screw and edge components, the opposing sign of the ED is
observed on each side of the centerline. This gives the impression of a loop structure. Figure 3b
reveals the magnitude of the ED. Low density is observable adjacent to the constrained ends of the
specimen. Deformation tending towards uniaxial tension is expected at the specimen center, and
here the ED appears lessened. Highest density is present proximal to the ends of the specimen,
where gradients in Lp are expected.

5. Final remarks and conclusion

In the presence of patterning at some intermediate scale in the materials microstructure, non local
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(a) Mobile components in slip plane. (b) |ααα| of the excess dislocation density tensor.

Figure 3: Excess dislocation density

dynamic theories of plasticity are needed. Local models such as conventional crystal plasticity
do not involve a characteristic length scale, and they are therefore unable to account for such pat-
terning phenomena. Introducing in a phenomenological way these length scales in the constitutive
equations for plasticity, by accounting for gradients of strain or rotation, has been shown to offer
a workable alternative in the characterization of the emerging patterns (see for example [9], [10]).
However, the identification of the involved length scales and their physical justification remains
mostly a matter of controversy.

Lattice incompatibility is inherent to plasticity, and is known to provide for the spatial interactions
that are central to non local models, through the internal elastic stresses that it generates [11], [12].
Dislocation transport has also been formalized in the last decades [13], and may be taken as an
undisputable source for spatial coupling because of its geometric foundation. However, it has been
realized only recently that lattice incompatibility and dislocation transport could be combined to
build dynamic field equations for dislocation densities and stresses [1]. The resulting model, FDM,
is a theory of plasticity which naturally incorporates physically-based length scales and spatial in-
teractions due to dislocation activity.

The present theory builds on the basic equations of FDM. It additionally provides a source for
lattice incompatibility in the non uniformities of conventional crystal plasticity. Besides, excess
dislocations enter the description of forest hardening due to statistical dislocations, thus offering a
two-ways dynamic coupling between the two dislocation species. Consequently, the present model
has the potential to offer a dynamic description of dislocation patterning at an intermediate length
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scale. It contains both FDM and crystal plasticity as limiting cases at very small or very large scales
of resolution respectively. The classical (and powerful) framework of boundary value problems and
partial differential equations is conservatively employed. The model is therefore amenable to (more
or less) conventional weak forms and finite element schemes. Finite deformations and the large
dislocation densities they entail are not expected to raise practically or conceptually unsolvable
problems. Extensions of the model to such situations can be forecasted in the near future [3]. We
believe, on the basis of the above results, that the present model could be a useful tool in dealing
with such problems as strain hardening, pattern formation and instabilities at the mesoscale, or
back-stress concepts and complex deformation paths.
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