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1. Introduction

There is as yet no microscopic theory of plasticity that incorporates production, annihilation,
and interaction of all the structural defects in a comprehensive and natural manner. Continuum
elasticity theory is often used [1, 2] to model material response at large distances from the de-
fects. Inability of continuum theory to correctly describephenomena at short distances from the
defects is well known. For example, in continuum elasticitytheory, the stress and strain fields are
singular along the dislocation lines, and hence the interaction between them is poorly represented
at short distances between them. Given the current interestin miniaturisation of devices, we note
that the length scales associated with nanodevices are too small for continuum models to be appli-
cable. Continuum theory of dislocations, and the other defects, cannot be readily used to model
mechanical properties of miniaturized devices.

The preeminent role of topological defects, like the dislocations, in plasticity of materials in
three dimensions is well known. The change in the topology that arises as a consequence of the
presence of topological defects can also affect the other physical properties of materials. For in-
stance, enhanced scattering, and existence of infinite number of bound states for electrons was
demonstrated in presence of dislocations [3 – 5]; electronsin dislocated crystals can undergo local-
ization [6]; electrons can show modified Aharonov-Bohm typeinterference effects while getting
scattered from dislocations [7]. Clearly, the details and significance of these effects would depend
on the details of the structure of the defects, especially when the size of the material is small.

Topologically nontrivial objects arise in various physical contexts that includes gravity, parti-
cle physics and condensed matter physics and they have all been studied using appropriategauge
theories[8 – 10]. The aim of the present talk is to an overview of the gauge theoretic description of
defects in an elastic continuum. After a brief introductionto gauge theory in section 2, we shall de-
scribe the gauge theoretic formulation of defects in an elastic continuum by Edelen and coworkers
[11, 12] in section 3. They incorporated nonintegrable deformations by demanding invariance of
the elastic Lagrangian under the local action of the Euclidean group SO(3)⊲T(3). Kadic and Ede-
len argued [11] that dislocations arise from the inhomogeneous action of the group of translations,
T(3), while the disclinations owe their origin to action of the rotation group, SO(3). In spite of the
mathematical beauty of the theory, their solution (of the linearized gauge field equations) for the
stress field due to a screw dislocation was singular along thedislocation line, and worse, it did not
agree with the solution of classical elasticity theory at large distances, which it should have.

We shall then discuss our [13] axially symmetric solutions of the gauge field equations that
are analogous to screw dislocations and wedge disclinations. We showed that the gauge field equa-
tions indeed allowed for a solution that is devoid of both of these deficiencies. Later, Edelen [14]
also obtained the same solution. We also argued [13] that thedisclination cannot arise from the
action of SO(3), which seems to be the currently accepted point of view [15]. Subsequently, we
calculated [16] the interaction between two parallel screwdislocations and showed that the stress
fields of screw dislocations, and interaction between them,can be obtained by multiplying the cor-
responding expressions in classical elasticity with a universal function [1-κrK1(κr)], wherer is the
distance of the field point from the dislocation line,κ−1 is a characteristic length (∼ core radius).
andK1(κr) is the modified Bessel function of order one. The correct solution of the gauge field

2



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
0
6

Gauge theory of defects in elastic continua- II M. C. Valsakumar

equations that correspond to the edge dislocations was not available till recently. Very recently,
Lazar [17] was able to obtain an appropriate solution for theedge dislocation by considering a
more general form for gauge field Lagrangian [18, 19].

Presuming that the gauge theory of Kadic and Edelen [11] describes only the topologically
stable defects, Kroner [20] made an observation that this theory is not closed, and he suggested
that a unified gauge theory that incorporates separate gaugefields of dislocations and point defects
would be necessary. In section 4, we show that in addition to the topological defects, nontopo-
logical defects like the point defects also can be describedby thesamegauge theory- there is no
need to introduce extra gauge fields. The problem of dislocation pileup is taken up in section 5.
We considered the problem of pileup of parallel screw dislocations along a line and showed [21]
that this ensemble is unstable if the density of dislocations exceeds a limiting value. Finally the
conclusions are brought out, and a list of open problems are discussed in section 6.

2. Introduction to Gauge Theory

At the fundamental level, Physics is study of symmetry aidedby a variational principle. In
the field theoretic approach, we are concerned with the space-time evolution of a set of fields
{ψα (x)}. The analysis proceeds by setting up aLagrangian L0({ψα (x)},{∂Aψα(x)}), on the basis
of symmetry considerations. HerexA denotes the space-time coordinates (x, y, z, t),A =1,...,4
and∂A = ∂/∂xA. The space-time evolution of the fields is obtained by demanding that theaction
S =

∫

d4xL0({ψα (x)},{∂Aψα(x)}) is an extremum. Using thesummation over repeated indices
convention, the resultant Euler-Lagrange equations can bewritten as

δS
δψα

=
∂L0

∂ψα
−∂A

∂L0

∂ (∂Aψα)
= 0 (2.1)

We now explore the consequences of symmetry. Yang-Mill’s type of gauge theories are based
on transformation properties of the{ψα (x)} fields with the space-time unaltered, whereas gravity
type of gauge theories are based on space-time symmetries. We are concerned with Yang-Mill’s
type of gauge theories. Letg be an element of a continuous group of transformationsG that depends
on a set of parameters. Consider a global transformation (the group parameters are independent of
the space-time coordinates)ψα → ψ ′

α = gψα . This is asymmetrytransformation if and only if the
changeδL0 in the Lagrangian is a four-divergence so that the actionS is invariant:

δL0 = L0
(

{ψ ′
α},{∂Aψ ′

α}
)

−L0({ψα},{∂Aψα}) = ∂AχA (2.2)

The above condition corresponds to existence of a conservedcurrentJA = χA− ∂L0
∂ (∂Aψα )δψα .

In gauge theories, the above mentioned global gauge invariance is promoted to local gauge
invariance. That, is the the group parameters are made functions of space-time coordinates. It is
clear that the action will no longer be invariant in view of the fact that∂Ag 6= 0. The idea is best
illustrated with the help of a simple example. Consider a setof complex scalar fieldsψ andψ⋆

(α = 1,2) described by the Lagrangian

L0({ψα},{∂Aψα}) = (∂Aψ)(∂ Aψ)⋆−V (ψ⋆ψ) . (2.3)

3
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It is easy to see that the transformationψ ′ = gψ = exp(iqθ)ψ is a symmetry transformation. The
set of transformations comprise the gauge groupU(1) andJA = iqθ

[

ψ⋆(∂ Aψ)−ψ(∂ Aψ)⋆
]

is the
conserved current. Now let us consider thelocal actionψ ′ = exp(iqθ(x))ψ of U(1). The above
is not a symmetry transformation if∂Aθ 6= 0. The reason for the lack of invariance is the fact that
∂Aψ does not transform likeψ . Symmetry can be restored by replacing the ordinary derivatives
∂A by the covariant derivativesDA defined as∂A → DA = ∂A− iqAA so that(DAψ)′ = g(DAψ).
This procedure, known asminimal coupling, involves introduction of a new set of fields{AA}
which transforms in accordance with the ruleψ → ψ ′ = exp(iqθ(x))ψ ⇒ AA → A′

A = AA + ∂Aθ .
Dynamics of these gauge potentials also have to be incorporated to make the theory complete. We
need to add a gauge field LagrangianLg to the original LagrangianL0 and apply the variational
principle to determine the gauge potentials self consistently. It can be seen that the gauge fields
FAB = ∂AAB− ∂BAA are gauge invariant. This suggests thatLg can be written down in terms of
invariants that can be constructed from the gauge fieldsFAB. For example,Lg = −1

4FABFAB for
electrodynamics.

In the above example, the gauge group is abelian. The analysis becomes a bit more involved
if the gauge group is non-abelian. LetG is non-abelian with its generators{γa} satisfying the Lie
algebra[γa,γb] = Cc

abγc. Then the covariant derivatives are defined through the relation

∂A~ψ → DA~ψ = ∂A~ψ + γaW
a
A~ψ , (2.4)

where{Wa
A} are the gauge potentials. The gauge fieldsFa

µν are given by the relation

[DA,DB] = Fa
ABγa, Fa

AB = ∂AWa
B −∂BWa

A +Ca
bcW

b
AWc

B (2.5)

The gauge field LagrangianLg can now be expressed in terms of the invariants that can be
constructed out of{Fa

AB}. It can be seen that the gauge field{Fa
AB} is nonlinear in the gauge

potential{Wa
A}. This implies that the equations of motion of the gauge potentials will, in general,

be nonlinear.

3. Gauge Theory of Elastic Continuum

Let a material point in the reference configuration of an isotropic elastic continuum be repre-
sented by the space-fixed position vector~x, and upon deformation, let it move to a new point~η =~x
+~u, where~u is the displacement. In the field theoretic study of the elastic response, one starts with
the Lagrangian

L0 =
1
2

ρδi j
dui

dt
duj

dt
− 1

2

[

λ (Tr(e))2 +2µTr(e2)
]

(3.1)

The Strain tensorei j is given by

ei j =
1
2

(

δikuk
, j + δ jkuk

,i + δklu
k
,iu

l
, j

)

(3.2)

It can be seen that the action is invariant under the rigid body motion~η →~η ′ = g~η , whereg
is any element of the Euclidean groupE(3) in three dimensions. Note thatE(3) is the semidirect
productSO(3)⊲T(3) of the rotation groupSO(3) with the translation groupT(3).

4
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3.1 Local Action of T(3)

It is now well established [13, 15] that both dislocations and disclinations can be described
in the gauge theory by the inhomogeneous action ofT(3). The consequences of gaugingSO(3)

are still not understood. However, that is beyond the scope of the present paper. For simplicity,
we shall restrict ourselves to linear strain. This implies that the distinction between contra- and
co-variant indices can be glossed over. We shall also consider only statics. The action (see Eq. 3.1)
is invariant under the global transformationη j → η ′

i = ηi + bi , wherebi is a constant translation.
Invariance under the local transformationηi → η ′

i = ηi + bi(x). necessitates introduction of the
covariant derivative

D jui = ∂ jui + φi j (3.3)

whereφi j are the gauge potentials. Whenηi → η ′
i = ηi + bi , the gauge potentials transform ac-

cording to the ruleφi j → φ ′
i j = φi j −∂ jbi . ∂iu j andφi j can be interpreted as the elastic and plastic

distortions. We can now construct the gauge invariant strain Ei j and gauge fieldTi jk

Ei j =
1
2

(ui, j +u j,i + φi j + φ ji ) (3.4)

Ti jk = ∂kφi j −∂ jφik (3.5)

3.2 Simplest Lagrangian and the field equations

The simplest gauge field LagrangianLg that Kadic and Edelen proposed [11] is− s
2Ti jkTi jk .

As mentioned in the introduction, there is a need to considera more generalLg to describe edge
dislocations. We shall return to this point in section 3.3.3. The total Lagrangian then becomes

L = −1
2

[

λ (Eii )
2 +2µEi j Ei j

]

− s
2

Ti jkTi jk (3.6)

The corresponding Euler-Lagrange equations are given by [11]

ui,kk +(L+1)uk,ki = − [φki,k + φik,k +Lφkk,i ] (3.7)

φik,ll −φil ,lk −κ2 [φik + φki +Lφll δik] = κ2 [ui,k +uk,i +Lul ,l δik] (3.8)

Hereκ2 = µ/s ansL = λ/µ . The expressions for the dislocation density tensor{αi j }, Burgers
vector{bi}, incompatibility tensor{Θi j } and Frank vector{Ωi} (for disclinations) are then given
by

αi j = εikl φ jl ,k, bi =

∮

S
αi j dSj (3.9)

θi j = −εikmε jln
1
2

(φkl + φlk),mn, Ωi =

∮

S
θi j dSj (3.10)

3.3 Solutions of the gauge field equations

Kadic and Edelen [11] took the view that dislocations and disclinations arise respectively from
breaking ofT(3) andSO(3) invariance.
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3.3.1 Screw dislocation

The Burger’s vectorb3(ρ) (at a distanceρ from the dislocation) that they obtained from their
solution of the gauge field equations for a screw dislocationalongẑ reads as [11]

b3(ρ) = bκρK1(κρ) (3.11)

It can be seen thatb3(ρ) → b for κρ << 1, andb
√

κρ
2 e−κρ for κρ >> 1. Clearly, this does not

agree with the continuum elasticity solution forκρ >> 1. The near field (κ ′ρ << 1) solution
matches continuum elasticity results, whereas the far fieldsolution doesn’t! Their solution for the
stress fields also show similar unphysical limiting behaviour. Kadic and Edelen’s suggestion that
the near field solution be continued toκ ′ρ >> 1 using lattice periodicity is not tenable.

We were able to show [13] that the very same gauge field equations (Eq. 3.7 and 3.8) yield
solutions analogous to the screw dislocations and wedge disclinations of classical elasticity. That
is, gauging ofT(3) is sufficient for obtaining both dislocations and disclinations in an isotropic
elastic continuum. For screw dislocation along ˆz, we obtained [13]

b j(ρ) = δ j3b[1−κρK1(κρ)] (3.12)

σi j (ρ) = σ classical
i j [1−κρK1(κρ)] (3.13)

Edelen gave the same solution in 1996 [14]. It can be seen thatthe stress and strain are finite along
the dislocation. The solution matches continuum elasticity solution for κρ >> 1, as it should.
We also note that the self energy∼ µb2

4π [1−κρK1(κρ)]2 ln(κρ), and that too does not have any
divergence.

3.3.2 Wedge disclination

Let us consider a wedge disclination along ˆz. In continuum elasticity,θi j = δi3δ j3Ωδ (~ρ), and
the nonvanishing components of the stress tensor are given by

σ11 = − µΩ
2π(1−ν)

(

ln(ρ)+
x2

2

ρ2 +
1
2

)

, σ22 = − µΩ
2π(1−ν)

(

ln(ρ)+
x2

1

ρ2 +
1
2

)

(3.14)

σ12 =
µΩ

2π(1−ν)

x1x2

ρ2 , σ33 = ν (σ11+ σ22) (3.15)

In gauge theory, we get [13]

θi j = δi3δ j3
Ω
2π

K0(κρ) (3.16)

Ω j(ρ) = δ j3Ω [1−κρK1(κρ)] (3.17)

σi j (ρ) = σ classical
i j [1−κρK1(κρ)] (3.18)

Like in the case of the solution for screw dislocation, we findthat σi j are bounded along the
disclination line.

6
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3.3.3 Edge dislocation

For the case of the edge dislocation, it is easy to prove that no solution of the formφi j =

f (ρ)φclassical
i j exists for the gauge field equations 3.7 and 3.8. One of the reasons for nonexistence

of a solution of the gauge field equations that resembles an edge dislocation could be that the gauge
field Lagrangian proposed by Kadic and Edelen is too restrictive. There have been efforts to try
other forms ofLg. Drawing analogy with gravity, Malyshev [18] used the curvature scalar asLg

(Hilbert-Einstein form). However, his ’edge dislocation’solution does not agree with continuum
elasticity solution for largeρ . Lazar [17] used the expressionTi jk

(

a(1)
1 Ti jk +a(2)

2 Ti jk +a(3)
3 Ti jk

)

in place ofsTi jkTi jk with appropriate choice of the coefficients{ai} to get a solution that agrees
with continuum elasticity solution for largeρ . The solution for the screw dislocation and wedge
dislocation, discussed earlier, remain unaltered for thischoice ofLg as well. To be specific,

(1)Ti jk = Ti jk −(2) Ti jk −(3) Ti jk ,
(2)Ti jk =

1
2

(

δi j Tllk + δikTl jl
)

, (3)Ti jk =
1
3

(

Ti jk +Tjki +Tki j
)

(3.19)

The components of the stress tensor are given by

σ11 = ∂ 2
2 f , σ12 = −∂1∂2 f , σ22 = ∂ 2

1 f ,etc. (3.20)

where f is stress function

f = − µb
2π(1−ν)

x2

[

ln(ρ)+
2

κ2ρ2 (1−κρK1(κρ))

]

(3.21)

σi j is bounded asκρ → 0, and agrees with continuum elasticity solution whenκρ >> 1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

κρ

F
(κ

ρ)

Gauge Theory
Continuum  Theory

Figure 1: Magnitude of the force between two parallel dislocations asa function of the dimensionless
distanceκρ between them. The force diverges atκρ =0 in continuum theory, whereas it vanishes in gauge
theory.
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3.4 Interaction between Dislocations

Force between two screw dislocations with Burger’s vectors~b1 and~b2 parallel toẑ and sepa-
rated by~R is given by [16]

~F12(~R) =
µb1b2

2πR
[1−κRK1(κR)]R̂ (3.22)

We have already seen that in the gauge theory, the stressσi j at a distanceR from a screw dislocation
is [1−κRK1(κR)] times the corresponding expression in continuum elasticity theory. It is inter-
esting to note that the force between the dislocations in thegauge theory is[1−κRK1(κR)] times
the force given by continuum theory, andnot [1−κRK1(κR)]2 times as one would have naively
expected. As can be seen from Fig. 1, the force between the dislocations tend to the continuum
elasticity solution whenκρ > 1. More importantly, the force vanishes when the two dislocations
approach each other, regardless of the sign of the Burger’s vectors.

4. Spherically symmetric solutions- I

We found that there exist axially symmetric solutions of thegauge field equations that are
in one-to-one correspondence with the well known linear defects of the elastic continuum. These
solutions agree with the corresponding continuum elasticity solutions for large distances. However,
the gauge field solutions are well behaved along the defect lines. In other words, dislocations
and disclinations are line singularities in continuum elasticity theory, whereas these defects are
extended objects with a core in the gauge theory. In this section, we shall examine spherically
symmetric solutions of the gauge field equations, and compare these solutions with the well known
continuum elasticity solutions for point defects.

Before discussing the most general solution, we shall first consider theansatz

ui(~r) = xiV(r),φi j (~r) = δi j h(r) (4.1)

Our aim is to look for solutions such that the magnitude of thedisplacementrV (r) and the plastic
strainh(r) are bounded every where. One of the ways to proceed further would be to substitute
Eq. 4.1 in the the gauge field equations (Eq. 3.7 and 3.8), and then obtain the equations to be
satisfied byV(r) andh(r). We find that the two functionsV(r) andh(r) satisfy threeequations,
which can be simplified to two. Another method proceeds by first obtaining the Lagrangian with
the above definition for the matter fieldui(~r) and gauge potentialsφi j (~r), and then obtaining the
field equations satisfied byV(r) andh(r). Both the methods lead to the same equations. In what
follows, we describe the latter method. The minimally coupled strain tensor is given by

Ei j = δi j (V +h)+
xix j

r
V (4.2)

and the minimally coupled LagrangianL0 reads as

L0 = −(3λ +2µ)

{

3
2
(V +h)2 + r(V +h)V ′

}

− 1
2
(λ +2µ)r2V ′2 (4.3)

The gauge fields are given by

Ti jk = φi j ,k−φik, j = (δi j xk−δikx j)
1
r

h′ (1)Ti jk = 0, (2)Ti jk = Ti jk ,
(3)Ti jk = 0 (4.4)

8
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Since only(2)Ti jk is nonzero, the unique quadratic Lagrangian of the gauge fields is given by

Lg = − s
2

Ti jkTi jk = −2sh′2 (4.5)

In the above equations,V ′ corresponds to differentiation ofV with respect tor, and so on. The field
equations are obtained by extremizing the actionS[V,h] =

∫

dr r2L(V,V ′,h,h′). More explicitly,
∂

∂V (r2L)− d
dr

∂
∂V ′ (r2L) = 0, etc.

rV ′′ +4V ′ +

(

3L+2
L+2

)

h′ = 0, L =
λ
µ

(4.6)

h′′ +
2
r

h′− L+2
4

κ2[

rV ′ +3V +3h
]

= 0, κ2 =
(µ

s

)

(

3L+2
L+2

)

(4.7)

Most general solution of Eqs. 4.6 and 4.7 can be shown to be

h =
A
ξ

exp(ξ )+
B
ξ

exp(−ξ )+C, ξ = κr (4.8)

V =

(

3L+2
L+2

)[

B
ξ 3(ξ +1)exp(−ξ )− A

ξ 3(ξ −1)exp(ξ )

]

+
D
ξ 3 −C (4.9)

C is irrelevant and can be set to zero. Notice presence of the classical solution of point defects
D/ξ 3 in Eq. 4.9.

4.1 Boundary conditions

It can be seen that no global solution exists withξV andh bounded for allξ . Therefore we try
a piecewise solution

h =
A1

ξ
exp(ξ )+

B1

ξ
exp(−ξ )

V =

(

3L+2
L+2

)[

B1

ξ 3(ξ +1)exp(−ξ )− A1

ξ 3(ξ −1)exp(ξ )

]

+
D1

ξ 3

for ξ ≤ ξ⋆, and

h =
A2

ξ
exp(ξ )+

B2

ξ
exp(−ξ )

V =

(

3L+2
L+2

)[

B2

ξ 3(ξ +1)exp(−ξ )− A2

ξ 3(ξ −1)exp(ξ )

]

+
D2

ξ 3

for ξ > ξ⋆. The aim is to determine the constantsA1, A2, B1, B2, D1, D2 andξ⋆ by demanding
continuity ofV andh, and if possible, their derivatives, atξ = ξ⋆. It turns out that continuity ofV
andh can be enforced, but, not of their derivatives. It is interesting to note that the value ofξ⋆ can
be uniquely determined to be unity. The final solution is given by

V =
(a

e

) ξ cosh(ξ )−sinh(ξ )

ξ 3 , h = −
(a

e

)

(

L+2
3L+2

)

sinh(ξ )

ξ
, (4.10)

9
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ξ

u(ξ)      
du(ξ)/dξ

Figure 2: The displacementu and its derivative as a function of the dimensionless distance ξ = κr. u is
continuous and vanishes at the origin. It’s derivative is singular atξ =1.

0 2 4 6 8 10
−0.5

0

0.5

1

ξ

h(ξ)
dh(ξ)/d(ξ)

Figure 3: The gauge potentialh and its derivative as a function of the dimensionless distanceξ = κr. h is
continuous every where. It’s derivative is discontinuous at ξ =1

for ξ < 1, and

V =

(

a
ξ 3

)

[1−sinh(1)(1+ ξ )exp(−ξ )] , h = −a sinh(1)

(

L+2
3L+2

)

exp(−ξ )

ξ
, (4.11)

for ξ > 1. a is a parameter that decides the strength of the defect.

As in the case of dislocations and disclinations, the point defects are also extended objects in
the gauge theory. There is a core for the point defect with itsradius∼ 1/κ . For largeξ , the present

10
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solution matches the classical solution. We find that the displacement, strain, stress and the self
energy are all bounded.

4.2 Spherically symmetric solutions- II

In the previous section, we found a spherically symmetric solution of the gauge field equa-
tions that correspond to point defects. The displacement and the gauge fields were continuous
every where; however, the derivatives were discontinuous at ξ =1. We now consider the most
general solution of the gauge field equations with the aim of discovering solutions with better
characteristics.

Following Parthasarathyet al [22], the most generalansatzfor the spherically symmetric static
solution of the field equations can be written as

ui(~r) = xiV(r) =
xi

r
u(r) (4.12)

φi j (~r) = εi jnxn f (r)+xix j

[

h′

r
+g(r)

]

+ δi j h(r) (4.13)

There is no loss of generality in writing the function that multiplies xix j as[h′r +g(r)]. We have
written it in that particular form in view of the simplicity of the resultant equations of motion. We
note that the displacement, gauge potentials and hence the stress fields are bounded ifrV (r), r f (r),
r2g(r) andh(r) are bounded. The minimally coupled strainEi j and rotational strainωi j are given
by

Ei j = δi j (V +h)+
xix j

r

(

V ′ +h′
)

+xix jg(r) (4.14)

ωi j = εi jnxn f (r) (4.15)

The minimally coupled Lagrangian then reads as

L0 = −(3λ +2µ)

[

3
2

Ṽ2 + rṼ(Ṽ ′ + rg)

]

− 1
2
(λ +2µ)r2(

Ṽ ′ + rg
)2

(4.16)

Notice that the functionf (r) appears only inωi j . That is, nonvanishingf corresponds to nonzero
rotational plastic strain, and it is relevant only in media with nonzero rotational elastic constants.
We also note that the functionsV andh appear only in the combinatioñV = (V +h) in the ex-
pression for the strainEi j and the LagrangianL0. The gauge fieldsTi jk = φi j ,k − φik, j are given

by
Ti jk = 2εi jk f +(εi jnxk− εiknx j)

xn

r
f ′ +(δikx j −δi j xk)g (4.17)

We see that the gauge fields depend only onf andg. The simplest gauge field Lagrangian is given
by

Lg = − s
2

Ti jkTi jk = −2sr2g2−2s
[

6 f 2 +4r f f ′ + r2 f ′2
]

, (4.18)

In the gauge field Lagrangian alsof is decoupled from the other fields. For the isotropic elastic
continuum that we have been considering, we thus find thatf is irrelevant;V andh occur in the
combinationṼ = (V +h); henceh can be gauged away. Thus we arrive at the Lagrangian

L = −(3λ +2µ)

[

3
2
V2 + rV (V ′ + rg)

]

− 1
2
(λ +2µ)r2(

V ′ + rg
)2−2sr2g2 (4.19)

11
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It is interesting to note that derivative ofg is absent inL.

The field equations obtained by extremizing the actionS[V,g] =
∫

drr2L(V,V ′,g) are

V ′′ +
4
r
V ′ + rg′ +2

(

L+4
L+2

)

g = 0 (4.20)

V ′ +

(

3L+2
L+2

)

V
r

+(r +
c
r
)g = 0, c =

4s
µ(L+2)

(4.21)

Using the above equations, it is possible to express the function V in terms ofg. Substituting that
expression forV, we get

g′′ +
4
r

g′−κ2g = 0 (4.22)

V = − 1
κ2

[

rg′ +

(

4
L+2

)

g

]

(4.23)

4.3 Solution of the field equations

The most general solution of the above equations can be written in terms of the two linearly
independent solutionsg1(ξ ) andg2(ξ ) of Eq. 4.22 which are given by

g1(ξ ) =
1+ ξ

ξ 3 e−ξ , g2(ξ ) =
1−ξ

ξ 3 eξ (4.24)

Thus the general solution forV is given by

V(ξ ) = AV1(ξ )+BV2(ξ ); Vi(ξ ) = − 1
κ2

[

ξ gi(ξ )′ +
4

L+2
gi(ξ )

]

(4.25)

A andB are the same in the expressions for bothg andV. It can be seen thatξVi andξ 2gi are
unbounded asξ → 0. However, we can obtain a solution bounded atξ = 0 by choosing B = -A.g1

andV1 are well behaved asξ → ∞, whereasg2 and, hence,V2 are not. Hence the solution obtained
by demanding boundedness ofξVi andξ 2gi at the origin cannot be continued for allξ . Thus no
global solution exists such thatξV andξ 2g are nonsingular asξ → ∞ as well asξ → 0. Hence we
now look for apiecewise solution

V(ξ ) = AV1(ξ )+BV2(ξ ), g(ξ ) = Ag1(ξ )+Bg2(ξ ), for ξ < ξ⋆ (4.26)

V(ξ ) = CV1(ξ ), g(ξ ) = Cg1(ξ ), for ξ > ξ⋆ (4.27)

Demanding continuity ofξV andξ 2g at ξ = ξ⋆ implies that the Wronskian(g1(ξ ),g2(ξ )) = 0 at
ξ = ξ⋆, which is impossible for anyξ⋆ > 0. Hence we conclude that the ansatz considered here
does not lead to a continuous valued solution for the displacement and the gauge potentials.

Given the fact that the secondansatz(Eq. 4.13) is more general than the first one (Eq. 4.1),
the failure of the second ansatz to produce a physically meaningful solution is surprising. The
reasons for the failure is currently under investigation- We have seen that the derivative ofh is
discontinuous in the final solution obtained by the firstansatz. The calculation of the gauge fields
Ti jk in the secondansatzassumed existence of second derivatives ofh, which, in retrospect, seems
to be untenable.

12
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Figure 4: Solution of the force balance equation for dislocation pileup as function ofη for N = 2. There is
no solution ifη < ηc(2) ∼ 3.14. Also shown is the continuum elasticity solution.

5. Dislocation Pileup

We now turn to gauge theoretic analysis of the dislocation pileup problem [1, 23, 24]. Con-
siderN + 2 identical screw dislocations of parallel to ˆz and lying betweenX = ±l with the end
members fixed, and the others free. Our aim is to determine thepositionsXj ( j = 1, ...,N) of the
free dislocations. Using the fact that the force on thejth free dislocation must be equal to zero, we
get

∑
k6= j

f (x j −xk)+ f (x j +1)+ f (x j −1) = 0, (5.1)

wherex j = Xj/l , and f (x) is the force between two parallel screw dislocations at a distancelx from
each other.

f (x) =
1−η |x|K1(η |x|)

x
, (5.2)

whereη= κ l . In the continuum elasticity case (η → ∞), {x j} are given by the zeros ofddxPN+1(x)
[23], wherePN(x) is the Legendre polynomial of orderN. Our analysis [21] shows that only the
degenerate solutionδxj ,0 is possible in gauge theory ifη is less than a critical valueηc(N). Consider
the caseN = 2. In view of the symmetry, we can assumex2 = -x1. Figure 4 shows the solution
of Eq. 5.2 as function ofη . It is clear that there is no solution ifη < ηc(2) ∼ 3.14. That is,
the system becomes unstable when the number of dislocationsin between the obstacles exceeds a
critical value. This implies that the dynamics of dislocations should be should be nontrivial when
η < ηc(N).

5.1 Continuous distribution of dislocations:

When the number of dislocations is large, it may be expedientto have a description in terms

13
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of thenumberdensityρ(x) of the dislocations. Then the force balance equation becomes

ρ(x)

([

∫ 1

−1
dyρ(y) f (x−y)

]

+ f (x+1)+ f (x−1)

)

= 0 (5.3)

In the classical limit (η → ∞), one gets the well known solution

ρ(x) =
1
π

N√
1−x2

+
1

π2





∫ 1

−1
dy

√

1−y2

1−x2

f (y+1)+ f (y−1)

x−y



 (5.4)

It is obvious that the degenerate solutionρ(x) = Nδ (x) exists for anyη in the gauge theory. It
can be shown [21] that a continuous, non-negative and normalizable solution does not exist for
any finite η in the gauge theory. This implies that the correct way to describe an ensemble of
dislocations should be in terms of the dislocation density tensor and not in terms of the number
density.

6. Summary, Conclusions and Outlook

Many investigators have already shown that a gauge theory based on the inhomogeneous ac-
tion of the translation groupT(3) can account for both dislocations and disclinations in an elastic
continuum. The present work has shown that even a non-topolgical defect like the point defect also
can be described the the same gauge theory. That is, there is no need to have separate gauge fields
for dislocations and point defects. Gauge theory provides aphysically meaningful description of
the structure of dislocations, disclinations and point defects. All these defects have got a core, and
the stress fields produced by them are bounded every where. Wehave seen that the force between
two dislocations vanishes when they approach each other regardless of the sign of the Burger’s vec-
tor of the two dislocations. Through the study of the dislocation pileup problem, we infer that the
dynamics of dislocations should be nontrivial when their number exceeds a limiting value. We have
also seen that it is necessary to describe an ensemble of dislocations in terms of the consolidated
dislocation density tensor, and not the number density.

Interaction between point defects, point defects and dislocations, as well as mixed disloca-
tions remain to be done. The consequences of breakingSO(3) symmetry is yet to be explored.
Gauge theoretic study of media with anisotropy or nonzero rotational elastic constants would be
interesting. The gauge theoretic solutions are expected tobe more appropriate for the study of
mechanical and electronic properties of small systems. In particular, it would be interesting to
study the changes in electronic and magnetic properties of small systems with dislocations. It is
important to know how the presence of the underlying latticewould modify the results of the gauge
theory. Description of production (and annihilation) as well as incorporation of dissipative forces
are the other unfinished tasks.
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