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1. Introduction

It is well known that during plastic flow of crystalline mai@s dislocations, the carriers
of plastic deformation tend to form nonuniform, highly ongged structures. Several analytical
models (the concept of Low Energy Dislocation Structureopeed by Kulhman-Wilsdorf [1], the
models of Holt [2] and Rickman & Vifals [3] that apply irregible thermodynamics analogy, the
reaction-diffusion approach elaborated by Walgraef arfdmiis [4], the concept of the dislocation
sweeping mechanism developed by Kratochvil et. al. [5], taiedAnanthakrishna model [6, 7] of
coupled nonlinear rate equations for the dislocation diesdnave been developed since dislocation
patterning was first observed.

Due to limitation of continuum models to account for the dstaf the underlying physical
mechanisms governing dislocation motion and interactidiscrete dislocation simulations have
been proposed as an alternative to continuum phenomenal@gproaches mentioned above (see
e.g. [8, 9] for a review of various continuum and discretéadigtion simulation methods proposed
to address the problem of dislocation patterning).

An alternative method which was developed as a compromiseeka discrete dislocation dy-
namics arguments and continuum approaches for modelirgytietion of dislocation populations
at the mesoscale is the so called stochastic approach [[102113].

A self-consistent mean field approach for dislocation ext@ons was developed by Groma
[14] starting from an equilibrium BBGKY-like hierarchy ofslocation distribution functions cor-
responding to the Kirkwood approximation in the plasma pisyd_ater these continuum equations
were developed further [15], introducing new gradient ®rby taking into account also the two-
body distribution functions.

The use of projection operator techniques developed byisAdhd Picard [16] for coupled
guantum mechanical density matrices has become incréasiognmon. This technique was suc-
cessfully used for classical nonideal gas interactinguphotwo-body forces and for quantum op-
tics [16], two-dimensional turbulence [17, 18], and setugting systems [19].

The projection operator techniques which are standardaitisstal mechanics are applied
here to a system of interacting dislocations. We are intiedelsere in the relaxation of an initially
uncorrelated system towards the equilibrium. We choseratora a reference dislocation driven
in the first approximation by the smooth self-consistent mageld velocity induced by a ,,sea of
field dislocations” and rapid fluctuations arising from trepdrture to the mean field. The starting
point of our analysis is the Liouville equation for theparticle distribution function in the phase
space. Since our system consist in a large number of dighosatsuch an analysis provides much
more information one can actually interpret. Consequemdywould like to describe the system in
some well-defined average sense by introducing differestjaations for the time evolution of the
one-particle probability density in a one-particle phagsacs.

In the next sections we revisit the dislocation motion indhgstals and the projection operator
formalism. Then we apply this formalism to our dislocatigstem, deriving an exact equation for
the time evolution of the one-particle probability densily this context the dislocation velocity
fluctuations in a nearly homogeneous, parallel, straigheeadislocation system is studied. It is
shown that the distribution function has a Gaussian coreaaralgebraic tail. A well-defined non-
vanishing self-consistent mean velocity field is also i&mafor which we recover precisely the
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same expression as Groma obtained [14] by a truncation BB®KY hierarchy of dislocation
distribution functions.

2. Dislocation motion in the crystals

Dislocation motion in the glide plane is in the direction afrBers vector for edge dislocations
and orthogonal to the Burgers vector for screw dislocati@twew dislocations can also cross slip
between glide planes. The motion of a dislocation perpeitatid¢o the glide plane is called climb.

Due to the long-range nature of interaction forces the ialeforce acting on a reference
dislocation is the sum of forces created by all the othedaions of the system. The force from
a test dislocatiorj acting on the reference dislocatiors given by the Peach-Koehler equation:

Fii= (biO'j

int

) x i, (2.1)

whereb; is the Burgers vector arigrepresents the sense vector of the reference dislocatitre |
test dislocation is in different slip geometry, the stremssbroiy; is determined by transforming
the stress tensar of the test dislocation into the reference coordinate syst&he total stress
tensor acting on the reference dislocation can be compuytadiinming up contributions from all
dislocations in the system.

It is widely accepted that if the crystal has a large Peiealsiér, the inertial forces arising
from the dislocation’s acceleration are negligible conegatio the drag forces, which are taken to
be proportional to the dislocation velocity. Then the gl climb velocity ofit" dislocation can
be given by

vy =lgFy,  and (2.2)
VL = FL. (2.3)

whereFj and F! is the net force in the glide and climb directions (the sum eadh-Koehler
force projections produced by all the other dislocationthtoglide and climb direction) anidgc
represents the mobilities in the glide and climb directions

3. The projection operator formalism

Let us consider a collection ™ + 1 parallel straight edge d¥ + 1 screw dislocations posi-
tioned at the points;, i = 0,N in the xy plane perpendicular to the dislocation lines. We select
one of these dislocations, for example dislocation 0 andtdhk reference dislocation. The other
dislocationsl, N will be referred as field dislocations. The correct starfiint for the analysis of
the dynamics of our dislocation system is presumably theniie equation for theN + 1-particle
distribution functionu(r,r1,ro,...,rn,t) of the system

ou Lo,
3 +i;0_n(uv )=0, (3.1)

wherev' = v, + v is the velocity ofi'" dislocation according to Egs. (2.2) and (2.3).
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If the reference dislocation is described by the variat#er, and theN-dislocation field by
the variabley = (r4,r»,...,rn), then we can define, following the original notations of Kamm
[19], the one- andN-particle distribution functiong (x,t) andg(y,t) as

f(xt) = /dyu(x,y,t), 3.2)
ayit) = /dxu(x,y,t)- (3.3)
The composite distribution functiom can be written in the form

“(X7y7t) = f(X,t)g(y,t) -+ H (Xa yat) (34)

If our system initially is completely uncorrelated, thee thathematically well-defined problem is
to obtain the solution$ (x,t) andg(y,t) subject to the initial conditions

i (xy,0) = 0, (3.5)
N
9,0) = [1f,0). (3.6)
[
The Liouville equation (3.1) can be written formally as
ou(xy,t . .
U(aty ) =—iLp=—i(Lo+ Lsys+ Li)u, (3.7)

where the operatoiisy andLsys act respectively only on the variablesindy, whereas the interac-
tion Liouvillian L, acts upon botkx andy. One can define a new function, supposedly ,,relevant”
function, as

HR(X7y7t) = f(X,t)g(y,t) (38)

In order to obtain decoupled equations fgrandy, we introduce the time-dependent projec-
tion [19, 16]

PO = gnt) [ dy+ Tx) [ dx— f(xgut) [ ax [ dy 39)

with the property that
P(X>y>t)U(X,y,t) = HR(vavt)> and (310)
[1_ P(Xayat)] “(X7y7t) = H (X7y7t)- (311)

One verifies thaP?(x,y,t) = P(x,y,t). Applying P and 1— P on the Liouville equation (3.7) we
directly obtain the coupled equations

% — iPLur—iPLL (3.12)
% — —i(1-P)Lpr—i(1—P)Ly. (3.13)



Kinetic theory of dislocations: a time-dependent projestbperator approach Botond Bako6

By introducing the Greeniaf (t,t’) defined as [16]
t
Gt,t) = ﬂexp{—i dt’[1— P(t”)]L}, (3.14)
tl

where.7 is the Dyson time-ordering operator, we can write down tle#d solution of Eq. (3.13)
as [19]

X = 40 (k3,0 [ e (861 PLEROYD). (315)
For an initially uncorrelated system (t = 0) = 0. Having this in mind from Eq. (3.12) one gets
% — _iPLyr— /otdt’PL%(t,t’)[l— PILLR(XY,t). (3.16)
By integrating this equation over the variableandy one gets [19]
% Filof +i(L)sysf = /Otdt’/dyAtL|€4(t,t’)At/L|g(y,t’)f(x,t’) (3.17)
and
% tileyg—i(L)Yg= — /: dt’/dXAtL|%(t,t’)At/ug(y,t’)f(x,t’), (3.18)
where the abbreviations
Libsys = [ dyLi(xy)gl.0), (3.19)
- /d>(L|(x’,y)f(x’,t), (3.20)
ALy = Ly — (Li)sys— (L)’ (3.21)

were introduced.

4. Derivation of the kinetic equations

The Liouville equation (3.1) can be rewritten as

N

d“+zl[§r (Kvio) + 9 HVol} led. uvii) (4.1)

wherevj; denotes the velocity created by dislocatiam the dislocatiory.
From Eg. (4.1) one can identify the different operators appg in the decomposition (3.7):

iLo[J = 0

iLsyst = le ar, (Hvji) (4.2)

i#

L —i;[jrm o)+ ;i(qui) .
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The mean-field velocity created by the field dislocatiamn the reference dislocation can be
computed as

(Vio) Z/f(rut) Vig dr;. (4.3)

The total mean-field velocity experienced by the referensichtion is given by the sum of
all contributions of the field dislocations

Vsc = Zl Vio) Zl Vio) = N(v1g). (4.4)

By introducing the dislocation density functiopgr,t) = N f(r,t) and taking into account Egs.
(2.2) and (2.3) one recovers the same expression for the@atistent stress as Groma obtained
by the truncation of the BBGKY hierarchy of dislocation disttion functions [14]. However, the
projection operator approach has the advantage over théassthBBGKY approach because does
not require us to introduce a hierarchy of two- and more daion distribution functions.

After straightforward integrations by part, one verifieatth

, N
i(Li)sysf = [/ d)/g()/,t)_zlvio /d)/ v, zida\/rlo] _ i(f\/sc% and (4.5)

+f or
inL f = Zl {f[Vio— (Vio) }+Zi—{fvo| (Voi)]}- (4.6)

Using thatvip = —Vvqi, we define the fluctuating velocityg;(r,r;,t) that theit field dislocation at
ri exerts upon the reference dislocation ais

Yoi (r,ri,t) = vai(r,ri,t) —vsc(r,t), 4.7

and the fluctuation velocity that the reference dislocatgerts upon thé" field dislocation at;
as

%O(ryriat):_VOi(rariyt)_VSC(riyt)' (48)
Now we can rewrite our expression for the operafgL, in the form
%o d 3% J ]

AL —izi[ ar +7/°ar} izl{c?r. i

In terms of the fluctuating velocities one has then the eqoaif motion

of 2%, 07/0. P P
ot T (fvse) =Sf] /dy/ dtzi[ 05y ”/O'ar}

N
4(0) { 5 |3 Foaut) 10,03 + a—”{%,-gw,t’)f(r,t')}} } (4.10)

=

(4.9)

The functionalS[f] in fact represents the influence of correlations upon thaayes of the system.

The equation (4.10) is an exact differential equationffof,t) subject to the initial condition
ti (x,y,0) = 0. However, this equation is not directly soluble, since dtiger unknown function
g(y,t) is given by an equation of the form (3.18) depending in turnf@at). The coupled sys-
tem of equations bears the same information as the initmliille equation and without further
simplification is untractable.
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5. Weakly correlated dislocation systems

5.1 Statistics of velocity fluctuations

An initially decorrelated dislocation system with (x,y,0) = 0 for sufficiently short times
remains decorrelated. Because of the assumed symmetryoéler dislocation interchange, the
choice of the reference dislocation is arbitrary. Sipgéx,y,0) vanishes, in addition we must
demand that

N
HR(X,Y,0) = f(x,0) u f(r;,0). (5.1)

We might assume that correlations among the field dislogsitigill not strongly affect the
reference dislocation (which will not be in general truel axpect that such an assumption would
be reasonable for time period$ short compared with the time scale for development of strong
correlations. Then, for such time scales the distributigrction

f(x,t—at)_ﬁf(ri,t—at) (5.2)

can be evaluated at tinh@nd the details of the dynamics and interaction among d@iitmes during
such very short relative timascan be encapsulated in the Greerfié(,t — ot).

For the sake of simplicity let us consider that our systemdsleection ofN straight, parallel
edge dislocations with Burgers vectbroriented parallel to the axis and the dislocation line
parallel to thez axis, randomly distributed and confined within a disk of sdR. Furthermore
we assume that the dislocations have the same Burgers vedide are particularly interested in
the ,,thermodynamic limit” in which the number of dislocets and the size of the domain go to
infinity (N — o, R— o) in such a way that the dislocation density= %2 remains finite.

If the temperature is low, the dislocation climb can be netgie and the equation of motion of
it dislocation (2.2) reduces to

dr; i .
Vi = d_tI = rgbi ;Ti#]d(xj _Xivyj _yi)v ]= 17N (53)
1A

wherer; = (X, Vi) denotes the position of theth dislocation and

pbi x(¢—y?) _
m(1—v) (@+y2)2 @ (5-4)

Tiind(x7 y) = 5

is the shear stress created by an edge dislocation (in aiténfiomain), where the shear modulus
U and the Poisson’s ratio were introduced. Since the dislocations are randomlyidiged, the
stressr fluctuates.

The first problem to consider is the characterization of #leaity fluctuations. The velocity in
Eq. (5.3) is proportional to the shear stress, thereforénfinthe velocity distribution is equivalent
with finding the stress distribution function at a point winéne dislocation is located.

The stress distributiofy(7) in a system oN uncorrelated, identical dislocation system can
be obtained as a direct application of Markov’s method [3iflied for several problems. As it
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was shown by Groma and Baké [11], the internal stress digtdn can be expressed as

PN(T)Z/ﬂpd(fi)dr@(T—i@) (5.5)

wherepq(ri)dr; governs the probability of occurrence of tiedislocation at positiom;. Using
the Markov’s method, we can expred&) in terms of its Fourier transform

1 .
o(x) = ET/exp(—mx)dq. (5.6)
ThenPy (1) becomes
PNT—lANexid (5.7)
(1= 5. [ Avld) expl-iag)dg .
with
R N
At = [ exstiapps(rer] (5.9)
[r|=0
If we suppose that the dislocations are uniformly disteoubn average, themy(r) = m'R-2 and
1 (R _ N 1 (R . N
A = | [ estianar| = [1- 5 [7 -exiapiar|  G9)

In the limit whenN — o andR — oo in such way that the density = N/(71R?) remains finite, if
the integral in (5.9) increases less rapidly tinthen the limiting procesa(q) = exp—pC(q)]
where

C(q) :/er_O[l—exp(iqqo)]dr :/j/jn [1—cos<qucos(e)rﬂﬂ rdrd@, (5.10)

. B u : o
with G = 7271(1— L is permissible.
For small arguments c@g = 1— x?/2+ 0 (x*) and we obtain
T2 2 N
C(g) ~ 8G b“g°In {anzquz] . (5.11)
SinceC(q) diverges weakly (logarithmically) withl, we have the estimate
_ 20 2 N
A(Q) = exp[ 8G bpg’In (anZb2q2>] . (5.12)
WhenN — oo,
21T 212
A(q) = exp[—q §G b°pln N} , (5.13)
and forqg — 0 we obtain
M2 2 2
A(g) = exp| 7 G?bpe?In]ql (5.14)
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The stress distributioR(71) is simply the Fourier transform &(q).

The core of the stress distribution function can be detesthtaking into account that for small
stresses the integral in Eq. (5.7) is negligible and we can\jg) given by Eq. (5.13). Then the
distributionP(7) is the Gaussian

(D) = |2 ex o (5.15)
~\/ ®G2p2pInN P nG2b2pInN '

The high stress tail of the distribution can be calculatedifEq. (5.14). This problem was studied
by Groma and Bakoé [11] and was found that the tail of the ithigtion function decays algebraically
like 773

212
P(1) = %f(r) (5.16)

For a nearly homogeneous dislocation system Eq. (5.9) led®tim

/R f(r)exp(iqcp)dr} " = [1—%/:_Op(r)[l—exp(iqcp)]dr]N (5.17)

Ir|=0

At - |

Repeating the previous steps and taking into the accountigiion between the velocity and stress
given by Eqg. (5.3), one finds that the core of the velocityriigtion function is Gaussian,

2 292
P) = \/ TRG2r 2020 (1) InN © " [_ G2 262p(r)In N] ’ ®-18)
and for large values of the velocity distribution decays algebraically:

) TETER0(r)

P(V) = ——37m (5.19)

where? = v— (v) is the velocity fluctuation around the local mean-field vélogiven by Eq.
(4.4). The approximations used here are valid as long therfaation hypothesis given by Eq.
(5.1) is valid. In the strict mathematical limN — oo the transition between the two regimes
given by Egs. (5.18) and (5.19) is rejected to infinity #&1d) is purely Gaussian. However, the
convergence towards the Gaussian distribution is very sloavin practice we will always see the
algebraic tail in computer simulations.

The previous results are valid if the velocity fluctuations ealculated at a fixed point. In this
case it is no restriction on the possible values of the strelssvever, if we are interested in the
stress experienced by the reference dislocation, thetisitus different, since a dipole can form
when a field dislocation approaches the reference distotaind our treatment which ignores the
correlations between the dislocations will break down.

The distribution of stresses in a system of dislocation lépwas studied by Csikor and Groma
[21]. It was found that the core of the stress distributiomction becomes Lorentzian, but the high-
stress tail of the distribution has an algebraic decay ghyekqg. (5.16). That means that the high
velocity tail of the distributiorP(¥") remains still valid for a gas of dislocation dipoles.
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5.2 The kinetic equation

If we assume, that the trajectories of the dislocations betw — ot are determined by the
complicated Greeniaf?(t,t — ot), for sufficiently short timesdt, the approximation (5.2) intro-
duced in Eq. (4.10) leads to

of a"//o 2V 0 0=

E+d (fvse) = /dy/ er[ o ”1/00 +"f/o|drl]€€(t,t—r)><

N 0 N

Z {"I/Jof |_| (re,t— {7/0J |_| (r,t—1)}| p. (5.20)
=1 k=1 k=1

In this approximation we have obtained a closed nonlinegne-differential equation for
f(r,t) in terms of its past history.

Close to equilibrium, to a good approximation, we can cosrsidat the dislocations are purely
advected by the equilibrium mean-field stress, thereforeavereplace the exact Greenian with
a smooth Greeniar)eq constructed formally with the averaged Liouville operatsince the
fluctuation’”” for N — oo is much smaller, than the equilibrium mean-field velogityeq. In this
approximation Eq. (5.20) can be simplified considerably:

df

dt V)eq) /dY/dTZJ"f/o +7/o| }

N
<%<t,t—r>>eq{ 3 [”V j o }{f nfequ,t—n}} (5.21)

=1
where ()¢q represents the average with respect to the equilibriunmildlision feq(r). After an
integration by parts over the spatial variables Eq. (5.2duces to

of o

o e = 5 [ ay [ dTZlZ“V” = D)eax
d 9
ot — % f(r,t— fe 5.22
[ Bt— Doy + K= 1) aer] (rt-1) k|:|1 ) (5.22)

This equation resembles a Fokker-Planck equation in whiehitst term of the right-hand
side corresponds to a diffusion and the second term to a drift

Assuming, that in first approximation the dislocationsdalistreamlines, after explicating the
action of the Greenian, we can rewrite Eq. (5.22) in the form

of 0
ot + E(”Weq) =

N 95 it 0 d
3 e /o [ ARB0 03 = 15T | =) ) .29

Since the field dislocations are identical, we also have

of d
ot + ar == (f(V)eq) =

t ) )
—u/dflfo dT#4p(t) ["f/l\é(t— T)WJF"VO\i(t— T)d—r‘l’} f(r,t—1)feq(r1) (5.24)

10
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The analytical expression of the velocity fluctuation clatien function and of the equilibrium
distribution feq(r 1) need further investigations. Since these functions ar&mmt/n yet, we cannot
transform this integro-differential equation into a Fokktanck equation. However, regarding the
velocity fluctuations as Markovian random variables, anaraking an appropriate guess for the
function feq, we might be able to evaluate the diffusion tensor and tHeterim.

6. Conclusion

In this paper, we have provided a systematic derivationef.émdau equation for dislocations,
applying the powerful projection operator techniques ts pimoblem. The kinetic equation can be
derived by focusing on a reference dislocation and consigets interaction with the remaining
,,field dislocations”.

There are different methods to obtain a kinetic equatiortierdistribution functionf (r,t).
One possibility is to close the BBGKY hierarchy by neglegtithe cumulant of the three-body
correlation function [14], [15]. However, the projectioparator formalism has the advantage
over the standard BBGKY approach that it takes into accoontMarkovian effects and spatial
delocalization.

Some analytical properties of velocity fluctuation diaitibn function are determined for the
idealized case of a system of almost uncorrelated, strgiginéllel edge dislocations in single slip
configuration. It was shown that the core of the distribui®Gaussian, while the high-velocity
tail decays with the third power of the velocity fluctuatiori3ue to the velocity fluctuations the
motion of the dislocations can be regarded as an effectffigsdin and drift.

The analytical form of the diffusion cannot be determinedtfi®@ moment. However, it seems
to be influenced by the autocorrelations of the velocity flatibn. A numerical work in progress
by the author shows that the velocity fluctuations have l@mg correlations and they are more
complex than the usual white noise effect. When memory &ff@e ignored, we obtain a Fokker-
Planck equation of the one-particle distribution functfonthe system close to equilibrium.

Eq. (5.24) resemble the equations of original Aifantis [22}-A (Walgraef-Aifantis) [4], and
Groma-Zaiser models [23]. The equations studied in thispaprrespond to conserved number
of dislocations, i.e. they do not describe dislocation to@aand annihilation. However, it is easy
to lift this strong limitation by adding a source term to tlight hand side of Eq. (4.10). Although
this is a very important issue, it is out of the scope of thesgng paper.
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