
P
o
S
(
S
M
P
R
I
2
0
0
5
)
0
4
9

Velocity Distributions in a Cooling Granular Gas

Sanjay Puri
�

School of Physical Sciences, Jawaharlal Nehru University,New Delhi – 110067, India
E-mail: puri@mail.jnu.ac.in

Syed Rashid Ahmad
School of Physical Sciences, Jawaharlal Nehru University,New Delhi – 110067, India
E-mail: catchrashid@hotmail.com

We use event-driven molecular dynamics simulations to study a freely-evolving granular gas. The

system initially loses energy (or cools) in ahomogeneous cooling state(HCS). However, fluctua-

tions in the velocity and density fields grow with time and make the system inhomogeneous. This

asymptotic state is referred to as theinhomogeneous cooling state(ICS). In the HCS, the scaled

velocity distributions deviate from the Maxwell-Boltzmann (MB) function. However, they revert

to the MB form in the ICS.
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1. Introduction

There has been much research interest in the static and dynamical properties ofgranular ma-
terials or powders[1, 2, 3, 4, 5, 6]. These materials exhibit properties which are intermediate to
those of fluids and solids. The understanding and characterization of these properties poses both
scientific and technological challenges. Perhaps the most important feature of granular materials is
that the grains undergo inelastic collisions, with the normal component of velocity being dissipated
on collision. This suggests two classes of dynamical problems in the context of powders:
1) First, let us consider systems where the energy dissipation is compensated by the input of energy
from external driving. Then the system settles into a nonequilibrium steady-state, which is often
characterized by complex pattern dynamics. There are various standard geometries for agitating
granular materials, e.g., rotation in a drum [7, 8], vibration on a platform [9], etc. These systems
give rise to diverse examples of pattern formation, which have attracted much research attention.
2) Next, let us consider the evolution of an energized powderin the absence of an external drive.
The best-known problem in this class is thecooling of an initially homogeneous system of in-
elastic particles. The inelastic collisions between particles result in the loss of kinetic energy (or
cooling), and the local parallelization of particle velocities. In the early stages, the density field is
uniform and the system loses energy in ahomogeneous cooling state(HCS) [10]. However, the
HCS is unstable to fluctuations in the density and velocity fields, and the system evolves into an
inhomogeneous cooling state(ICS) [11, 12, 13, 14, 15, 16, 17, 18]. The ICS is characterized by the
emergence and growth of particle-rich clusters, with particles in a cluster moving in approximately
parallel directions.

In this paper, we use large-scale molecular dynamics (MD) simulations to study the HCS and
ICS of an inelastic granular gas. In earlier work [17], we have characterized pattern formation in
the ICS via physical quantities like (a) thecorrelation functionandstructure factorfor the density
and velocity fields; and (b) the growth laws for fluctuations in these fields. Here, we focus on the
velocity distributions in the HCS and ICS (for cases with dimensionalityd � 2�3). For an elastic
hard-sphere gas, an arbitrary velocity distribution rapidly evolves to the Maxwell-Boltzmann (MB)
distribution. The situation is not so simple for granular materials with non-MB distributions (e.g.,
power laws, stretched exponentials, etc.) being reported in various studies [1, 2, 3, 4, 5, 6].

This paper is organized as follows. In Sec. 2, we briefly review our understanding of the
cooling problem. In Sec. 3, we present numerical results from our MD simulations. In Sec. 4, we
conclude this paper with a summary and discussion.

2. Phenomenology of the Cooling Problem

Let us consider a homogeneous granular gas, comprised of identical hard spheres with mass
m � 1 and diameterσ � 1. Consider a collision between particles labeledi and j. The post-
collision velocities of the particles (

�
vi
�
and

�
v j
�
) are determined from the pre-collision velocities (

�
vi

and
�
v j ) by the following rule:

�
vi
� � �

vi �1
�

e
2

�
n̂ � ��vi ��

v j 	
n̂�
�
v j
� � �

v j
� 1

�
e

2

�
n̂ � ��vi ��

v j 	
n̂� (2.1)
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wheree ��1	 is the restitution coefficient. Here, ˆn is a unit vector parallel to the relative position
of the particles, and points fromj to i at the time of collision.

In analogy with the ideal gas, we define the “granular temperature” as the average kinetic
energy:

T �
��
v 2�
d

� (2.2)

where
��
v 2� is the mean-squared velocity. The homogeneous state cools with time t as [10]

dT
dt

� �εω �T	T
d

� ε �1�e2 � (2.3)

whereω �T 	 is the collision frequency at temperatureT. From kinetic theory, this has the approxi-
mate form [19]:

ω �T 	� 2π �d�1��2
Γ�d�2	 χ �n	 n T1�2 � (2.4)

whereχ �n	 is the pair correlation function at contact for hard sphereswith densityn. Substituting
the expression forω �T 	 in Eq. (2.3) and integrating, we obtainHaff’s cooling lawfor the HCS:

T �t 	 �T0

	
1
� εω �T0	

2d
t
�2

� (2.5)

whereT0 is the initial temperature. Notice that the collision time-scale becomes slower due to the
ongoing cooling of the granular gas. Therefore, it is convenient to introduce another measure of
time, i.e., the average number of collisionsτ �t 	 that a particle suffers till timet:

τ �t 	 � � t

0
dt
�
ω �t � 	 � 2d

ε
ln

	
1
� εω �T0	

2d
t
 � (2.6)

The collision timeτ grows logarithmically with real timet for ε 0 �e �1	. In the elastic limit
ε � 0 �e� 1	, Eq. (2.6) reduces to the expected form,τ �t 	 � ω �T0	t. In terms of the collision
time, Haff’s cooling law simplifies as

T �τ 	 �T0exp��ετ�d	 � (2.7)

Next, let us discuss velocity distribution functions in theHCS. The natural framework to study
these is the inelastic version of theBoltzmann transport equation, which is applicable when velocity
correlations are negligible [6]. The elastic case (e�1) is characterized by the MB distribution:

PMB ��v	 � � 1

πv2
0�d�2

exp���
v 2

v2
0 � � v2

0 � 2
��
v 2�
d

� (2.8)

In the near-elastic case (e � 1), the distribution function is time-dependent due to the cooling
process, but has a scaling form which differs from the MB function [20, 21]:

P��v�t 	 � 1

vd
0 �t 	

F

	 �
v

v0�t 	
 � 1

vd
0 �t 	

F ��c	� (2.9)
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Here,v2
0�t 	 �2

��
v 2��d as before, and

F ��c	 � 1

πd�2 exp��c2	
∞

∑
n�0

anSn�c2	� (2.10)

In Eq. (2.10),F ��c	has been expanded in terms of the orthogonal Sonine polynomials, which satisfy� ∞

0
dc cd�1 exp��c2	Sn�c2	Sm�c2	 � δnm

Γ�n�
d�2	

2 n!
� (2.11)

The first few Sonine polynomials are

S0�c2	 � 1�
S1�c2	 � d

2 �c2�

S2�c2	 � d�d �
2	

8 � �d �
2	

2
c2 � 1

2
c4 � etc� (2.12)

The MB function in Eq. (2.8) arises on settinga0 �1 andan �0 �n �
1	 in Eq. (2.10).

The coefficientsan in Eq. (2.10) quantify the deviation from the MB function. The normaliza-
tion condition dictatesa0 �1, and a scaling argument yieldsa1 �0. The first nontrivial coefficient
is a2 and this has been calculated from kinetic theory as [21]

a2 � 16�1�e	�1�2e2	
9
�

24d
�

8de�41e
�

30�1�e	e2 � (2.13)

Brey et al. [22] have confirmed the result in Eq. (2.13) via Monte Carlo (MC) simulations of
the inelastic Boltzmann equation. However, it is more relevant to study the applicability of these
results directly in a cooling granular gas. In this context,Huthmann et al. [23] have undertaken
MD simulations of inelastic hard disks ind � 2. The initial condition for their simulations was a
homogeneous state with an MB velocity distribution. Huthmann et al. studied the evolution ofa2

from its initial valuea2 �0 (the MB value). To obtain the coefficientsan�t 	, we use the expansion:�
c2k��t 	 � �

c2k�
MB

k

∑
n�0

��1	n k!
�k �n	!n!

an�t 	��
c2k�

MB � Γ �k�
d�2	

Γ �d�2	 � (2.14)

The first fewan’s are obtained as follows:

a1�t 	 � 1�
�
c2��

c2�
MB

�0� (2.15)

a2�t 	 � �1
�

�
c4��

c4�
MB

� (2.16)

a3�t 	 � 1
�

3a2 �
�
c6��

c6�
MB

� etc. (2.17)

Huthmann et al. found thata2�t 	 evolved to a “steady-state” value consistent with Eq. (2.13).
However, the kinetic-theory prediction was not valid in theICS, anda2 relaxed back to zero on a
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time-scaleτ �30 collisions fore�0�4�1 (see Fig. 9 of Ref. [23]). Similar results were obtained
by Nakanishi [18], who found that the “steady-state” was transient even for values ofe� 1. This
is due to the build-up of correlations prior to the onset of the ICS. However, these authors did not
investigate velocity distributions deep into the ICS, which is one of the primary aims of the present
study.

3. Results from Molecular Dynamics Simulations

3.1 Details of Simulations

We used event-driven MD to simulate the granular gas ind � 2�3 [24, 25]. The translational
motion of inelastic particles obeyed the collision rule in Eq. (2.1). The rotational motion of the
particles was neglected. The granular gas consisted ofN � 106 particles confined in a 2-d or 3-d
box with periodic boundary conditions. The box sizes were chosen so that the number fraction was
ρ �0�2 in both cases, with packing fractionφ �0�157 ind �2 andφ �0�105 ind �3.

The system is initialized by randomly placing particles in abox. All of these particles have
the same speed but the velocity vector points in random directions so that∑i

�
vi � 0. This system

is relaxed to an MB velocity distribution by allowing it to evolve till τ � 100 withe � 1, i.e., the
elastic limit. This serves as a typical initial condition for our simulation of inelastic hard spheres.

We will subsequently present results for the time-dependence of the temperature and velocity
distribution functions. We have obtained results for caseswith e�0�7�0�8�0�9�0�95. All statistical
results presented in this paper correspond to averages over50 independent initial conditions.

3.2 Evolution Pictures and Haff’s Cooling Law

In Fig. 1, we show evolution pictures of the density and velocity fields for ad � 2 granular
gas with restitution coefficiente � 0�8. The velocity field (frames on right) becomes unstable on
a faster time-scale than the density field. Its evolution is characterized by the annealing of point
defects, consisting of vortices ind � 2 (and monopoles ind � 3). The evolution of the velocity
field in Fig. 1 is analogous to ordering dynamics in the two-component XY model [26]. In the XY
model, vortices and anti-vortices annihilate as this reduces the surface tension. However, in the
granular gas, the “surface tension” has a dynamical origin,i.e., the local parallelization of particle
velocities on collision. Notice that the velocity field is a conserved variable as the particle collisions
conserve momentum.

The pattern dynamics in the velocity field is accompanied by aclustering instability in the
density field (frames on left of Fig. 1). The formation of clusters can be understood as follows.
Consider a density fluctuation in the HCS. In the denser regions, there is more rapid collision of
particles and faster cooling. Thus the pressure becomes lower in the denser regions, and particles
are sucked into these regions, reinforcing the density fluctuation [11]. The evolution of the granular
gas in the ICS is described by nonlinear hydrodynamic equations for the density and velocity fields.
In recent work, Das and Puri (DP) [17] have studied pattern dynamics in the nonlinear ICS regime.
They characterized pattern formation via growth laws, and the scaling behavior of the correlation
functions and structure factors. DP argued that thestreaming-and-aggregationdynamics of the
granular gas results in conservation on the cluster length scale, which diverges with time. Thus,
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τ=1000

τ=100 τ=100

τ=1000

Figure 1: Evolution pictures of the density field (frames on left) and velocity field (frames on right) in
the inhomogeneous cooling state of ad � 2 granular gas. The pictures correspond toτ � 100�1000 for a
system with particle numberN � 262144, packing fractionφ � 0�157, and restitution coefficiente � 0�8.
The velocity field is obtained by coarse-graining the systeminto boxes of size

�
17�9σ �2, and plotting the

overall velocity for each box.

the asymptotic dynamics obeys a global conservation law, which is a much weaker constraint than
a local conservation law. In related work, Wakou et al. [27] have demonstrated that the evolution
of the granular flow field can be formulated as a time-dependent Ginzburg-Landau equation for a
nonconserved order parameter.

In Fig. 2, we plot the normalized kinetic energyE �τ 	�E �0	 vs. τ for the 2-d case withe �
0�7�0�8�0�9�0�95. The data is plotted on a linear-log scale – the initial linear decay corresponds to
Haff’s cooling law for the HCS. The data deviates from Haff’slaw when correlations build up in
the system. We define the HCS�ICS crossover timeτc as the time where the temperature deviates
from the Haff prediction by more than ten percent.

In Fig. 3, we show evolution pictures of the density and velocity fields for ad �3 granular gas
with e�0�9. The correspondingτ-dependence of the normalized kinetic energy,E �τ 	�E �0	 vs. τ ,
is shown in Fig. 4.

3.3 Velocity Distributions in the HCS and ICS

Next, let us study the velocity distributions in the HCS and ICS. A scaling plot ofF �c	 vs.
c [cf. Eq. (2.9)] does not show significant deviations from theMB function, and we do not show
it here. Rather, we directly study the time-dependence of the Sonine coefficients in Eqs. (2.15)-
(2.17). As the initial velocity distribution is of the MB form, an�τ � 0	 � 0 � n 1. Let us first
discuss the behavior of the Sonine coefficienta2. In Fig. 5, we plota2�τ 	 vs. τ for d �2�e� 0�8;

6
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0

E
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(0
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e=0.8
e=0.9
e=0.95

d=2

Figure 2: Time-dependence of the granular temperature ind � 2, shown on a linear-log scale. We plot the
normalized kinetic energyE

�
τ ��E �

0� vs. collision timeτ for e� 0�7�0�8�0�9�0�95. The solid lines denote
Haff’s law from Eq. (2.7).

τ=500

τ=50 τ=50

τ=500

Figure 3: Analogous to Fig. 1 but for thed � 3 case. The pictures correspond toτ � 50�500 for a system
with N �262144,φ �0�105, ande�0�9. The density field (frames on left) is plotted by coarse-graining the
system into boxes of size

�
3�4σ �3. Boxes with more than 15 particles are marked black, and other boxes are

unmarked. For the velocity field (frames on right), we coarse-grain the system into boxes of size
�
10�9σ �3,

and plot the overall velocity for each box.
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d=3

Figure 4: Analogous to Fig. 2, but for thed �3 case.

andd � 3�e � 0�9. We show data for individual runs (dotted lines) and their average (solid line).
The frames on the left show the early-time behavior, and the frames on the right show the behavior
for extended times – uptoτ � 1000 ford � 2 andτ � 500 ford � 3. In the early HCS (τ � τc),
the velocity correlations are negligible and the predictions of kinetic theory should apply. On a
time-scale ofτ � 10 collisions,a2 saturates to a “steady-state” value. The data sets in (c) are
consistent with the kinetic-theory prediction from Eq. (2.13) – denoted by a horizontal line in the
frames on the left. On the other hand, the data set in (a) (ford � 2�e � 0�8) does not saturate
to the value predicted by Eq. (2.13). Recall that kinetic theory is only applicable when there are
no velocity correlations – however, these build up rapidly for e

�
1 and low dimensionality. The

frames on the left also show that the data sets for individualruns are comparable in the early time-
regime. However, at later times (τ � τc), the individual data sets show strong fluctuations around
a2 � 0, inspite of the large system sizes (N �106) simulated here. The ICS consists of clusters of
particles streaming in independent directions – an averaging over these clusters is expected to yield
a Gaussian distribution of velocities [16, 18, 28]. Our late-time results are consistent with the MB
resulta2 �0, but the average value ofa2 still shows large variations withτ .

In Fig. 6, we plot the Sonine coefficientsa2 �a3 �a4 �a5 vs. τ for the same parameter values
as in Fig. 5. We observe that the velocity distributions in all cases are primarily described by the
coefficienta2 – the values of higher coefficients are smaller by upto an order of magnitude. In
general, the behavior of the higher coefficients is analogous to that fora2 in Fig. 5. There is an
early-time regime where the data sets for independent runs are approximately coincident. At later
times, there is a large variation in thean-values for various runs – the corresponding averages are
shown in Fig. 6.
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0 20 40

-0.02

0

0.02
a 2

(a) d=2, e=0.8

0 400 800
-0.05

0

0.05
(b) d=2, e=0.8

0 50 100 150
τ

-0.02

0

0.02

a 2

(c) d=3, e=0.9

0 200 400
τ

-0.05

0

0.05
(d) d=3, e=0.9

Figure 5: (a)-(b) Time-dependence ofa2 for d �2�e�0�8. The dotted lines denotea2 vs. τ for individual
runs, and the solid line is the corresponding average. The frames on the left and right show the early-time
and late-time behaviors, respectively. A horizontal line is drawn in (a) ata2

� �0�022, corresponding to the
kinetic-theory prediction in Eq. (2.13) [21]. The HCS�ICS crossover occurs atτc

�48. (c)-(d) Analogous
to (a)-(b) but ford � 3�e� 0�9. The line in (c) corresponds toa2

� �0�015. The HCS�ICS crossover is
τc

�212.

4. Summary and Discussion

Let us conclude this paper with a summary and discussion of the results presented here. We
have undertaken large-scale molecular dynamics (MD) simulations of freely-evolving granular
gases. The system initially loses energy (or cools) in a homogeneous cooling state (HCS). At
later times (τ � τc, whereτc is a crossover time), the growth of fluctuations in the density and
velocity fields drives the system into an inhomogeneous cooling state (ICS). Our primary focus
in this paper is the nature of velocity distributions in the HCS and ICS. We model the velocity
distributions by a Sonine polynomial expansion [cf. Eq. (2.10)]. The magnitude of the Sonine
coefficientsan measures the departure from the Maxwell-Boltzmann (MB) distribution function.

We find that the velocity distribution in all cases is primarily described by the coefficienta2. In

9
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0 400 800
τ

-0.02

0

0.02
a n

a
2a
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4a
5

(a) d=2, e=0.8

0 200 400
τ

-0.02

0

0.02

a n

(b) d=3, e=0.9

Figure 6: Time-dependence of Sonine coefficientsa2�a3 �a4�a5 for (a)d �2�e�0�8; (b)d �3�e�0�9.

the HCS,a2 saturates to a value which is consistent with the kinetic-theory prediction in Eq. (2.13).
However, at later times, our MD results fora2 are consistent with the MB valuea2 �0. We should
stress that individual data sets fora2 vs. τ show strong fluctuations arounda2 � 0, inspite of the
large system sizes (N �106) and averaging (50 initial conditions) in our MD simulations.

Our present interests in this problem include theagingbehavior of the velocity autocorrelation
function during the cooling process. We will present results on this in an extended publication [29].
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