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1. Introduction

The purpose of this work and the work presented in the accompanying work (part II[1]) is
to review the application of gauge theories to defects in elastic continuum. As is well known,
spectacular progress has taken place in understanding the behaviour of elementary particles and
their interactions because of the gauge theories. Inspired by this, gauge concepts have been used in
field theories of elastic continuum with defects. However, the hope that it could be the basis of a
general theory of plasticity is yet to materialize. The question as to whether gauge concepts could
be of real help in understanding defect continuum mechanics has been the subject of a three month
long research project in 1982 in Kröner’s group at Stuttgart. Eleven experts including Kröner,
Kunin, Hehl, Kleinert, Zorawski, among others have participated in a three-day long discussion
meeting (7-9 July, 1982) entitledGauge field theories of defects in solids[2] and have presented
their views. We quote here the conclusion, as summarized by Kröner: “... there was optimism
and pessimism, the former perhaps more on the side of field theorists, the latter on the side of the
“defectists”... Nevertheless, the majority of participants appeared to be in favour of continuing the
effort towards a gauge theoretical formulation of the defect theory...”. It can safely be said that the
status of the field as of this day is not qualitatively different from that of 1982.

Gauge approach may be said to be the ultimate in the geometric formulation of the theory.
Geometric concepts have physical counterparts, but it is a challenging problem to specify the dy-
namics associated with point and line defects. The basic geometric identification made is that the
underlying continuum used for describing the physical phenomenon is a differentiable manifold
called the body manifold. Kondo[3, 4] and later Bilby, Bullough and Smith[5] have independently
taken the bold step in identifying dislocation with the torsion of the manifold. Later, disclination
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has been identified with the curvature. The kinematics and dynamics of dislocations and disclina-
tions has been investigated in the framework of classical elasticity by deWit and Kossecka[6, 7].

Many versions and types of theories have been proposed, but the question as to what con-
stitutes a gauge theory does not have a unique answer. The use of metric, connection, torsion
and curvature and postulation of a Lagrangian depending on these quantities has been called[8] as
a gauge theory. However, conventionally a gauge theory is understood as any theory which has
kinematics based on a Lagrangian given in terms of some initial fields (matter fields) possessing
invariance under some continuous Lie group, local gauge symmetry, gauge potential (connection),
and gauge field (curvature). The scope of a gauge theory being vast, many aspects of defects have
attracted attention. Gairola[9] has investigated the role of Noether’s theorem in the gauge theory
of crystal defects. McCrea et. al.[10] have mapped Noether identities into Bianchi identities in the
theory of static lattice defects.

Broadly, there are two types of gauge theories: the standard Yang-Mills theories[11, 14, 15,
16], modelled on gauge kinematics based on internal symmetries, and gravity type gauge theories
based on external space-time symmetries[8, 12, 13]. Also existing are theories based on both
internal as well as external symmetries[17, 18, 19]. Most theories are incomplete in the sense that
they are not applied to calculation of any specific defect property. Only some workers[11, 1, 14, 15]
have addressed to the solution of the stress field of a dislocation or a disclination. Our own effort
has focussed on obtaining the stress field of a screw dislocation, finding the force between two
screw dislocations, investigating the stress field of a screw dislocation pile-up. More recently we
have also obtained the stress field of a point defect (references are given in part II[1]). The bottom-
line of our review is that there is as yet no fundamental theory of defects and their interactions.

The plan of this paper is as follows. We start by introducing the structure of a manifold needed
for the physics of defects following Vercin[8] and Kleinert[20]. In two subsequent sections we deal
with a qualitative review of the Yang-Mills and the gravity type gauge theories. Finally we end up
with some conclusive remarks.

2. Structure of manifold

The easiest way to introduce the geometric concepts needed for our purpose is via Cartan’s
structure equations of a manifold. LetM be a differentiable manifold of dimensionn. At a point
p∈ M, let {ei} (i = 1, · · · ,n) constitute the basis of the cotangent spaceT∗

p (M) and let{ei} be the
base vectors of the tangent spaceTp(M). The local coordinate form of the bases ofT∗

x (M) and
Tx(M) at p= x are{dxi} and{∂i ≡ ∂

∂xi } respectively. Letωk
i be the connection 1-form ofM. Then

the most important description ofM is given by Cartan’s structure equations:

T i = Dei = dei +ωk
i ∧ek =

1
2

Tkl
i ek∧el ,

Rk
i = Dωk

i = dωk
i +ωl

i ∧ωk
l =

1
2

Rklm
i el ∧em. (2.1)

Here the symbol∧ denotes the wedge product and ‘d’ is the exterior derivative operation and ‘D’
denotes the covariant exterior derivative. The integrability conditions of the above equations are
given by

DT i = Rk
i ∧ek, (2.2)
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DRk
i = 0. (2.3)

These are known as Bianchi identities. The Cartan equations and Bianchi identities are present
in both Yang-Mills and gravity-type gauge theories. However, the latter type has the following
additional structural features. A symmetric metric tensorg= gikei ⊗ek, gik = gki is introduced
onM. In local coordinates, the metric is used to describe the distance element:ds2 = gikdxi ⊗dxk.
The inverse metricgkl is such thatgklgli = δ k

i . Also, gik = ei ·ek. The metric and the connection
are so far two independent fields, defined at each point ofM. A manifold in which the covariant
derivative of the metric tensor vanishes is singled out by the property that the angle between two
vectors and their lengths remain unchanged by the operation of parallel displacement of vectors on
M. It is this property which guarantees locally Euclidean structure of the manifold. A connection
is calledmetric compatibleif

Dgik = dgik−gil ωk
l −gklωi

l = 0. (2.4)

In general, the connectionωk
i can have a torsion-free partω̃ i

k and an additional partτk
i which repre-

sents the non-Riemannian part, called thecontorsion1-form. The local coordinate representations
of these objects are:

ωl
k = Γml

k dxm, ω̃l
k =

{
k

m l

}
dxm, τl

k = Sml
k dxm, Tk =

1
2

Tml
k dxm∧dxl . (2.5)

Here
{

k
m l

}
= gks(∂mgsl − ∂sglm + ∂l gms), andSml

k = gks(Smsl−Sslm+ Slms) are respectively the
Christoffel symbol of the second kind and the contorsion tensor. We next relate the above structure
to that of a material manifold.

3. Material manifold and its deformation

The material body is identified with a three dimensional differentiable manifoldM embedded
in the three-dimensional Euclidean spaceR3. The current coordinates of the manifold of the de-
formed bodyM′ arexi ( i, j,k, l ,m,n, ... = 1,2,3) and the cartesian coordinates of the defect-free
configuration (reference manifoldM) arexa (a,b,c,d, ... = 1,2,3). If the current configuration is
defect-free, then the functionsxi = xi(xa) andxa = xa(xi) are well behaved, single-valued and dif-
ferentiable functions of their respective arguments. The matrixβa

i = ∂axi ≡ ∂xi

∂xa is the deformation
or distortion matrix. It is orientation preserving and the determinant‖β‖ is positive. Its inverse
matrix isβ a

i = ∂ixa.
Let ea be a global orthonormal basis of the reference manifold. The metricea · eb = δab is

Euclidean and the connectionωb
a = Γcb

adxc vanishes identically. The metric and the connection
of the current configuration aregik = β a

iβ
b

kδab andωk
i = βa

idβ a
k.

A defect-free manifoldM is characterized by a global coordinate basisei = dxi and a (metric-
compatible) flat connectionωk

i = βa
idβ a

k. These equations may be regarded as a set of differential
equations forei andωk

i . In this case the torsion and curvature tensors are zero and the integrability
equations are (2.1) with the right sides set equal to zero. Torsion and curvature represent defects.
Defects are obstructions to diffeomorphisms fromM to M′. Extensive treatment of Kleinert[20]
may be consulted for details.
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In order to relate the mathematical structure to the defect description, consider the infinitesimal
transformation

xa → xm = (xa +ua(xb))δ m
a . (3.1)

where the total displacementua consists of an elastic part and a plastic part. The elastic part is
integrable and the plastic part isnot. The total distortion tensors areβa

i = δa
i + ∂aui andβ a

i =
δ a

i − ∂iua. The metric gets related to the total straingik = βaiβ
a

k = δik − ∂iuk− ∂kui = δik −2eik.
In the linear approximation,DT i = dTi = 0 givesT i = ωk

i ∧dxk = dβ i ; ωk
i = Γlk

idxl andβ i =
βk

idxk = wk
idxk +ek

idxk. From these one obtains

deik =
1
2
(Γikl +Γlki)dxl , dwik =

1
2
(Γikl −Γlki)dxl ,

wherewik is the antisymmetric part of the distortionβik (in linear elasticity). This is the local
interpretation of the connection.

When disclinations alone are present, the geometry is Riemannian:

Dg = 0, Rk
i = Dωk

i 6= 0, DRk
i = 0.

When dislocations alone are present, the geometry is non-Riemannian (tele-parallel):

Dg = 0, Rk
i = 0, DRk

i = 0, DT i = 0, T i = Dei 6= 0.

When both disclinations and dislocations are present the manifold is characterized by (2.1), the
Bianchi identities (2.3) and the geometry is non-Riemannian. It is also called Riemann-Cartan.

Cartan’s structure equations are nothing but the very definition of dislocation and disclination
density tensors:

α
i j = ε

ikmT j
km, θ

i j =
1
2

ε
imn

ε
jkl Rklmn (3.2)

The Bianchi identities in this approximation turn out to be the kinematic equations of defects:

θ
i
j,i = 0, α

k
m,k =−εm

i j
θi j . (3.3)

The first equation implies that disclination lines cannot end within the body and dislocation lines
can only end on disclinations.

We close this section with the following observation. In the presence of defects, the coordinate
system ofM′ is nonholonomic. Denoting the anholonomic coordinates byeα instead ofei , we may
write eα = β α

adxa, butβ α
a is no longer a gradient field. This important fact has been first realized

by Kondo who has pictured the deformed body as aggregation of small pieces of perfect lattices
in which all internal stresses are relaxed. This is nothing but thenatural statedefined by him.
The line elementdxi in the deformed state is changed todxα in the natural state. The length
ds of dxi , he defined, by its natural length:ds2 = δκλ dxκdxλ . He has defined the metric of the
plastic manifold ashkl = δκλ β κ

kβ λ
l . The small pieces of crystals can translate and rotate freely

in the natural state. The matrixβk
κ has a gauge degree of freedom, i.e., one could as well use

the orthogonally transformed matrixηk
κ = Oκ

λ
βk

λ in this metrichkl. The metric is thus invariant
under orthogonal transformations in the natural state. It is through remarkable insight that Kondo
has introduced anEuclidean connectionin the plastic manifold. He is the first to point out that
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the dislocation density tensor is mathematically identical to the torsion of the manifold. Latter
independently, Bullough, Smith and Bilby have also arrived at the same identification. As regards
incorporating point defects, Mistura[21] has proposed a geometric approach to a field theory of
defects in crystalline solids including both dislocations and intrinsic point defects. In this theory,
the manifold is not metric compatible. It is also worth noting that the simple requirement that
the total displacement fieldutot(xi , t) and the total velocity fieldvtot(xk, t) (‘total’ means elastic
and plastic together) be continuous and single-valued functions, leads to the following continuity
equations within linear elasticity:

αpl,p + εl pqθpq = 0,

θpq,q = 0,

α̇pl + εpmk(Jkl,m+ εklqImq) = 0,

θ̇pq+ εpmkIkq,m = 0. (3.4)

Here the dot denotes the time derivative and following definitions are used.wik := β[ik] = εikl wl .
The rotation vectorwl is the dual of the tensorwik. The bend-twist tensor is defined asκmq =
wq,m = 1

2εklqul ,km and we have the definitions:

Dislocation density: αpl =−εpmk(e
p
kl,m+ εklqκP

mq),
Disclination density: θpq =−εpmkκ

P
kq,m,

Dislocation current: Jkl =−vP
l ,k + ėP

kl + εklqwP
q ,

Disclination current: Ikq =−wP
q,k + κ̇P

kq.

The superscript ‘P’ denotes plastic part of the quantity. The first of the equations in (3.4) imply that
dislocations can end on disclinations whereas the second one implies that disclinations cannot end
inside the body. The last two equations imply that the changes in dislocation and disclination den-
sities can only be achieved by their respective currents. Note that if one includes the elastodynamic
equation

ρ
∂vi

∂ t
=

∂ (Ci jkl ekl)
∂x j

along with the set of continuity equations (3.4), then one has what may be called as theclassical
equations of defect dynamics. These were introduced by Kosseka and deWit[6, 7]. These equations
when extended to include point defects should be taken as the basic equations of defects. However,
no serious attention seems to have been given to this problem.

Edelen[22] has formulated these equations in the four space-time dimensional form using
exterior calculus notation. He has been able to uncover the underlying forty-five-fold gauge group
structure behind the invariance of these equations. Günther[23] has developed a formalism of
defect dynamics in the four-dimensional space-time manifold, but the interpretation of geometric
objects that he has introduced has left many open questions. Kröner[24] in 1985 has reviewed the
field theory of defects in solids and has examined its merits and open questions. He has presented
the differential geometry of the continuized Bravais crystal identifying intrinsic point defects with
the non-metric part of the affine connection and interface defects as the non-conservative part of a
generalized curvature tensor. Sedov and Berditchevski[25] have proposed a dynamical theory of
dislocations and constructed models of deformation based on a variational principle. It may also
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be noted that Golebiewska-Lasota [26] has developed a gauge theory of dislocation dynamics in
analogy with Maxwell’s electrodynamics. Even earlier, Turski[27] has developed the variational
gauge theory approach to defects to derive the equilibrium field equations. A four-dimensional
nonlinear geometric theory of defect continuum developed with particular reference to three states–
the reference state, the current state and the natural state of Kondo has been proposed by Duan and
Huang[28]. They have attempted to incorporate gauge fields and to formulate nonlinear defect
kinematics within the framework of four dimensional Cartan geometry. With these remarks we
proceed to describe the structure of gauge theories of defects.

4. General structure of gauge theories

As we have already stated, gauge theories are divided into two classes: (classical) Yang-Mills
type and gravity type. Let us first consider their general structure. We shall refrain from a terse
mathematical presentation of the principal fibre-bundle structure since this can be done away with.

Let ui(x), i = 1,2, ...,n be a system of initial fields, called matter fields. Herex is a space-time
point on abasemanifoldM. To each pointx of M is attached a fibre spaceV whose elements are
values ofui . This may be regarded as an internal space. The functionsui(x) arecross sectionson
the fibre-bundleM×V. Further we assume that a space-time groupP0 and an internal groupG0

act onM andV respectively. The groupP0 could be, for example, the Galilean group or one of its
sub-groups (translation, rotation, or their semi-direct product, etc.). The groupG0 could be another
Lie group such as a rotation or a unitary group. The group actions areP0 : M →M andG0 : V →V.
Thus both groups are continuous transformation groups. Both these groups are said to act globally
(homogeneously), i.e., their actions donotdepend onx.

Let a matter field model be given by a LagrangianL0(∂u,u) which is invariant with respect to
P0 andG0. This global symmetry is a necessary prerequisite of any gauge theory. The basic idea
of gauging is to extend the global invariance groupG0 or P0 to a local gauge groupG (or P) by
allowing the transformationsG×V → V andP×M → M to bex dependent. The gauge theory
based onG0 →G is of Yang-Mills type and that based onP0 → P is of gravity type. A mixed type
could be based on gauging of bothG0 andP0.

In order to ensure local invariance, the Lagrangian must contain, in addition to fieldsui , a
set ofconnectionfields or gauge potentialsAµ(x). these are a set ofcompensatingfields coupled
(minimally) to the matter fieldsui . The values ofAµ belong to the Lie algebraG of G0 (or P0).
These fields are called connections on the corresponding principal fibre bundles.

To obtain a closed system of equations forui and Aµ , the gauge approach prescribes two
recipes. Firstly, the derivatives∂µ are to be replaced by covariant derivativesDµ = ∂µ + Aµ(x).
Secondly, the new LagrangianL is supposed be given byL = L0(Du,u)+L1(F) (minimal coupling)
whereFλ µ = Dλ Aµ is the Yang-Mills field (curvature field associated with the connection field).
The pieceL1 is usually chosen as [1] Tr(FF†).

In part II there is (perhaps) a repetition of this description, but in a more detailed form illus-
trated by the example of the Kadic-Edelen gauge theory.

In the following two sections, we shall selectively restrict to those theories where applications
have been illustrated via particular defects. Otherwise we are afraid that the review would take
much more space than that permitted by the present proceedings.
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5. Yang-Mills type gauge theories

The most elaborate work on the Yang-Mills type of gauge theory of defects is extensively
covered in two books[11, 29]. The authors start with the Lagrangian of elasticity theory taking
the fieldxi(xa, t) as their initial fields. They chooseG0 = SO(3).T(3) where. denotes the semi-
direct product. They have chosen asG0 the semi-direct product ofSO(3) and T(3). As their
Lagrangian, they take the familiar quadratic elastic strain energy function and also included the
velocity squared term as the kinetic energy function. The full Lagrangian, after local gauging, is of
the formL = Lx + Lφ + LW, where the gauge potentialsφ andW are tensor fields describing dis-
locations and disclinations respectively. The resulting field equations are coupled nonlinear partial
differential equations in the field variables. Static solutions of their field equations exhibit un-
wanted exponential decay of displacement field as a function of distance far away from the defect.
This is contrary to classical solution of the problem where in the decay law follows 1/r behaviour.
In spite of this short-coming, the formalism has taught how exterior calculus of forms provides a
convenient elegant tool for continuum mechanics of defects. Our own attempt in improving this
theory has resulted in finding the correct asymptotic solution for the strain field of a screw dis-
location. In our approach, discussed in part II[1] we have described our own results. Kadic and
Edelen also obtain a static solution of the free Yang-Mills equations which exhibit the well known
Wu-Yang like singular solution for a disclination displacement field.

Osipov[31] has obtained exact static monopole like singular solutions for the fieldsxi andW
for a dislocation-free continuum (φ = 0) and has shown that it corresponds to a disclination with
the Frank indexN = 1. He has further extended the Kadic-Edelen model to calculate electronic
properties of defect systems. In this extended formalism, a termLψ involving the spinor wave
function ψ is added. There is also an interaction Lagrangian quadratic inψ and linear in the
deformation potential (proportional to trace of the gauged strain field). In this frame work he has
been able to study the influence of electrons on defect dynamics. Recently he[30] has studied
disclination-driven dislocations; has found an exact solution for a low-angle wedge disclination
and has calculated forces between pairs of disclination vortices.

In a series of three long papers[17, 18, 19] Edelen and Lagoudas have taken a different ap-
proach based on both external space-time symmetry and internal symmetry. The gauge group is
G= Gs×Gm whereGs = SO(3).T(3) andGm = SO(3).T(3) (suppressing time transformation).
Gs acts on the range space of matter fieldsxi(xa, t) just as in the earlier Kadic-Edelen theory[11].
Gm acts on the base manifold:xa → Ra

b(x
c, t)xb. The local gauging proceeds by replacing∂kxi by

its covariant derivative as well as replacing the differentialdxa of the base manifold by its covariant
form. Naturally, new sets of gauge potential fields appear. The defects arising due toGs are called
spatial defects and these arising out ofGm are called material defects. In real applications, the
spatial defects, which in the Kadic-Edelen model is used to model dislocations and disclinations,
now refer to micro-cracks (in ceramic materials and composites). They are thought to model mis-
fits, gaps and interstitials in the continuum. The formalism, developed in [17] is too involved and is
developed using Cartan structure equations and exterior calculus. In [18] the problem is posed with
a givenmaterial dislocation density. This means there is no free Lagrangian term for dislocations.
Then the exact solution of the field equations is shown to reproduce the stress field of a straight
screw dislocation. This approach produces the stress field of an edge dislocation only in the weak
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defect field limit. Time is also gauged and it is claimed to model relaxation phenomena. The third
paper[19] contains further ramifications involving balance laws of stress-momentum. This line has
not been pursued further in the literature.

In a solitary piece of work, Gairola[32] has floated the idea of using the general affine group
GL(3).T(3) based gauge theory to model point defects and dislocations. In this theory, the trans-
formations of base-vectors of the manifold associated with defects are considered and the resulting
metric has non-vanishing covariant derivative, thus leading to nonmetricity needed to model point
defects.

Duan and Duan[33] have developed an interesting approach involving vielbeins (two-point
tensor fields, also called distortion tensors), connecting three different configurations of deforming
continuum– the reference configuration (xa), the current configurationxi and the natural config-
uration. The last one implements Kondo’s[4] anholonomic coordinate framexκ that arises when
an infinitesimal piece of the current configuration is made to undergo stress-free relaxation (see
discussion towards the end of section3. This is a highly desirable ingredient absent in other gauge
theories. Combining the geometric structure with Noether’s theorem, conservation laws for the
defect continuum are formally derived. Duan and Zhang[34] have classified dislocations in terms
of winding numbers and also characterized them by Brouwer degrees and Hopf indices.

Our original results on application of the Kadic-edelen theory are contained in references given
in part II.

6. Gravity type gauge theories

Kleinert in his masterly text-book[20] demonstrates that a space with torsion and curvature can
be generated from a Minkowski space via singular coordinate transformations and is completely
equivalent to a crystal which has undergone plastic deformation being filled with dislocations and
disclinations. The relation of this view with non-integrability of appropriate equations are amply
clarified by him. A theory of defects in solids based on analogy with three dimensional gravity
(two space plus one time) is proposed by Katanaev and Volovich[12](see also the recent article of
Katanaev[13]). They have a metric affine space with a metric constructed from distortioneµ

i and a
SO(3)- connectionωµ

i j . Here the indexµ is a general curvilinear coordinate label of the material
manifold andi labels the coordinateXi of the current configuration manifold. Using simple and
physically reasonable assumptions they define a two-parameter static Lagrangian which is the sum
of the Hilbert-Einstein Lagrangian for the distorsion and the square of the antisymmetric part of
the Ricci tensor:

1
e

L =−κR̃+2γRA
i j R

Ai j .

Here the symbolA stands for the antisymmetric part and the tilde denotes the assumption of
zero torsion. Note that in the linear approximationeµ i = δµ i . They obtain the solution for the
u field, and the metricgi j for a wedge disclination in linear elasticity. They also obtain the re-
sults for an edge dislocation which, they show, is a dipole of two parallel wedge disclinations.
They calculate elastic oscillations (phonons) in the defect medium with dislocations and also cal-
culate scattering of phonons on a wedge dislocation. Further, they investigate the influence of
a point defect on the stress field of a wedge dislocation. A point defect is characterized by its

9
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mass tensorM = ρ0
∫

d3x
(
det(eµ

i −1)
)

whereρ0 is the density of the medium. The torsion ten-
sor is zero everywhere except at the defect site where it has aδ -function singularity. Notable
progress in this type of gauge theory has been made by Lazar[14] who has proposed a three-
dimensional Yang-Mills gauge theory of dislocations. The lagrangian has the symbolic form
L∼ (strain)2+(dislocation density)2. The second term is more preciselyLdis=−1

4Ta
i j Ha

i j where
Ha

i j is the response quantity to the Dislocation density (torsion)Ta
i j . The local translational in-

varianceua → ua +τa(x), φa
i → φa

i −∂iτ
a(x) with τa(x) as local translations and the replacement

β a
i = ∂iua + φa

i in the torsion tensorTa
i j = ∂iβ

a
j − ∂ jβ

a
i and use of appropriate form for the

tensorH leads to coupled field equations foru andφ . A non-singular solution for the stress field
of an edge dislocation is shown to result. This solution also has correct asymptotic limit for the
classical solution. Lazar[15] has also obtained a satisfactory solution for a screw dislocation.

7. Conclusion

The material contained in this review has been highly selective. It is a formidable task to
present all points of view in the space permitted to us. There is as yet no fundamental theory of
defects in solids. The classical Kossecka-dewit equations of defect dynamics offers some guideline.
However, even these equations do not contain the signature of point defects. An ideal gauge theory
of defects should be consistent with these classical equations in appropriate limit. At the present
time, it is perhaps fair to say that much more investigation need to be carried out in this area. Also,
urgent attention need to be paid to obtain gauge theory solutions of specific defects.
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