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1. Introduction

Inrecent years, the traditional paradigm of 'stable’ plastic deformas@sanooth and laminar
flow process has been challenged both experimentally and theoreticafigriiventally, acoustic
emission studies reveal large intermittent temporal fluctuations of the defonmati [1]. It is
observed that the loci of plastic activity are distributed in space accoralingctal patterns [2], and
that the surface topography induced by plastic deformation is charadyizself-affine scaling
properties [3, 4]. In summary, plastic deformation is characterized bg mignsic fluctuations
which exhibit scale-free patterns in space and in time. Such fluctuationmieadirectly observable
in the deformation of micron-scale samples where they manifest themselvaghtsteps in the
stress-strain curves and huge scatter in the flow stresses of samplesantibatprocess history
[5, 6].

In order to give a theoretical interpretation of these fluctuation phengnsewaral authors
have invoked the concept of 'self-organized criticality’ [2, 5] thoughk hardly ever specified what
this should mean in the context of plasticity. Others have made the proposplasiic yielding,
i.e. the transition of a crystal from an elastically deforming to a plastically flowstage, may
be envisaged as a second-order-like non-equilibrium phase transjlieldiqg transition’) [7, 8].
In this interpretation, scale-free fluctuation phenomena in plastic flow magdmeiated with the
critical behavior near the yield stress.

In the following we are going to follow up this interpretation by studying the 'yregdransi-
tion’ of two simplified models of plastic flow, using (a) a dislocation-based matiath envisages
plastic flow in terms of the deterministic evolution of a - rather simplified - dislocatystem,
and (b) a stochastic continuum model which models heterogeneities in mictasgrevolution in
terms of a stochastic evolution of the local flow stress. It is important to engehtsit our models
do not pretend to provide a fully realistic description of the details of disloggiiocesses in par-
ticular materials. Rather, it is our aim to use very simple models in order to wokegdeatures of
the collective processes which occur as a crystal begins to deforticplhs If the basic concept
of yielding as a non-equilibrium phase transition with critical behavior is viahlen because of
the universality of critical behavior the predictions of such simple modelsldhze in qualitative
agreement with the observations made in different types of materials. Weenilbdstrate in the
following that this is indeed the case.

2. Critical behavior at yield: A dislocation-based model

As a most simple model of plastic yielding, we consider an ensemble of straitditgd edge
dislocations moving on a single slip system. Slip occurs irxttieection, and the system is homo-
geneous irz. We assume equal numbers of positive and negative dislocations, witistagation
multiplication or annihilation. To prevent loss of dislocations through the bariesl of the simu-
lated volume, we impose periodic boundary conditions for dislocation flaxessimilarly for the
dislocation stress fields. The externally applied shear stigsis considered space-independent
over the region of interest.
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Figure 1. Stress-strain curves in simulated stress-controlled @stystems of size 32x32 (1024 Dislo-
cations); insert: average stress-strain behavior olddgeveraging over 100 simulations.

The motion of each dislocation occurs under the action of an applied gitesdhe stresses
created by all other dislocations. The shear stress acting ojtithikislocation is, hence, given by

T(Tj) = Text"‘_;STD(ri —Tj), (2.1)
iZ)

where1p(T) is the shear stresgy-component of the stress tensor) createtilay a positive edge
dislocation located at the origin. Space is discretized into a grid and an autetgptof dynamics

is implemented: A dislocation is moved by a unit amount in the direction imposed byrédss s
and the sign of the dislocation (a positive dislocation moves in thdirection under a positive
stress). A move is accepted if the sign of the stress acting on the dislocaismaiochange during
the move. All dislocations are moved simultaneously, and then the new stesssesmputed

(simultaneous update). Alternatively, also an extremal dynamics was implemehéze only the

dislocation experiencing the largest stress is moved.

Initially, dislocations are placed at random locations. We then carry oefaaation at zero
applied stress until the dislocation system has settled into a stable configurdtibsequently,
an external stress is applied and the evolution of the dislocation system isdstile consider
deformation in a stress-controlled mode where the applied stress is irtfeasezero, and the
stress-strain curve is recorded. The external stress increase ligtachiy slow, i.e., a (small)
external stress increment is applied only after all dislocation activity haseck

Stress-strain characteristics are determined by simultaneously recordisigebs and the to-
tal strainy = (b/L2) 5; sLi, whereL2 is the simulated area, is the sign of theth dislocation and
Li = % — X 0 is its (if necessary periodically continued) glide path. Simulations are termiaated
a prescribed maximum strain. Results are shown in Figure 1. The stragsesirves assume a
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Figure 2: Distributions of yield stresses obtained for systems dedit sizes (system size in units of

1/P).

staircase-like shape, which is reminiscent of the experimental curves odnvézed specimens
reported by Dimiduk and co-workers [5, 6]. As in the experimental alagiems, there is substan-
tial scatter between different simulations, which does not represertifi@sences in the material
properties but simply reflects the outcome of different initial positions of islechtions.

By averaging over many simulations, a smooth stress-strain characteratidse @btained.

By plotting the average stress-strain curve in semi-logarithmic coordinatesdties evident that
the strain diverges logarithmically as the stress approaches a critical nalughis divergence
corresponds to a horizontal asymptote in the stress vs strain graph: Tded asymptotically
displays ideally plastic behavior, ard is the yield stress. (The absence of hardening is to be
expected, since no dislocation multiplication mechanism was introduced.) Asléacg we note
that the susceptibility := dy/dTex: Of the plastic strain diverges at the yield stress jk& (1c —
Text)fl-

The statistical distribution of critical stresses obtained from different sithouls of statis-
tically equivalent systems depends on system size. This is illustrated in Figubech shows
probability distributions of yield stresses obtained from ensembles of sysfeansal.2 = 8 x 8/p
to L2 = 64 x 64/p corresponding, for a typical dislocation density@f= 10m~1, to sizes of
8 x 8 to 64x 64 (um?). It is seen that the width of the distributions increases with decreasing
system size, indicating an increasing scatter in the deformation behavidhe Aame time, the
average Yyield stress increases for smaller systems. This size effeat guoély statistical nature
and does not relate to surface effects or effects of dislocation y@as@eriodic boundary condi-
tions were used and a conserved number of dislocations was assuntledh@&mcreasing scatter
and the increase in strength with decreasing system size match the obseriratieformation of
micron-sized specimens reported by Dimiduk et. al. [5, 6].

The behavior in the individual simulations is characterized by large stepg istit@ss-strain
curves (dislocation avalanches). The statistics of these avalanchdedadnvestigated as a
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Figure 3: Distributions of dislocation avalanche sizes measuredrims of the total slip distance covered
by dislocations during an avalanche; right: collapse ofritlistions obtained for different sized if size is
re-scaled by qy — Lav(1—T7/7¢)%;.

function of stress. Avalanches were characterized in terms of the totalesigth increment
Lav = YisAL; whereAL; is the difference between the positions of ffie dislocation before
and after the avalanche. This makes it possible to directly compare simulafi@ystems of
different area — the total strain incremehy = blL,,/L2, on the other hand, is inversely pro-
portional to the simulated ardZ. Avalanche size distributionp;(Lay) Were determined over
narrow stress intervals centered around different stressdResults are shown in Figure 3 for
A= (1—Tex/1c) =0.2...0.8.

One observes power-law distributions of dislocation avalanche sizes waimanon exponent
K ~ 1.4. Whereas this exponent does not depend on stress, the maximunchead&e increases
like (1— Text/Tc) "¢ with o ~ 0.5 as the stress approaches the yield stress. Accordingly, distribu-
tions pertaining to different stress levels obey the scaling form

_ L
Pr(lay) = Loy fL <A1a/\:7> (2.2)

These distributions can therefore be collapsed by re-schling> La,/AY 9 (Figure 3, right). It is
also seen that power-law scaling is quite robust as scaling over more tie@ndiécades persists
even at stresses that are just one fifth of the critical stress. Thisvaliser of robust scaling
behavior quite far from a critical point has also been made in other systdniistimg avalanche
dynamics [9].

Avalanche size distributions can be directly determined from experimentg #giry corre-
spond to distributions of step sizes on the stress-strain graphs of mizehsamples. However,
it may be difficult to determine the stress-dependent distributppreince good statistics requires
averaging over a huge number of samples. It is much easier to determintetiral distribution of
avalanche sizes along the stress-strain curve, which is related to tledstpendent distributions
via

Pint (Lav) O / Pr(Lay)dr O L;V(K+a) . (2.3)
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This distribution exhibits no cut-off but a modified avalanche exponent,iwinéce is expected to
bek + 0~ 1.9. This exponent by itself does not characterize critical behavior erattcombines
two different exponents characterizing (i) the scaling regime of the aslaéasize distribution and
(i) the scaling of its cut-off. A value close to 2 for this integral exponent &sllows from our
simulations, is in reasonable agreement with preliminary results obtained firess-strain curves
of micron-sized samples [10].

The behavior of conserved two-dimensional dislocation systems with autoroatxtremal
dynamics under slow loading can be summarized as follows: (i) The strargeis logarithmically
as the stress approaches a critical value (yield stress); (ii) the respfthge system to an increasing
stress is characterized by an irregular sequence of strain bursts wigh-faw size distribution. (ii)
This scale-free behavior is manifest already at stresses well belowetldesyress and persists up
to a maximum burst size which diverges at yield. (iii) The behavior of theesysloes not depend
on details of the dynamics such as the order of updates, as both simulatiorsavetiel update
and with extremal dynamics yield practically identical results. (iv) The egptscharacterizing
the critical behavior (avalanche exponert 1.4, divergence of the maximum burst size like—
Tc) 2, divergence of the susceptibility like — 1) 1) correspond to the mean-field behavior of a
depinning elastic manifold [11]. Since the main ingredients of depinning treeareeabsent from
our model (there is neither an elastic manifold in the model, nor quenchedl€i}oone may
ask whether this agreement is purely coincidental. To answer this questisefill to look at an
apparently quite different approach which describes plastic deformiatiemms of the evolution
of a continuous plastic strain field.

3. Continuum model of the'yielding transition

Our first model directly traces the motion and collective dynamics of dislocatiBandom-
ness, heterogeneity and stochastic behavior stem from the probabilisite df initial conditions
for the otherwise deterministic evolution of a discrete dislocation system. Amailiez approach
consists in the adaptation of continuum plasticity models to include microstrubeteriogeneity
and randomness in a phenomenological manner.

3.1 Congtitutive equations

Continuum mechanical constitutive equations connect the stress, plagiti; atrd strain rate
in a material. Such models operate on scales above the 'microscopic’ sele iwdividual dis-
locations may be resolved. Accordingly, stress and strain are now eoedids mesoscopic fields
which are space dependent on a scale which is above the dislocatigmgs et small in compar-
ison with the dimensions of the deforming body. Stresses associated witiduralidislocations
are not resolved, but enter the formulation implicitly since short-range ditbocateractions de-
termine the local yield stress of the material and its evolution with strain.

We formulate our model for the same deformation geometry as in the previctisnseiz,
plane strain deformation of an isotropic material by slip on a single slip systempiiiblem of
evaluating the stress state of the material can be split into two parts: (i) Tractaplied from
outside to the surface of the deforming body, or displacements presanibdte surface of that
body, create an 'external’ stress (shear stmeg$ which we consider space-independent over the
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region of interest. (ii) Because of heterogeneities in the material propgrtaestic deformation
may in general proceed in a spatially heterogeneous manner on mescsmpe Deformation
heterogeneities give rise to eigenstreszes(Note that the stresses associated with dislocations are
just a special case of such eigenstresses; the heterogeneity in thisgasponds to the boundary

of a slipped area.) Provided that surface effects can be disregavdethe region of interest, the
internal shear stress can be written as a functional of the plastic straifilfe|@i3]:

__GC 1 8(x—X)2(y=¥)?| s
tl) = gy [ Y0 [@_mz = |97
T EmIC A lE @)
or, in Fourier space, o2
- G o Kk
() =~ R (32)

Regarding these expressions, two points may be noted for later use:e(lastic kernel is not
positively definite in real space. (ii) Strain fluctuations with wavevectorallgh to thex ory
directions do not give rise to internal stresses.

To relate the stress to the evolution of the strain figld), we adopt a linear viscoplastic
constitutive relation which contains a gradient-dependent term (for sigmu, see [12, 13]). The
evolution of the local shear strajnis given by

pay(r) = 1(7) + D — OT(V,T) . (3.3)

Heret = Tex+ Tint IS the locally acting shear stress which derives from solving the elastitgonob
The other two terms on the right-hand side of this equation represent toesdeas on the 'micro-
scopic’ scale of individual dislocations which are not resolved in detaihe mesoscopic scale
on which the strain fiel¢ is defined. The first of these terms arises from short-range interactions
of small groups of dislocations gliding collectively on the same or on adjadignplanes; in this
term,D ~ G/p andp is the dislocation density [14]. The second term represents in a summary
manner fluctuations of the internal stress field arising from the interactfatisaete dislocations;

this term has the correlation function

(61)=0, (ST(FY)ST(F+T.y+y)) = (81 f(F/&.V /%), (3.4)

where (51%) ~ G?b?p, the correlation lengtl§ ~ 1/,/p of the fluctuating stress field created by
individual dislocations is of the order of the dislocation spacing, faireda non-dimensional corre-
lation function withf (0,0) = 1 and characteristic rangésandy; in its respective arguments. The
‘correlation strain’y; ~ b,/p is estimated as the strain accomplished when all dislocations move
by one average dislocation spacing (for details see [12, 13] aneénefes therein).

The constitutive model specified by Eqgs. (3.1) - (3.4) has the formaltateiof models
studied in the theory of elastic manifold depinning [11]. Moreover, it is clean the first term
in Eq. (3.1) that the elastic interactions in the present model have meankaatgcter. Hence, we
expect the transition of the model to the 'moving’ phase — which corresporglsstained plastic
flow — to be in the universality class of mean-field depinning.
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Figure 4: Probability distributions of slip avalanche sizes (prabgbdensity p(Ay) vs. strain increment
Ay) as obtained from an ensemble of systems of sizex1128; left: distributions corresponding to different
stresses{ = 1— Tex/Tc) = 0.1...0.5; right: scaling collapse after re-scalidg — Ay(1— rext/rc)z; insert:
total distribution (only large events withy > 10).

In the following, we report results obtained from simulations of the continmadel. In these
simulations, periodic boundary conditions have been imposed as in theyseasdotion. Again,
the stress was increased quasi-statically. In practice this means that atsesalirscrement was
applied whenever the strain rate fell below a small threshold value, andsitlhecked that the
results did not change appreciably [i.e., above the noise level inherdme isimulations] when
either the magnitude of the stress increment or the threshold strain rateuntber flecreased.

3.2 Avalanche dynamics and surface morphology evolution

Stress-strain curves and dip avalanches The simulated stress-strain graphs (for examples, see
[12]) exhibit the same staircase-like characteristics as those obsenatdl dislocation dynam-

ics simulations and in experiments with micron-sized specimens. Again, the sivanget at
some critical stresg, where the stress-strain curve reaches a horizontal tangent, anddmide-
averaged susceptibility = d(y) /T of the plastic strain diverges gs0 (1. — 1) 2.

Close to the critical stress, the stress-strain curves have the structardevil’s staircase
where the step sizes (sizes of slip avalanches, defined as strain intséaflewing a stress incre-
ment) obey a scale-free distribution. Figure 4 shows distributions of step/syzobtained over
narrow stress intervals (width 0.01 in scaled variables) and at variotadés from the critical
stress. In this and in the following figures, length, stress, and strain aeumeel in the respective
‘natural units’ /,/p, Gb,/p, andb,/p for a dislocation system. (No strain increments are shown
that are less than/L2 in non-dimensional units, since these correspond to local adjustments tc
a stress increment rather than representing collective behavior.) Aapmmeaches the critical
stress, the power-law scalimgAy) O Ay % with k =~ 1.4 extends over a larger and larger range of
scales, with the maximum size of the slip avalanches divergind tike Text)*z. This behavior is
almost identical with that observed in the 2D dislocation dynamics simulationgeedn Section
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2 (Figure 3). Even the absolute avalanche sizes are similar if one usedatienAy = blLiot/L2
with Ls = 1280~ 1/2 to convert between data in Figures 4 and 3. This makes it plausible that bott
models, though conceptually different in their formulation, not only beloriggsame universality
class but describe the same physical reality. For completeness, theahBegtire 4 shows also
the cumulative distribution of avalanches occurring at any stress levetedicted in the previous
section, this scales with an exponent g ~ 1.9.

In addition to strain increments, the present continuum model becausetwhéisontinuous
dynamics allows to evaluate the strain rate evolution during an avalancheallbis us to deter-
mine the distribution of peak strain ratgs.x =: A. Again, one observes a power Ig@A) 0 A~ *»
with ka = 2. This is again in line with the expectation for mean-field depinning, and thenexy
Ka = 2 is in good agreement with the exponents deduced from peak amplitudeudistribf AE
bursts in ice single crystals [15]. Finally, the avalanche durations arelftuscale in proportion
with the avalanche amplitudes.

Slip pattern and surface roughening Numerical simulation of the continuum model defined by
Egs. (3.3)-(3.4) yields strongly anisotropic, striated strain patterns giguwith strong correla-
tions in thex direction (the direction of the slip plane) but weak correlations in the noriredtbn.
This can be readily understood by looking at the elastic interactions in Fepaee: The Fourier
transform of the elastic kernel is zero along Kyendk, directions, see Eq. (3.2). While fluctua-
tions along thek direction are damped due to the second-order gradient term in Eq. tf838%
along they direction are not. The model is, hence, capable of representing atjlesgatively the
slip anisotropy which in real crystals is a direct consequence of the glidemutatislocations on
slip planes.

To compare with experimental observations of surface profiles, one negyrate the strain
profile along they direction for some fixea = xg to obtain a displacement profile along the corre-
sponding plane normal to the slip direction:

% = [0~ (o @9

100 S — Il 66.50 - 70.00
= e — Il 63.00 - 66.50
.5 — I 59.50 - 63.00
80 = - Il 56.00 - 59.50
Il 52.50 -- 56.00

[ —_— I 49.00 - 52.50

. L m— Il 45.50 - 49.00
3 T m— = I 42.00 -~ 45.50
e —Se— - I 38.50 - 42.00

> —_— e [ 35.00 - 38.50
P —— o— - [ 31.50 - 35.00
il 28.00 -- 31.50
e T SRR 24.50 -- 28.00
B — 2100 - 2450
0] — —_=—= = 17.50 - 21.00
— s - ST ey 14.00 - 17.50
= e 10.50 - 14.00
= — 7.000 -- 10.50
0 20 40 60 80 100 3.500 -- 7.000
X 0 - 3.500

Figure 5: Strain pattern obtained after simulation of a system of 8&&x 256 to an average strain of
20b,/p (slip direction from left to right); greyscale: local stngin units ofb,/p
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Assuming that surface-specific effects can be neglected (nearsuifaee, the elastic interactions
are modified by the surface boundary conditions which are not takendéotuat in our model),
the morphology of such simulated 'surfaces’ may be compared with thahbbnes.

Analysis in terms of self-affine roughness was performed by studyinketgt-height corre-
lation function and the power spectrum of the simulated surfaces [12]réBudts can be summa-
rized as follows (see Figure 6):

e The surfaces are self-affine up to a correlation length which is propattio the size of the
simulated system. They can be characterized by a strain-independghhess exponent
{ ~0.7.

e Increasing the total strain leads to growth of the profiles but does nagehae roughness
exponent or the correlation length (which is anyway determined by thasgite). At large
strains, the rms surface roughness on a given scale grows as the saptaf strain.

e The numerical value of the roughness exponent compares well with frexierental ob-
servations, whereas the growth exponent of about 0.5 is slightly beloexfitement of 0.8
observed during the single-slip deformation Stage | of KCI single crystils [

4. Discussion and conclusions

Our investigation shows that yielding can be modelled as a depinning transittos.con-
tinuum model discussed in Section 3 yields results that are in good agreeitiesikperimental
observations: The model predicts avalanche dynamics of plastic flow wekmomenk = 1.4 for
the strain increments or, equivalently, the energy releases, whemasdia@mission measurements
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indicate an exponent around 1.5 for the energy releases. The ewpdriee cumulative distribu-
tion is predicted to be 1.9, again in good agreement with experiment. Finallyredéeons of
a self-affine surface morphology with a roughness expogenD.7 agree well with experimental
data obtained during the single-slip regime of the hardening curve of K@lesanystals [4]. The
fact that one model covers observations made on quite different mafés@is case of the acoustic
emission measurements, Ni and NiAl in case of the microcrystal experime@itfokthe surface
investigations) may indicate the universality that is commonly associated with kchebavior.
However, it may be noted that all these observations were made in circuastahere deforma-
tion proceeds in single slip, and the situation may be different if multiple slip systeresto be
considered (see also the systematic differences observed in poljlergssamples, [15]). Since
the strain rate acts as an order parameter of the 'yielding transition’, multipleaijpjualitatively
change the critical behavior: the number of independent components sfrtin rate tensor de-
fines the dimensionality of the order parameter, which together with the spaeasionality and
interaction range defines the universality class of the transition; hangée and multiple slip may
be in different universality classes. Further investigations, both tlieakand experimental, are
required to understand how the collective phenomena change in caséoahdtion on multiple
slip systems.

The mean-field theory of depinning transitions can explain the obseradahahe statistics of
the continuum model. However, it can by definition not tell anything abousplagial organization
of slip. The formation of 'slip lines’ as shown in Figure 5 hinges on the séander gradient term
in Eq. (3.3), which scales in Fourier space Ii/(k) and is, hence, on large scales irrelevant in
comparison with the long range elastic term, Eq. (3.2). However, the sexded gradient term
has a decisive influence on the small-scale morphology of the deformatitemnsa as it breaks
the symmetry existing in the kernel in Eq..13between the andy directions, and suppresses
deformation heterogeneities in the direction of dislocation glide. The modé&dages surface
roughening as a result of the stochastic superposition of many 'slip évdnith have, however,
long-range spatial correlations (for a more detailed discussion of thizgee [16].) The model
correctly predicts the roughness exponéat 0.7 observed in experiment, however, no theoretical
explanation is presently available for this value.

Perhaps the most striking feature of our investigation is the near-completenagnt of the
results deduced from two conceptually different models. In Section 2have the motion of
discrete dislocations, described by an automaton model with deterministic eachmtibstochas-
tic initial conditions. In Section 3, by contrast, we have the time-continuoulsitemo of stress
and strain fields, with randomness in the microstructure evolution beingilgesgén terms of a
randomly fluctuating stress field. The agreement of both models indicatethéhnatmay exist a
systematic coarse-graining procedure leading from the one to the otfisrisTanother task to be
accomplished in the future.
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