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On mesoscopic and microscopic scales, plastic deformationof crystalline solids is character-

ized by large intrinsic spatio-temporal fluctuations with scale-invariant characteristics: In time,

deformation proceeds through intermittent bursts with power-law size distributions; in space, de-

formation patterns and deformation-induced surface morphology are characterized by long-range

correlations, self-similarity and/or self-affine roughness. We discuss this scale-invariant behavior

in terms of robust scaling associated with a non-equilibrium critical point (’yielding transition’).

The properties of this transition are studied using two conceptually different models which, how-

ever, are shown to yield qualitatively and quantitatively similar results.
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1. Introduction

In recent years, the traditional paradigm of ’stable’ plastic deformation as a smooth and laminar
flow process has been challenged both experimentally and theoretically. Experimentally, acoustic
emission studies reveal large intermittent temporal fluctuations of the deformation rate [1]. It is
observed that the loci of plastic activity are distributed in space accordingto fractal patterns [2], and
that the surface topography induced by plastic deformation is characterized by self-affine scaling
properties [3, 4]. In summary, plastic deformation is characterized by huge intrinsic fluctuations
which exhibit scale-free patterns in space and in time. Such fluctuations become directly observable
in the deformation of micron-scale samples where they manifest themselves through steps in the
stress-strain curves and huge scatter in the flow stresses of samples with identical process history
[5, 6].

In order to give a theoretical interpretation of these fluctuation phenomena, several authors
have invoked the concept of ’self-organized criticality’ [2, 5] though itis hardly ever specified what
this should mean in the context of plasticity. Others have made the proposal that plastic yielding,
i.e. the transition of a crystal from an elastically deforming to a plastically flowingstate, may
be envisaged as a second-order-like non-equilibrium phase transition (’yielding transition’) [7, 8].
In this interpretation, scale-free fluctuation phenomena in plastic flow may be associated with the
critical behavior near the yield stress.

In the following we are going to follow up this interpretation by studying the ’yielding transi-
tion’ of two simplified models of plastic flow, using (a) a dislocation-based modelwhich envisages
plastic flow in terms of the deterministic evolution of a - rather simplified - dislocation system,
and (b) a stochastic continuum model which models heterogeneities in microstructure evolution in
terms of a stochastic evolution of the local flow stress. It is important to emphasize that our models
do not pretend to provide a fully realistic description of the details of dislocation processes in par-
ticular materials. Rather, it is our aim to use very simple models in order to work out key features of
the collective processes which occur as a crystal begins to deform plastically. If the basic concept
of yielding as a non-equilibrium phase transition with critical behavior is viable, then because of
the universality of critical behavior the predictions of such simple models should be in qualitative
agreement with the observations made in different types of materials. We will demonstrate in the
following that this is indeed the case.

2. Critical behavior at yield: A dislocation-based model

As a most simple model of plastic yielding, we consider an ensemble of straight parallel edge
dislocations moving on a single slip system. Slip occurs in thex direction, and the system is homo-
geneous inz. We assume equal numbers of positive and negative dislocations, withoutdislocation
multiplication or annihilation. To prevent loss of dislocations through the boundaries of the simu-
lated volume, we impose periodic boundary conditions for dislocation fluxes,and similarly for the
dislocation stress fields. The externally applied shear stressτext is considered space-independent
over the region of interest.
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Figure 1: Stress-strain curves in simulated stress-controlled tests on systems of size 32x32/ρ (1024 Dislo-
cations); insert: average stress-strain behavior obtained by averaging over 100 simulations.

The motion of each dislocation occurs under the action of an applied stress,plus the stresses
created by all other dislocations. The shear stress acting on thejth dislocation is, hence, given by

τ(~r j) = τext+ ∑
i 6= j

siτD(~r i −~r j) , (2.1)

whereτD(~r) is the shear stress (xy-component of the stress tensor) created at~r by a positive edge
dislocation located at the origin. Space is discretized into a grid and an automaton-type of dynamics
is implemented: A dislocation is moved by a unit amount in the direction imposed by the stress
and the sign of the dislocation (a positive dislocation moves in the +x direction under a positive
stress). A move is accepted if the sign of the stress acting on the dislocation does not change during
the move. All dislocations are moved simultaneously, and then the new stressesare computed
(simultaneous update). Alternatively, also an extremal dynamics was implemented where only the
dislocation experiencing the largest stress is moved.

Initially, dislocations are placed at random locations. We then carry out a relaxation at zero
applied stress until the dislocation system has settled into a stable configuration.Subsequently,
an external stress is applied and the evolution of the dislocation system is studied. We consider
deformation in a stress-controlled mode where the applied stress is increased from zero, and the
stress-strain curve is recorded. The external stress increase is adiabatically slow, i.e., a (small)
external stress increment is applied only after all dislocation activity had ceased.

Stress-strain characteristics are determined by simultaneously recording the stress and the to-
tal strainγ = (b/L2

s)∑i siLi , whereL2
s is the simulated area,si is the sign of theith dislocation and

Li = xi − xi,0 is its (if necessary periodically continued) glide path. Simulations are terminatedat
a prescribed maximum strain. Results are shown in Figure 1. The stress-strain curves assume a
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Figure 2: Distributions of yield stresses obtained for systems of different sizes (system size in units of
1/
√ρ).

staircase-like shape, which is reminiscent of the experimental curves of micron-sized specimens
reported by Dimiduk and co-workers [5, 6]. As in the experimental observations, there is substan-
tial scatter between different simulations, which does not represent anydifferences in the material
properties but simply reflects the outcome of different initial positions of the dislocations.

By averaging over many simulations, a smooth stress-strain characteristics can be obtained.
By plotting the average stress-strain curve in semi-logarithmic coordinates,it becomes evident that
the strain diverges logarithmically as the stress approaches a critical valueτc. This divergence
corresponds to a horizontal asymptote in the stress vs strain graph: The model asymptotically
displays ideally plastic behavior, andτc is the yield stress. (The absence of hardening is to be
expected, since no dislocation multiplication mechanism was introduced.) As a corollary, we note
that the susceptibilityχ := ∂γ/∂τext of the plastic strain diverges at the yield stress likeχ ∝ (τc−
τext)

−1.

The statistical distribution of critical stresses obtained from different simulations of statis-
tically equivalent systems depends on system size. This is illustrated in Figure2 which shows
probability distributions of yield stresses obtained from ensembles of systemsof areaL2

s = 8×8/ρ
to L2

s = 64× 64/ρ corresponding, for a typical dislocation density ofρ = 1012m−1, to sizes of
8× 8 to 64× 64 (µm2). It is seen that the width of the distributions increases with decreasing
system size, indicating an increasing scatter in the deformation behavior. Atthe same time, the
average yield stress increases for smaller systems. This size effect is ofa purely statistical nature
and does not relate to surface effects or effects of dislocation sources, as periodic boundary condi-
tions were used and a conserved number of dislocations was assumed. Both the increasing scatter
and the increase in strength with decreasing system size match the observations in deformation of
micron-sized specimens reported by Dimiduk et. al. [5, 6].

The behavior in the individual simulations is characterized by large steps in the stress-strain
curves (dislocation avalanches). The statistics of these avalanches hasbeen investigated as a
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Figure 3: Distributions of dislocation avalanche sizes measured in terms of the total slip distance covered
by dislocations during an avalanche; right: collapse of distributions obtained for different sized if size is
re-scaled byLav → Lav(1− τ/τc)

2;.

function of stress. Avalanches were characterized in terms of the total sliplength increment
Lav = ∑i si∆Li where ∆Li is the difference between the positions of theith dislocation before
and after the avalanche. This makes it possible to directly compare simulations of systems of
different area – the total strain increment∆γ = bLav/L2

s, on the other hand, is inversely pro-
portional to the simulated areaL2

s. Avalanche size distributionspτ(Lav) were determined over
narrow stress intervals centered around different stressesτ. Results are shown in Figure 3 for
∆ = (1− τext/τc) = 0.2. . .0.8.

One observes power-law distributions of dislocation avalanche sizes with acommon exponent
κ ≈ 1.4. Whereas this exponent does not depend on stress, the maximum avalanche size increases
like (1−τext/τc)

−1/σ with σ ≈ 0.5 as the stress approaches the yield stress. Accordingly, distribu-
tions pertaining to different stress levels obey the scaling form

pτ(Lav) = L−κ
av fL

(

Lav

∆1/σ

)

(2.2)

These distributions can therefore be collapsed by re-scalingLav → Lav∆1/σ (Figure 3, right). It is
also seen that power-law scaling is quite robust as scaling over more than three decades persists
even at stresses that are just one fifth of the critical stress. This observation of robust scaling
behavior quite far from a critical point has also been made in other systems exhibiting avalanche
dynamics [9].

Avalanche size distributions can be directly determined from experiments, since they corre-
spond to distributions of step sizes on the stress-strain graphs of micron-sized samples. However,
it may be difficult to determine the stress-dependent distributionspτ since good statistics requires
averaging over a huge number of samples. It is much easier to determine theintegraldistribution of
avalanche sizes along the stress-strain curve, which is related to the stress-dependent distributions
via

pint(Lav) ∝
∫

pτ(Lav)dτ ∝ L−(κ+σ)
av . (2.3)
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This distribution exhibits no cut-off but a modified avalanche exponent, which here is expected to
beκ +σ ≈ 1.9. This exponent by itself does not characterize critical behavior - rather, it combines
two different exponents characterizing (i) the scaling regime of the avalanche size distribution and
(ii) the scaling of its cut-off. A value close to 2 for this integral exponent, asit follows from our
simulations, is in reasonable agreement with preliminary results obtained from stress-strain curves
of micron-sized samples [10].

The behavior of conserved two-dimensional dislocation systems with automaton or extremal
dynamics under slow loading can be summarized as follows: (i) The strain diverges logarithmically
as the stress approaches a critical value (yield stress); (ii) the response of the system to an increasing
stress is characterized by an irregular sequence of strain bursts with power-law size distribution. (ii)
This scale-free behavior is manifest already at stresses well below the yield stress and persists up
to a maximum burst size which diverges at yield. (iii) The behavior of the system does not depend
on details of the dynamics such as the order of updates, as both simulations withparallel update
and with extremal dynamics yield practically identical results. (iv) The exponents characterizing
the critical behavior (avalanche exponentκ ≈ 1.4, divergence of the maximum burst size like(τ −
τc)

−2, divergence of the susceptibility like(τ − τc)
−1) correspond to the mean-field behavior of a

depinning elastic manifold [11]. Since the main ingredients of depinning theories are absent from
our model (there is neither an elastic manifold in the model, nor quenched disorder), one may
ask whether this agreement is purely coincidental. To answer this question, ituseful to look at an
apparently quite different approach which describes plastic deformationin terms of the evolution
of a continuous plastic strain field.

3. Continuum model of the ’yielding transition

Our first model directly traces the motion and collective dynamics of dislocations. Random-
ness, heterogeneity and stochastic behavior stem from the probabilistic choice of initial conditions
for the otherwise deterministic evolution of a discrete dislocation system. An alternative approach
consists in the adaptation of continuum plasticity models to include microstructuralheterogeneity
and randomness in a phenomenological manner.

3.1 Constitutive equations

Continuum mechanical constitutive equations connect the stress, plastic strain, and strain rate
in a material. Such models operate on scales above the ’microscopic’ scale where individual dis-
locations may be resolved. Accordingly, stress and strain are now considered as mesoscopic fields
which are space dependent on a scale which is above the dislocation spacing, but small in compar-
ison with the dimensions of the deforming body. Stresses associated with individual dislocations
are not resolved, but enter the formulation implicitly since short-range dislocation interactions de-
termine the local yield stress of the material and its evolution with strain.

We formulate our model for the same deformation geometry as in the previous section, viz,
plane strain deformation of an isotropic material by slip on a single slip system. The problem of
evaluating the stress state of the material can be split into two parts: (i) Tractions applied from
outside to the surface of the deforming body, or displacements prescribedon the surface of that
body, create an ’external’ stress (shear stressτext) which we consider space-independent over the
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region of interest. (ii) Because of heterogeneities in the material properties, plastic deformation
may in general proceed in a spatially heterogeneous manner on mesoscopicscales. Deformation
heterogeneities give rise to eigenstressesτint. (Note that the stresses associated with dislocations are
just a special case of such eigenstresses; the heterogeneity in this casecorresponds to the boundary
of a slipped area.) Provided that surface effects can be disregardedover the region of interest, the
internal shear stress can be written as a functional of the plastic strain field[12, 13]:

τint(~r) =
G

2π(1−ν)

∫

γ(~r ′)

[

1
(~r −~r ′)2 −

8(x−x′)2(y−y′)2

(~r −~r ′)6

]

d2~r ′

+
G

4(1−ν)
[〈γ〉− γ(~r)] , (3.1)

or, in Fourier space,

τint(~k) = − G
π(1−ν)

γ(~k)
k2

xk2
y

|~k|4
. (3.2)

Regarding these expressions, two points may be noted for later use: (i) The elastic kernel is not
positively definite in real space. (ii) Strain fluctuations with wavevectors parallel to thex or y
directions do not give rise to internal stresses.

To relate the stress to the evolution of the strain fieldγ(~r), we adopt a linear viscoplastic
constitutive relation which contains a gradient-dependent term (for discussion, see [12, 13]). The
evolution of the local shear strainγ is given by

µ∂tγ(~r) = τ(~r)+Dγxx−δτ(γ,~r) . (3.3)

Hereτ = τext+τint is the locally acting shear stress which derives from solving the elastic problem.
The other two terms on the right-hand side of this equation represent local stresses on the ’micro-
scopic’ scale of individual dislocations which are not resolved in detail on the mesoscopic scale
on which the strain fieldγ is defined. The first of these terms arises from short-range interactions
of small groups of dislocations gliding collectively on the same or on adjacentslip planes; in this
term, D ≈ G/ρ andρ is the dislocation density [14]. The second term represents in a summary
manner fluctuations of the internal stress field arising from the interactions of discrete dislocations;
this term has the correlation function

〈δτ〉 = 0 , 〈δτ(~r,γ)δτ(~r +~r ′,γ + γ ′)〉 = 〈δτ2〉 f (~r ′/ξ ,γ ′/γc) , (3.4)

where〈δτ2〉 ≈ G2b2ρ, the correlation lengthξ ≈ 1/
√ρ of the fluctuating stress field created by

individual dislocations is of the order of the dislocation spacing, andf is a non-dimensional corre-
lation function with f (0,0) = 1 and characteristic rangesξ andγc in its respective arguments. The
’correlation strain’γc ≈ b

√ρ is estimated as the strain accomplished when all dislocations move
by one average dislocation spacing (for details see [12, 13] and references therein).

The constitutive model specified by Eqs. (3.1) - (3.4) has the formal structure of models
studied in the theory of elastic manifold depinning [11]. Moreover, it is clearfrom the first term
in Eq. (3.1) that the elastic interactions in the present model have mean-field character. Hence, we
expect the transition of the model to the ’moving’ phase – which correspondsto sustained plastic
flow – to be in the universality class of mean-field depinning.
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Figure 4: Probability distributions of slip avalanche sizes (probability density p(∆γ) vs. strain increment
∆γ) as obtained from an ensemble of systems of size 128×128; left: distributions corresponding to different
stresses (∆ = 1−τext/τc) = 0.1. . .0.5; right: scaling collapse after re-scaling∆γ → ∆γ(1−τext/τc)

2; insert:
total distribution (only large events with∆γ > 10).

In the following, we report results obtained from simulations of the continuummodel. In these
simulations, periodic boundary conditions have been imposed as in the previous section. Again,
the stress was increased quasi-statically. In practice this means that a small stress increment was
applied whenever the strain rate fell below a small threshold value, and it was checked that the
results did not change appreciably [i.e., above the noise level inherent inthe simulations] when
either the magnitude of the stress increment or the threshold strain rate were further decreased.

3.2 Avalanche dynamics and surface morphology evolution

Stress-strain curves and slip avalanches The simulated stress-strain graphs (for examples, see
[12]) exhibit the same staircase-like characteristics as those observed in2D dislocation dynam-
ics simulations and in experiments with micron-sized specimens. Again, the strain diverges at
some critical stressτc where the stress-strain curve reaches a horizontal tangent, and the ensemble-
averaged susceptibilityχ = ∂ 〈γ〉/∂τ of the plastic strain diverges asχ ∝ (τc− τ)−1.

Close to the critical stress, the stress-strain curves have the structure ofa devil’s staircase
where the step sizes (sizes of slip avalanches, defined as strain increments following a stress incre-
ment) obey a scale-free distribution. Figure 4 shows distributions of step sizes∆γ obtained over
narrow stress intervals (width 0.01 in scaled variables) and at various distances from the critical
stress. In this and in the following figures, length, stress, and strain are measured in the respective
’natural units’ 1/

√ρ, Gb
√ρ, andb

√ρ for a dislocation system. (No strain increments are shown
that are less than 1/L2

s in non-dimensional units, since these correspond to local adjustments to
a stress increment rather than representing collective behavior.) As oneapproaches the critical
stress, the power-law scalingp(∆γ) ∝ ∆γ−κ with κ ≈ 1.4 extends over a larger and larger range of
scales, with the maximum size of the slip avalanches diverging like(τc− τext)

−2. This behavior is
almost identical with that observed in the 2D dislocation dynamics simulations reported in Section
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2 (Figure 3). Even the absolute avalanche sizes are similar if one uses the relation∆γ = bLtot/L2
s

with Ls = 128ρ−1/2 to convert between data in Figures 4 and 3. This makes it plausible that both
models, though conceptually different in their formulation, not only belong tothe same universality
class but describe the same physical reality. For completeness, the insertof Figure 4 shows also
the cumulative distribution of avalanches occurring at any stress level; aspredicted in the previous
section, this scales with an exponentκ +σ ≈ 1.9.

In addition to strain increments, the present continuum model because of histime-continuous
dynamics allows to evaluate the strain rate evolution during an avalanche. Thisallows us to deter-
mine the distribution of peak strain ratesγ̇max =: A. Again, one observes a power lawp(A) ∝ A−κA

with κA ≈ 2. This is again in line with the expectation for mean-field depinning, and the exponent
κA = 2 is in good agreement with the exponents deduced from peak amplitude distribution of AE
bursts in ice single crystals [15]. Finally, the avalanche durations are found to scale in proportion
with the avalanche amplitudes.

Slip pattern and surface roughening Numerical simulation of the continuum model defined by
Eqs. (3.3)-(3.4) yields strongly anisotropic, striated strain patterns (Figure 5) with strong correla-
tions in thex direction (the direction of the slip plane) but weak correlations in the normal direction.
This can be readily understood by looking at the elastic interactions in Fourier space: The Fourier
transform of the elastic kernel is zero along thekx andky directions, see Eq. (3.2). While fluctua-
tions along thekx direction are damped due to the second-order gradient term in Eq. (3.3),those
along they direction are not. The model is, hence, capable of representing at leastqualitatively the
slip anisotropy which in real crystals is a direct consequence of the glide motion of dislocations on
slip planes.

To compare with experimental observations of surface profiles, one may integrate the strain
profile along they direction for some fixedx = x0 to obtain a displacement profile along the corre-
sponding plane normal to the slip direction:

y(x) =
∫ x

0
[γ(x)−〈γ〉]dx . (3.5)
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Figure 5: Strain pattern obtained after simulation of a system of size256× 256 to an average strain of
20b

√ρ (slip direction from left to right); greyscale: local strain in units ofb
√ρ
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Assuming that surface-specific effects can be neglected (near a freesurface, the elastic interactions
are modified by the surface boundary conditions which are not taken into account in our model),
the morphology of such simulated ’surfaces’ may be compared with that of real ones.

Analysis in terms of self-affine roughness was performed by studying theheight-height corre-
lation function and the power spectrum of the simulated surfaces [12]. Theresults can be summa-
rized as follows (see Figure 6):

• The surfaces are self-affine up to a correlation length which is proportional to the size of the
simulated system. They can be characterized by a strain-independent roughness exponent
ζ ≈ 0.7.

• Increasing the total strain leads to growth of the profiles but does not change the roughness
exponent or the correlation length (which is anyway determined by the system size). At large
strains, the rms surface roughness on a given scale grows as the square root of strain.

• The numerical value of the roughness exponent compares well with the experimental ob-
servations, whereas the growth exponent of about 0.5 is slightly below theexponent of 0.8
observed during the single-slip deformation Stage I of KCl single crystals [4].

4. Discussion and conclusions

Our investigation shows that yielding can be modelled as a depinning transition.The con-
tinuum model discussed in Section 3 yields results that are in good agreementwith experimental
observations: The model predicts avalanche dynamics of plastic flow with anexponentκ = 1.4 for
the strain increments or, equivalently, the energy releases, whereas acoustic emission measurements
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indicate an exponent around 1.5 for the energy releases. The exponent of the cumulative distribu-
tion is predicted to be 1.9, again in good agreement with experiment. Finally, the predictions of
a self-affine surface morphology with a roughness exponentζ ≈ 0.7 agree well with experimental
data obtained during the single-slip regime of the hardening curve of KCl single crystals [4]. The
fact that one model covers observations made on quite different materials(Ice in case of the acoustic
emission measurements, Ni and NiAl in case of the microcrystal experiments, KCl for the surface
investigations) may indicate the universality that is commonly associated with critical behavior.
However, it may be noted that all these observations were made in circumstances where deforma-
tion proceeds in single slip, and the situation may be different if multiple slip systemshave to be
considered (see also the systematic differences observed in polycrystalline samples, [15]). Since
the strain rate acts as an order parameter of the ’yielding transition’, multiple slipmay qualitatively
change the critical behavior: the number of independent components of the strain rate tensor de-
fines the dimensionality of the order parameter, which together with the space dimensionality and
interaction range defines the universality class of the transition; hence, single and multiple slip may
be in different universality classes. Further investigations, both theoretical and experimental, are
required to understand how the collective phenomena change in case of deformation on multiple
slip systems.

The mean-field theory of depinning transitions can explain the observed avalanche statistics of
the continuum model. However, it can by definition not tell anything about thespatial organization
of slip. The formation of ’slip lines’ as shown in Figure 5 hinges on the second-order gradient term
in Eq. (3.3), which scales in Fourier space like~k2γ(~k) and is, hence, on large scales irrelevant in
comparison with the long range elastic term, Eq. (3.2). However, the second-order gradient term
has a decisive influence on the small-scale morphology of the deformation patterns, as it breaks
the symmetry existing in the kernel in Eq. 3.1 between thex and y directions, and suppresses
deformation heterogeneities in the direction of dislocation glide. The model envisages surface
roughening as a result of the stochastic superposition of many ’slip events’ which have, however,
long-range spatial correlations (for a more detailed discussion of this aspect, see [16].) The model
correctly predicts the roughness exponentζ = 0.7 observed in experiment, however, no theoretical
explanation is presently available for this value.

Perhaps the most striking feature of our investigation is the near-complete agreement of the
results deduced from two conceptually different models. In Section 2, wehave the motion of
discrete dislocations, described by an automaton model with deterministic evolution and stochas-
tic initial conditions. In Section 3, by contrast, we have the time-continuous evolution of stress
and strain fields, with randomness in the microstructure evolution being described in terms of a
randomly fluctuating stress field. The agreement of both models indicates thatthere may exist a
systematic coarse-graining procedure leading from the one to the other. This is another task to be
accomplished in the future.
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