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1. Introduction

Monte Carlo is a numerical technique that makes use of random numbers to simulate a stochas-
tic model of a phenomenon. Historically, the first large scale Monte Carlo work carried out dates
back to 1950s. It consisted of simulating neutron transport in a medium, e.g. a nuclear reactor core.
Stanislav Ulam, John von Neumann and Enrico Fermi were the first to propose and employ Monte
Carlo technique for solving practical problems. The earliest published work on Monte Carlo is per-
haps the one reported by Ulam and Metropolis in the year 1949 [1]. There were of course several
isolated instances when Monte Carlo technique has been employed in some form or the other. A
notable example is the Buffon’s needle experiment carried out in the year 1777 for estimating the
value of the irrational number π , a description of which can be found in [2].

In this paper we shall confine ourselves to discussing a few Markov chain Monte Carlo meth-
ods for simulating an equilibrium closed system described by canonical ensemble of microstates.
Before we do that let us take a quick look at the random numbers that fuel the Monte Carlo ma-
chine.

2. Random Numbers

For any Monte Carlo simulation we need a sequence of real numbers distributed randomly,
uniformly and independently in the range (0,1). Strictly we can call these numbers random if and
only if they are generated by a random physical process like radioactive decay, thermal noise in
electronic devices, cosmic ray arrival times and tossing of a coin. 1. But for generating random
numbers we invariably employ simple arithmetic operations that are fast, and that do not require
much computer memory for storage.

For example consider multiplicative congruential generator [3], defined by,

Ri+1 = a×Ri(mod m), (2.1)

where a, m and {Ri} are integers. a is called the generator or the multiplier. m is called the modulus.
Start with a seed : 0 ≤ R1 ≤ m− 1. Use the above recursion and generate a sequence of integers
: {R1,R2, · · ·}. The sequence is converted to floating point numbers by dividing each by m. The
multiplier a and the modulus m are to be chosen carefully. For example the choice a = 75 and
m = 231 −1, has been shown [4] to yield good random numbers in 32-bit machines. The period of
the generator is nearly 109, which is not really long for several applications. The choice of a = 1313

and m = 259 in the G05FAF generator of the NAG library [5] has a period of 1018.

The important point is that the sequence is generated by a deterministic algorithm. These
numbers are predictable and reproducible. Hence by no stretch of imagination can they be called
random. We call them pseudo random. The sequence of pseudo random numbers is usually tested
for randomness and then employed in Monte Carlo simulation.

1These phenomena are known to be truly random at least according to the current day theories.
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3. Canonical Ensemble

Consider a closed system of N microscopic entities (molecules; spins etc.), in volume V and
in thermal equilibrium with the outside word (heat bath) at temperature T . Let,

ΩCS = {Ci : i = 1, 2, · · · ,Ω̂CS},

denote all possible microstates belonging to the closed system 2. Let O(C ) denote the value of a
macroscopic variable ( e.g. magnetization; pressure; etc.) when the closed system is in a microstate
C (∈ ΩCS). The aim is to calculate 〈O〉.

Let E(C ) be the energy of the system when it is in microstate C . Let β = [kBT ]−1, where T
is the temperature of the heat bath and kB is the Boltzmann constant. The system can be found in
microstate C with a probability,

P(C ) = Z−1 exp
[
−βE(C )

]
, (3.1)

where, Z(T,V,N) is the canonical partition function given by,

Z(T,V,N) = ∑
C∈ΩCS

exp
[
−βE(C )

]
. (3.2)

Formally we have,

〈O〉 =
∑C∈ΩCS

O(C )exp[−βE(C )]

∑C∈ΩCS
exp[−βE(C )]

. (3.3)

Naively we can sample a large number of microstates {C1,C2, · · · ,CN} with equal probability and
calculate,

〈O〉 = lim
N→∞ ON =

∑N
i=1 O(Ci)exp[−βE(Ci)]

∑N
i=1 exp[−βE(Ci)]

(3.4)

I must emphasize that in the above procedure all the microstates should be sampled with the same
probability i.e. from a uniform ensemble. This is not usually viable since any finite Monte Carlo
sample would contain predominantly only those microstates with large energy 3. Because of the
Boltzmann factor exp[−βE(C )], most of the microstates of the Monte Carlo sample will contribute
negligibly to the partition sum. Hence the estimate of 〈O〉 will be statistically poor. We need a
technique, like the Metropolis algorithm [8] to sample microstates from a canonical ensemble of
microstates

Let ΩCS = {C1,C2, · · ·} denote a canonical ensemble of microstates. We take the size of
the ensemble to be adequately large so that the fractional number of times a microstate C ∈ ΩCS

occurs in a canonical ensemble (of microstates) equals Z−1 exp[−βE(C )]. Let {C1,C2, · · ·CN} be

2A point in the 6N dimensional phase space is an example of a microstate of a classical system. Three positions and
three momenta are required to specify a single molecule. There are N molecules. Hence a string of 6N numbers specify
a microstate. Another example of a microstate is an orientational configuration of Ising spins on a lattice. Each spin can
be oriented up or down. If there are N spins in the system then there are a total of 2N microstates.

3Entropy increases with energy, rather steeply.
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N microstates sampled from a canonical ensemble employing Metropolis algorithm, described in
the next section. Then a simple arithmetic average provides an estimate of 〈O〉, as given by,

〈O〉 = lim
N→∞ ON =

1
N

N

∑
i=1

O(Ci). (3.5)

4. Metropolis algorithm

In Metropolis Monte Carlo, we start with an arbitrary initial microstate C0 and generate a
Markov chain of microstates : C0 → C1 → C2 → ·· ·Cn → ·· ·. The asymptotic (n → ∞) part of the
Markov chain contains microstates belonging to the desired canonical ensemble.

Let Ci ∈ ΩCS be i-th entry in the Markov chain. Let Ei = E(Ci) denote its energy. P(Ci) ∝
exp[−βEi)] is its probability. Construct a trial microstate Ct by making a local change 4. Let
Et = E(Ct) denote the energy of the trial state. P(Ct) ∝ exp[−βE(Ct)] is its probability. Then

Ci+1 =





Ct with probability p

Ci with probability 1− p ,

(4.1)

where the Metropolis acceptance probability p is given by,

p = min.

(
1,

P(Ct)

P(Ci)

)

= min.

(
1,exp

[
−β (Et −Ei)

])
. (4.2)

The heat-bath algorithm [6] or also known as the Glauber algorithm [7] consists of defining the
Metropolis acceptance probability p as,

p =
π(Ct)

π(Ct +π(Ci)

=
1

1+ exp[−β (Et −Ei)]
(4.3)

Let Mi, j ≥ 0 denote the (conditional) probability of transition from microstate C j to microstate
Ci. The transition matrix M is column stochastic:

∑
i

Mi, j = 1 ∀ j . (4.4)

Also M is regular. This, in other words, means

(Mn)i, j > 0 (4.5)

4e.g. flip a randomly chosen Ising spin; subject a randomly chosen molecule to a random displacement in the phase
space.

4



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
1
8

Monte Carlo Methods K. P. N. Murthy

for some finite n and for all i, j. The Markov chain generated is irreducible and aperiodic. We have,

Mn|a〉 ∼
n→∞ |π〉, (4.6)

for an arbitrary probability vector |a〉 having non-zero overlap with the invariant probability vector
|π〉 i.e. 〈π|a〉 > 0. |π〉 is the right eigenvector of M corresponding to eigenvalue unity. The largest
eigenvalue of M is non-degenerate and equals unity. All other eigenvalues are all less than unity in
modulus. These results follow from Peron-Frobenius theorems [9].

We have thus M|π〉 = |π〉. This is called balance condition. It is often expressed more explic-
itly as

∑
j

[
Mi, j π j −M j,i πi

]
= 0 (4.7)

Thus simple balance condition is adequate to ensure the existence of an invariant distribution. Often
we impose a more strict detailed balance condition by demanding that each term in the sum above
is zero. In other words,

π j Mi, j = πi M j,i (4.8)

Use of detailed balance helps us construct a transition matrix M whose invariant distribution is the
desired distribution. Metropolis algorithm and the heat-bath algorithms obey detailed balance and
hence asymptotic convergence of the Markov chain to the desired canonical ensemble is assured.
Detailed balance also assures that the asymptotic part of the Markov chain has the time-symmetry
required of an equilibrium system, see below.

Let F denote a Markov chain generated by the transition matrix M with initial state belonging
to an equilibrium canonical ensemble. Let us run the chain back wards and call it time-reversed
Markov chain or simply reversal of F . Let R denote the time reversed Markov chain starting off
from a microstate belonging to equilibrium canonical ensemble. Let M̂ denote the transition matrix
that generates R. M̂ is called the π-dual or time reversal of M. How is M̂ related to M and |π〉?
To answer this question let us consider a two-time joint probability matrix W = MD, where D is a
diagonal matrix: Di, j = πi δi, j where δi, j is Kronecker delta. Let Ŵ be the joint probability matrix

associated with time reversed Markov chain. It is clear that Ŵ = W ′ where W ′ is the transpose of
W . It follows then, M̂ = ŴD−1 = W ′D−1 = DM′D−1. Thus we have

π j M̂i, j = πi M j,i. (4.9)

A Markov chain is time-symmetric only when W = Ŵ = W ′. In other words the matrix W
should be symmetric. It is readily shown that the symmetry of W implies M̂ = M, which is true if
and only if M obeys detailed balance condition, see Eq. (4.8) and (4.9). Hence detailed balance
is required to ensure that the generated Markov chain is time symmetric and hence can represent
an equilibrium system. If M obeys only balance condition and not detailed balance condition the
resulting Markov chain will not have time symmetry. There are several algorithms in vogue [10]
that obey only balance condition and not detailed balance conditions. An algorithm that does
not obey detailed balance will not generate time-symmetric Markov chain asymptotically. The
implications of this to the study of equilibrium systems need careful investigations.
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5. Critical slowing down

A problem with Monte Carlo technique is that the statistical error in the estimated average
decreases with the sample size N only as 1/

√
N. This implies that to get numbers to just one extra

decimal accuracy we need to increase the sample size by a factor of hundred, which often is not
possible. Much worse, the error reduction as 1/

√
N happens only if the microstates of the Monte

Carlo sample are independent. Successive microstates generated by Metropolis algorithm are often
correlated [11]. Such correlations increase the statistical error by a factor

√
1+2τ? [11], where τ?

is the integrated correlation time. τ? diverges when T → TC :

τ?(T ) ∼
T→TC

|T −TC|−∆. (5.1)

This is called critical slowing down, in second order phase transition. From finite size scaling,
we have τ?(L) ∼

L→∞ Lz, where L is the Monte Carlo system size, z = ∆/ν is the dynamical criti-
cal exponent and ν is the correlation length exponent. For Metropolis algorithm, z >> 1. Hence
Metropolis Monte Carlo simulation of large systems, close to criticality is nearly impossible. Clus-
ter algorithms help overcome this drawback [12, 13].

In cluster algorithms, the given problem is mapped on to a bond percolation problem which
helps define clusters of microscopic entities. The clusters are updated independently and randomly
to generate successive entries in the Markov chain. The key point is that from interacting spins we
construct non interacting clusters. Updating of clusters does not result in large energy changes. But
it de correlates successive microstates rather effectively and reduces τ ? by orders of magnitude

6. Super-critical slowing down

Near first order transition, the microstates representing the interface between ordered and dis-
ordered phases have intrinsically low probability of occurrence in a closed system. These mi-
crostates are scarcely sampled in Metropolis simulation of large Monte Carlo systems. The system
takes a very long time to go from one phase to the other due to the presence of high energy barrier
for large Monte Carlo system sizes. This is called super critical slowing down. The quality of local
update Metropolis Monte Carlo results deteriorates exponentially with increase of system size.

7. Non-Boltzmann sampling

Metropolis and related algorithms belong to Boltzmann sampling techniques. For addressing
the problems of super critical slowing down we need to go beyond Boltzmann sampling. That
non-Boltzmann sampling can provide a legitimate alternative was recognized even during the early
days of Monte Carlo practice [14]. However practical significance of non-Boltzmann sampling was
realized only in the middle of seventies when Torrie and Valleau proposed the so called umbrella
sampling [15]. Umbrella sampling is a forerunner to all the subsequent non-Boltzmann sampling
techniques including multicanonical Monte Carlo [16]. Entropic sampling [17] is equivalent to
multicanonical sampling. I shall take entropic sampling as a typical example of non-Boltzmann
Monte Carlo and describe this technique in some what great details below. Before that let me make
some general statements about non-Boltzmann sampling techniques.

6
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The probability density for a closed system to have an energy E is given by,

PB(E) ∝ D(E)exp(−βE), (7.1)

where D(E) is the density of states. Let us suppose we want to sample microstates in such a way
that the the corresponding probability density of energy is given by,

Pg(E) ∝ D(E)
[
g(E)

]−1
, (7.2)

where g(E) is chosen suitably for obtaining the desired non-Boltzmann sampling. An ensemble,
called g-ensemble, consistent with Pg(E) is constructed as follows. Let Ci denote the i-th microstate
in the Markov chain and Ct , the trial microstate. Let Ei = E(Ci) and Et = E(Ct). The next entry
Ci+1 in the Markov chain is taken as Ct with probability p and Ci with probability (1− p) and

p = min

[
1,

g(Ei)

g(Et)

]
. (7.3)

The algorithm obeys detailed balance and hence the Markov chain constructed would converge
asymptotically to the desired g-ensemble

When [g(E)]−1 = exp(−βE) we recover conventional Boltzmann sampling. For any other
choice of g(E) we get the corresponding non-Boltzmann sampling. Canonical ensemble average of
a macroscopic property O(C) can be obtained by un-weighting and re-weighting of O(C) for each
C sampled from the g-ensemble. For un-weighting we divide by [g(E(C))]−1 and for re-weighting
we multiply by exp[−βE(C)]. The weight factor associated with a microstate C belonging to the
g-ensemble is thus,

W (C,β ) = g
(

E(C)
)

exp
[
−βE(C)

]
. (7.4)

We then have,

〈O〉 =
∑C O(C)W (C,β )

∑CW (C,β )
(7.5)

The left hand side of the above is the equilibrium value of O in a closed system at β , while on the
right side the summation in the numerator and in the denominator runs over microstates belonging
to the non-Boltzmann g-ensemble. From a single simulation of a g-ensemble, with a temperature
independent g function, we can calculate the canonical ensemble average of O at various tempera-
tures.

8. Entropic Sampling

Entropic sampling obtains when g(E) = D(E). For this choice, Pg(E) is the same for all E.
The system does a simple random walk on a one dimensional energy space. Hence all energy
regions are visited with equal probability. As a result, in the case of first order phase transition
for example, the microstates on the paths (in the configurational space) that connect ordered and
disordered phases would get equally sampled.

7
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A crucial issue that remains to be clarified pertains to the observation that we do not know
D(E) à priori. In entropic sampling, we employ a strategy to push g(E) closer and closer to
D(E), iteratively. We divide the range of energy into a large number of bins of equal widths.
We denote the discrete-energy version of g(E) by the symbol {gi : i = 1, ME}, where ME is the
number of energy bins. We start with {g(0)

i
= 1 ∀ i = 1, ME}; the superscript is iteration run index

and the subscript is energy bin index. The aim is to update {gi} from one iteration to the next:
{g(0)

i
}→ {g(1)

i
}→ ·· ·{g(k)

i
}→ ·· · , so that asymptotically we get {gi} as close to {Di} as desired,

where {Di} is the discrete energy representation of D(E).
The iteration is carried out as follows. In the k − th iteration, for example, we generate a

large number of microstates employing acceptance probability based on {g(k)
i
} and accumulate

an histogram {hi : i = 1, ME} of energy of visited microstates. We update {g(k)
i

: i = 1, ME} to

{g(k+1)
i

: i = 1, M}, as given below,

g(k+1)
i

=





g(k)
i

if hi = 0,

g(k)
i

×hi if hi 6= 0,

for all i = 1, 2, · · · , ME . The updated {g(k+1)
i

} is employed in the next i.e. (k + 1)− th run,
during which a fresh histogram of energy is generated. After each run, the histogram is examined
for its uniformity. Flatter the histogram, closer is {gi} to {Di}. Thus, the calculated histogram
serves two purposes in entropic sampling. One for updating {gi} and the other for monitoring
the convergence of {gi} to {Di}. However, often, it is neither practical nor necessary to get a
strictly flat histogram. An approximately flat histogram would be adequate, thanks to the un-
weighting followed by reweighting with the Boltzmann rule while calculating the averages. Hence
the calculated macroscopic properties would come out right, even if {gi} does not converge strictly
to {Di}.

9. Wang-Landau algorithm

A simple and flexible variant to entropic sampling was proposed recently by Wang and Lan-
dau [18]. The distinguishing feature of this algorithm is the dynamic evolution of the acceptance
probability, p. We update {gi} after every Monte Carlo step. Let us say the system visits a mi-
crostate in a Monte Carlo step and let the energy of the visited microstate fall in the m-th energy
bin. Then gm is updated to f × gm, where f is the Wang-Landau factor. The updated {gi} be-
comes operative immediately for determining the acceptance/rejection criteria from the very next
trial move. We set f = f0 for the zero-th run. f0 can be any number greater than unity. The choice
of f0 = e is recommended by Wang and Landau. We generate a large number of microstates em-
ploying the dynamically evolving p. At the end of a run we calculate the histogram of energy of
microstates visited by the system during the run. Because of the continuous updating of p, the
energy span of the density of states increases significantly and the energy histogram serves to mon-
itor the convergence of {gi} to {Di}. A run should be long enough to facilitate the system to span
the energy over the desired range and to render the histogram of energy approximately flat. At
the end of, say, the ν-th run, the Wang-Landau factor for the next run is set as f = fν+1 =

√
fν .

8
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After several runs, this factor would be very close to unity. This implies that there would occur no
significant change in {gi} during later runs. For example with the square-root rule and f0 = e, we
have f25 = exp(2−25) . 1 + 10−7. It is clear that f decreases monotonically with increase of the
run index and reaches unity asymptotically. Wang and Landau recommend the square-root rule;
any other consistent rule should do equally well.

From the converged g, the desired macroscopic properties of the system can be calculated. To
this end we invoke the connection between the density of states and microcanonical entropy, S(E) =

kB log[D(E)]. Thus the Monte Carlo estimate of microcanonical entropy is α(E) = kB log[g(E)].
For implementing such a scheme we need to normalize g(E). The normalization constant should
be obtained from known properties of the system. For example in Ising model, the ground state is
doubly degenerate: D(Emin) = 2. The total number of microstates equals 2V where V is the number
of Ising spins in the Monte Carlo model.

∫ Emax
Emin

D(E)dE = 2V . The normalized g(E) provides a
good approximation to D(E).

Alternately, we can take the output {gi} from the above and carry out a single long non-
Boltzmann sampling run which generates microstates belonging to the g-ensemble. Note that dur-
ing the production run we do not update g(E). By un-weighting and re-weighting of the microstates
generated in the production run, we can calculate the desired macroscopic properties of the system
as a function of β . More importantly, it is adequate if the system visits the energy region of in-
terest and not necessarily the entire range and the histogram of energy in the region of interest is
approximately flat.

The usefulness of the Wang-Landau algorithm has been unambiguously demonstrated for sys-
tems with discrete energy spectrum. However, when we try to apply this technique to systems
with continuous energy, there are serious difficulties. Liquid crystalline materials with continu-
ous energy spectrum provide such an example. Hence we modify the Wang-Landau algorithm for
simulating phase transition in liquid crystalline materials details of which can be found in [19]

10. Epilogue

We have presented a quick and brief review of a few Markov Chain Monte Carlo techniques for
applications in statistical physics. We have discussed the Metropolis algorithm which launched the
Monte-Carlo-for-statistical-physics business in the first place. The Metropolis algorithm remains
to date the best algorithm in this field. We also saw that the Metropolis algorithm which obeys
detailed balance condition ensures that the Markov chain generated has time symmetry which is
an important characteristic of an equilibrium system. We also saw of critical slowing down near
second order phase transition and cluster algorithms. The super critical slowing near first order
phase transitions can be tackled by non-Boltzmann Monte Carlo techniques. We discussed in detail
a few non-Boltzmann sampling techniques which include entropic sampling and the recent Wang-
Landau algorithm. Tables (1) lists what we consider as milestones in the historical development
of Monte Carlo methods in statistical physics. Of course only a few of the milestone topics were
discussed here. For discussions on the other topics see [20 – 23].

9



P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
1
8

Monte Carlo Methods K. P. N. Murthy

Table 1: Milestones in Monte Carlo Statistical Physics

When? What? Who?

1951 Linear congruential generator Lehmer [3]

1953 Metropolis algorithm Metropolis, A. W. Rosenbluth, M. N.
Rosenbluth, A. H. Teller and E. Teller
[8]

1964 Hand Book on Monte Carlo Method Hammersley and Handscomb [20]

1969 Random clusters Kasteleyn, Fortuin [24]

1975 n-fold way Bortz, Kalos Lebowitz [25]

1976 Cluster counting algorithm Hoshen and Kopelman [26]

1977 Umbrella Sampling Torrie and Valleau [15]

1980 Ising critical droplets Coniglio and Klein [27]

1987 Swendsen-Wang cluster algorithm Swendsen and Wang [12]

1988 Histogram reweighting Ferrenberg and Swendsen [28]

1989 Wolff cluster algorithm Wolff [13]

1991 Multicanonical and Entropic sampling Berg and Neuhaus [16]; Lee [17]

1995 Absorbing Markov Chain Novotny [29]

2000 A Guide to Monte Carlo Simulations in
Statistical Physics

Landau and Binder [22]

2001 Wang-Landau algorithm Wang and Landau [18]

10
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