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Here we present a summary of the results of a detailed study of two dimensional model for square-
to-rectangle martensitic transformation that explains several unusual features of the martensitic
transformation. This model includes inertial effects, dissipation, long-range interaction between
the transformed domains and an inhomogeneous stress field to describe the effect of lattice defects
which serves as nucleation centers. Studies of single-site and multi-site nucleation cases for single
guench situation and thermal cycling show that most results are insensitive to initial distribution of
the defects. Thermal cycling using continuous cooling and heating simulations show the existence
of hysteresis in the transformation. More importantly, the rate of energy dissipated occurs in the
forms of bursts with power law statistics for their amplitudes and durations which explains the
results of acoustic emission signals observed in experiments. For the case of thermal cycling
in a restricted domain of temperatures, the dissipated bursts of energy are repetitive, a feature
observed in experiments. The associated morphology shows a complete reversal of the martensite
domains thus throwing light on the mechanism underlying the shape memory effect. The model
also exhibits tweed like patterns.
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1. INTRODUCTION

Martensitic transformation is a first order transition yet it exhibits several features of a second
order transition. The pretransitional effect observed as the system approaches the martensitic trans-
formation temperature is an example of critical fluctuation [1, 2, 3, 4]. The associated enhanced
levels of fluctuation observed in several measurable quantities ( such as the anomalous scattering
and tweed structure) has been recorded in a number of different systems [1, 3, 4]. Another ex-
ample related to acoustic emission (AE) that usually accompanies martensite transformation is the
power law distribution of the amplitudes and intervals reported in experiments on Cu-Al-Zn single
crystals. Vives et. al. [5, 6], reported that the distributions of the amplitudes of the AE signals
and their durations obey power law statistics (which implies scale free nature of the underlying
process) when the samples were subjected to slow thermal cycling both during cooling and heating
runs. However, in this case, as the AE signals are accumulated during thermal cycling, there is no
tuning as in second order transition. Thus, it is actually reminiscent of self-organized criticality
introduced by Bak et. al., [7]. Another unusual and interesting property of the AE signals reported
is the high degree of reproducibility and statistical correlation in time when the system is subjected
to repeated thermal cycling over a restricted range of temperatures [8]. The near repetitive nature
of AE signals during successive cycles is shown to be correlated with the growth and shrinkage
of martensite domains. Thus, exploring this correlated behavior should help us to understand the
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shape memory effect as well. Moreover, at a conceptual level, the nature of correlation of the
repetitive AE signals is significantly different from the power law nature of the statistics observed
during full thermal cycling mentioned above. Thus, it would be desirable to capture the seemingly
conflicting properties using a single model.

The martensitic transformations are a class of diffusion-less first order solid-solid structural
phase transformations wherein the nearest neighbors in the parent phase remain so in the product
phase also. On lowering the temperature, the lattice gets distorted due to spontaneous displacement
of the atoms during the transformation from the higher symmetry austenite phase to the lower
symmetry martensite phase. This creates long-range strain fields which in turn strongly depend on
the relative positions and orientations of the martensitic plates that eventually leaves the system in
a metastable state. Thus, the transformation path depends on continuously evolving configurations.
Given a fixed quench, and hence a fixed amount of drive, the amount of transformed phase is
fixed and further under-cooling would be required to increase the product phase. On cooling, the
transformation starts at a temperature Mg, called the martensite start temperature and is completed
at a temperature M¢ (martensite finish temperature). In the reverse heating cycle, the transformation
is initiated at a temperature A (austenite start temperature ) and ends at a temperature A; (austenite
finish temperature), which in general can be much higher than the martensitic start temperature M.
The related shape memory effect usually accompanies the transformation. The above features also
imply that thermal fluctuations have little role in the transformation kinetics. Such martensites are
called athermal.

It is well known that in athermal martensites, nucleation occurs at defect sites like dislocations
or grain boundaries [9, 10, 11]. Another interesting feature of these transformations is the auto-
catalytic cooperative nature of nucleation [9]. It is observed that a martensite domain that has
nucleated from a specific site in the crystal, triggers the nucleation of other domains in the vicinity.

Recently, a simple two dimensional phenomenological model has been shown to capture the
power law statistics under thermal cycling [12]. This model attempts to incorporate the essential
features of systems evolving to SOC state, namely, slow driving, threshold dynamics, appropriate
relaxational mode without any recourse to tuning any relevant parameter. Surprisingly, this model
also captures the correlated nature of the AE signals when the system is cycled in a restricted range
of temperatures [13, 14], with the associated growth and decay of the martensite domains. The
paper summarizes the results of an extensive numerical simulations on this two dimensional model
describing square-to-rectangle martensitic transformation [12, 13, 14]. We discuss the results of a
single-defect quench, multi-defect quench, thermal cycling over broad range of temperatures, the
power law statistics arising in both in single and multi-defect cases, the correlated nature of AE
signals and the associated shape memory effect, and finally the tweed like structure.

2. THE MODEL

The basic idea of the model is to include all the important features of athermal martensites
such as inertial effects, long- range interaction and dissipation. The inertial effect is included by
accounting for finite propagation time [15, 16]. It has been demonstrated that inertial effects pro-
hibit the growth of martensite as a single variant in the presence of dissipation (in one dimension).
Instead, the martensite grows as an alternating arrangement of the two variants. The reason for
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including dissipation stems from the recognition that the parent-product interface moves at near
velocity of sound as suggested by the emission of AE signals. Associated with this movement,
there is a dissipation which tends to relax the system towards local equilibrium. We include this
through a Rayleigh dissipation functional [17]. We also include heterogeneous nucleation at defect
sites by including an appropriate strain energy [18].

We have kept the model simple in an attempt to capture these seemingly different types of
features by choosing the deviatoric strain & = [(duy)/(9x) — (duy)/(dy)]//2 as the order param-
eter where uy and uy are the two components of the displacement field. Further we consider a 2d
square-to-rectangle transition [19, 20]. The effect of the bulk and shear strains are included only in
a phenomenological way through a long-range interaction.

The free-energy functional of our system with the order-parameter ¢ is written as

F{eM} =F{e(®)} +Fr{e@}, (2.1)

where F_ is a local free-energy functional and F g is a nonlocal long-range term that describes
transformation induced strain-strain interaction. In a scaled form, the local free-energy Fy is

= [ ar| (o) + 5 (Cem)? - ot 22)

where D and o are in a scaled form. Here, f|(e(F)) = %s(?‘)z —e(M* + %s(?)e with, 7= (T —
Tc)/(To — Tc) being the scaled temperature. Ty is the first-order transition temperature at which the
free energy for the product and parent phases are equal, and T is the temperature below which there
are only two degenerate global minima € = £&y. The stress field o(T) in Egn. 2.2 modifies the
free-energy f| in such a way that the austenitic phase is locally unstable leading to the nucleation
of the product phase.

Effective long-range interaction between the transformed domains results due to the coupling
with the other components of the strain order parameter [21, 22]. However, as our approach is
phenomenological, we use a simple form that respects the invariance of f; under € — —¢&. Fol-
lowing Wang and Khachaturyan [23], we use a simple form that satisfies this requirement when
represented in the Fourier space, as

Furle) = 5 [ 8R8 ({2 ONIE O @3)

where {€2(F)} is the Fourier transform of €2() and {€2(F)},. is its complex conjugate. The
direction dependent kernel is taken to have the form B(E) =-p 6(k—/\)R§R§, where ky and Ry are
the unit vectors in x and y directions that contains information about the habit plane directions.
Thus, the favorable directions of growth of the product are along [11] and [1 ﬁ (The step function
6(k — A) has been introduced to impose a cutoff on the range of the long-range interaction.) The
constant 3 is the strength of the interaction. This kernel incorporates the effect of the interface in a
simple way. We stress that this is only a simple choice and is not unique. Other kernels with similar
orientation dependence will give similar results[24]. The real space picture of B(E/k) is similar to

the long-range interaction of Kartha et. al. [4].
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Thus, we start with the Lagrangian L =T — F, where F is the total free-energy and T is the
kinetic energy associated with the system. The kinetic energy is given by

(SR e

Here p is the mass density. The dissipation associated with the rapid motion of the interface is
represented by the Rayleigh dissipative functional [17], written entirely in terms of £(F) is given by
R=12%y[ d?‘(%s(?‘,t))z. To model the AE signals, we recall that the mechanism of generation of
the AE signals is generally attributed to the sudden release of the stored strain energy. In plasticity,
the production of AE signals is attributed to the abrupt motion of the dislocations. The associated
energy of AE signals, Eqe(r) is taken to be proportional to £2(r), where £ is the local plastic strain
rate [25]. This clearly has the same form as the Rayleigh dissipation functional [17]. Thus, while
comparing results of the statistics of AE bursts, we need to simply compute R(t).

We derive the equations of motion for € using the equations of motion for the displacement

fields given by
d /oL oL oR .
a<5—m>—5—m_—5—m, i=XV. (2.5)
The equation of motion for the deviatoric strain £(F,t) is given by

9 2[0F(T,1) 2 4 TR 27 ikr
Fs(?‘,t) =0 [m—a(?)—m s(f’,t)+yas(f’,t)+2£(?,t)/dkB(k/k){e (k,t) }ke ],

(2.6)
Here, both 3 and y are to be taken as rescaled parameters. The structure of Egn. 2.6 is similar to
that derived in [15] for 1-d except for the long-range term.

3. NUMERICAL SIMULATIONS

Simulation were carried out by discretizing Eqn.2.6 on a N x N grid using the Euler’s scheme
with periodic boundary conditions. The mesh size of the grid is Ax = 1 and the smallest time step
At = 0.002. Most results reported here correspond to N = 128, 256. A pseudo-spectral technique is
employed to compute the long-range term [26]. In all simulations reported in the paper, the cutoff
A in the long-range expression defined in Eq. 2.3 is chosen to be 0.2. The inhomogeneous stress
field o(T) is appropriately chosen to describe the defect configuration (see below). We consider
two situations corresponding to the nucleation at a single- defect site and at several defect sites.

3.1 Nucleation at a Single-Defect Site

Consider the nucleation and growth of domains under a single quench, starting from the
austenite phase to the martensite phase. In general, the stress field due to several defects located
—[F-j?

5
stress field at sites ; which are randomly chosen defect sites, jmax is the total number of defect
sites, and ¢ is the width of the field.

We first consider a single isotropic defect with its core located at the center of the system. For
a single-defect case, I'j = Tp. We choose { =1 and gp = 0.3. With this value of gy, the system

at r'j can be described by o(r) = zj”“xao(ﬁ)exp , Where ay(Tj) is the magnitude of the
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t=16.25

Figure 1: Morphological evolution for nucleation at a single- defect with 8 =50, y=4and T = —2.0. Grey
cells correspond to the austenite phase and the black and the white to the two martensite variants.
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Figure 2: (a) Plot of the transformed area fraction @a with respect to time for N=128, f =50, y = 4,and
T = —2.0. o correspond to single-site case and e corresponds to the multi-site defect case. (b) Final mor-
phological snapshot for multi-defect case with defect density 0.1% for 8 =50, y=4and 1 = —2.0

becomes locally unstable at the core ry. The parameters chosen for the simulations are 8 = 50
and y=4. Att =0, we start with £(7,0) distributed in the interval [—0.005,0.005] representing
the austenite phase and simultaneously ’turn on’ the stress field o(T) as we quench the system to
T=-20.

Figure 1 shows the nucleation and growth of the martensite domains from the defect core
at various instants of time. (Grey regions represent the austenite phase {& = 0}, black and white
regions represent the two variants of martensite, {€ = ££&eq}. ) Inashort time after quench (t ~ 7.5),
a small nucleus emerges with € = g¢. In addition, we also see the emergence of domains of the
other variant (¢ = — &) adjacent to the nucleus in the [11] and [11] directions. The twinned array
propagate along [11] and [11_] directions. (see Fig. 1, t =16.25). A new set of nuclei ( & = &g)
are seen to be created at a finite distance from the propagating arrays. In course of time, several
additional nuclei are created at finite distances from the original propagating fronts (see snap shot at
t = 18.5). This can be attributed to the accumulation of long-range stress fields at these sites. These
new nuclei give birth to secondary fronts that also propagate along [11] and [1 ﬁ These observations
in our simulation are in accordance with the collective nucleation mechanism discussed in [23] and
the experiments by Ferraglio and Mukherjee [9]. The morphological evolution eventually stops
beyond t = 50.

Figure 2a, shows the corresponding evolution of the area fraction ¢ of the martensitic phase

(o). The transformation is seen to start around t ~ 15. The fraction increases sharply till about
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t ~ 20, beyond which it saturates to a value close to 0.31. The spurt in the growth between t = 15
and 20 roughly coincides with the creation of the first set of additional nuclei.

3.2 Nucleation at Several Defect Sites

For the more realistic case of nucleation occurring at several defect sites, we choose jax = 16
(nearly 0.1% of the total number of sites and N =128) and consider op(rj) to be uniformly dis-
tributed in the interval [—0.3,0.3]. All other parameters are same as that for the single-defect case.
Initially, £(1,0) is taken to be uniformly distributed in the interval [—0.005,0.005]. Att =0, we
turn on the stress-field o(r). As in the case of single- site nucleation, around t = 15, nucleation
of the product phase is seen to occur at several sites. By t = 17.5, these nuclei grow into twinned
lenticular shape. Several additional nuclei emerge at finite distance from these original domains.
These new sites at which the product phase nucleates most often coincides with the pre-existing
defect sites. However, occasionally, nucleation does occur at sites where there were no defects due
to stress accumulation arising from the long-range term, as in the case of single-site nucleation.
There is a rapid growth of the product phase along [11] and [1ﬂ directions forming a criss-cross
pattern of the martensite domains saturating by t = 50. A comparison of this final configuration,
Fig. 2b with the corresponding single-site nucleation, Fig. 1d shows that the final morphologies
are very similar implying that the morphology evolution is independent of the original defect con-
figuration. Figure 2a also shows the time evolution of the area fraction ¢ for multi-defect case (o)
which is very similar to the single-defect case.

3.3 Thermal Cycling and Hysteresis

We have performed ‘continuous cooling’ and “heating” computer simulations where we change
T at a constant rate: the interval T = 40 to -80 is cooled in 1000 time steps. Using the same initial
conditions as the single quench situation, we have monitored both the morphology and the area
fraction of the transformed phase for single-defect nucleation as well as multi-defect nucleation
case with several system sizes ( N=128,256 ). The initial condition for the reverse transformation
is the final configuration obtained during the cooling run.

Figure 3 shows the variation of the area fraction ¢a with 1 for the heating and the cooling runs
for the single defect (o) and multi defect cases (o) for N = 128. As can be seen, the difference
between the hysteresis cycles corresponding to these two cases is negligible.

We have followed the morphological evolution of the martensitic domains both for the single
and multi-defect cases. Here, we discuss multi-defect case only. Figure 4 shows the snap shots of
the pattern at specifically chosen values of T as the system is taken through a cycle. The snapshot
at T = —3.5 shows the nucleation of martensitic domains at multiple locations. As the system
is further ‘under-cooled,” not only does these twins propagate in the [11] and [11] directions, the
thickness of the martensite domains also increases. Further under-cooling shows that the twin
width further increases. A late stage snap shot at T = —45.5 corresponding to ¢ ~ 90% is shown.
For the heating cycle, the final configuration of the cooling run is taken as the initial configuration
and the austenite phase appears around T ~ —22. As T is further increased, the martensite phase
can be seen to be gradually disappear in the snapshots corresponding to T = —5 and 13. The overall
final stage morphology of the heating run is very different from the initial stages of the cooling run.
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Figure 3: Area fraction of the transformed phase ¢ as a function of 1 for both single defect (o) and multi-
defect (o) nucleation cases. The parameter values are 3 = 50,y =4 and N = 128. The defect density in
multi-defect is 0.1% of sites.

Figure4: Morphological evolution during a cooling and heating cycle. The parameter values are 3 =50,y =
4 and N = 128 with a defect density 0.1% of the sites.

Thus, in our model, there is no long term memory effects, though there is short term memory as
will be shown later.

3.4 Power Law Statistics During Thermal Cycling

From Fig. 3, it appears that changes in @a are smooth, but in reality, on a finer scale, the
changes in @ are jerky. In fact, in experiments, thermal cycling is accompanied by the emission of
acoustic energy in the form of bursts, a feature that reflects the jerky nature of the transformation.
In the model, as mentioned earlier, the energy of acoustic signals is captured by the rate of energy
dissipated given by R(t) = —dE /dt. We have calculated R(t) during the heating and cooling runs.

Since, in experiments one finds that the AE signals show a power law statistics, we have
investigated the distributions D(Ra) of the amplitudes Ra of the AE signals and D(At) of their
durations At. D(Ra) of Ra exhibits a power law D(Ra) ~ A~ with an exponent ar as shown in
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Figure5: Log-log plot of D(Ra) as a function of Ra. The parameter values are 3 = 50,y =4 and N = 256.
The defect density in multi-defect is 1% of sites. [o corresponds to single-defect case and e corresponds to
multi-defect case.]

Fig. 5. Both single and multi-site cases exhibit the same exponent value ar ~ 2.5 over three orders
in D(Ra). As in experiments, the distribution D(At) of the durations At of energy bursts also show
a power law D(At) ~ At~ ™ with an exponent value Tr = 3.2, for both the single and multi defect
cases, although, the scaling regime is not as impressive as for Ra. We have also calculated the
conditional average < Ra > for a given value of At [27]. This is expected to obey a power law
given by < Ra >c~ At*R, The value we get is about x ~ 1.36 for both these single and multi defect
nucleation cases. Using these values, we find that the scaling relation a = x(B8 — 1) + 1 is satisfied
quite well. We have also carried out a similar analysis on R(t) for the heating run.

The origin of the power law statistics in the model can be traced to the fact that we have
included important ingredients of SOC dynamics, namely, the threshold dynamics, dissipation,
the generation of large number of metastable states during the transformation, and a relaxation
mechanism for the stored energy. The relaxation of the stored energy occurs at very fast time scales
comparable to time scale of the speed of sound. Compared to this the driving force generated
by thermal cycling increases with temperature slowly which is one of the characteristic features
of SOC dynamics. Another important feature of the model, as also that of SOC dynamics, is
the creation of large number metastable states during cooling or heating runs. This is a direct
consequence of an interplay between the local free energy ( free energy barrier) and the long-
range interaction between the transformed domains. The free energy surface at any given time is a
complex terrain of local barriers ( metastable states). It must be noted that these local thresholds are
self generated ( transformation induced). At a given time, these local thresholds must be overcome
by the increase in the driving force arising from the slow cooling (or heating) and once a local
barrier is overcome, part of the driving force goes in creating a new twin and the rest is dissipated
in the form of burst of energy due to the advancing one or more interfaces. The fact that long-range
interaction is at the root of creating the local thresholds is further supported by the fact that we find
a power law distribution even in the single- site nucleation case. (See e in Fig. 5.) The presence of
defect sites only serves to trigger the initial nucleation process.
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Figure 6: (a).Area fraction ¢ during thermal cycling in the interval T = —8 to 4 for cycles 1 (0),2 (A), 3
(e),4 (>). (b)Hysteresis for the full cycle from the austenite to the martensite phase and back. (e ) is the
starting point of the small thermal cycles.

4. Shape Memory Effect

4.1 Correlated behavior of AE signals

In contrast to the scale free nature of correlation discussed above, a highly correlated behavior
of AE signals is observed when the system is subjected to thermal cycling in a small temperature
interval. To verify if this result can be captured by our model, consider the system being cooled
from the austenite phase to a point in the martensite phase where a desired amount of martensite
phase has developed. Starting from an appropriate point ( shown as e in Fig. 6b, here chosen to
be @ ~ 0.58 in the full thermal cycle), we subject the system to repeated thermal cycling in a small
temperature range Tmin = —8 and Tmax = 4. As in the case of full thermal cycling, for the small
heating cycle also, the final configuration attained at Tmax = 4, is taken as the initial configuration
for the cooling run. For the present calculation, we have used 8 = 35 and y = 4. Other parameter
values are A =0.2,¢ =1 and N = 128. During the first few cycles, the loops in the area fraction ¢
verses T drift slightly, but stabilize after a first few cycles, here, after the sixth cycle. The first few
cycles play the role of the training period known in experiments. After these first few cycles the
system eventually circulates in the same set of configurations as we will show.

During the training cycles, the energy dissipated R(t) evolves continuously, stabilizing only
after the training period. A plot of R(t) for several forward and reverse cycles ( seventh to tenth )
after stabilization is shown in Fig. 7. Itis clear that the energy bursts (which mimic the AE signals),
as in experiments [28, 29], exhibit a near repetitive pattern in time (temperature) during successive
heating and cooling parts of the cycles.

4.2 Connection to shape memory effect

Simultaneous monitoring of the morphology shows that there is a correspondence between
R(t) and the changes in the spatial configuration of the martensite domains. The morphology
changes drastically during the first few cycles. The domain configurations at the beginning of first
few cycles are shown in Fig. 8. Figure 8a is the starting morphology for the first cycle that has been
obtained by slowly cooling from the austenite phase. Figure 8d is that obtained at the end of sixth

10
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Figure 8: Morphology of the initial configurations at T = —8.0 for the first, second, fourth and the sixth
thermal cycles.

cycle. As can be seen, most of the curved twin interfaces in the initial configuration ( Fig. 8a) are
rendered straight and several small twins coalesce to form a single variant of the same type. Further
some regions of the austenite phase separating the martensite domains are washed out. Subsequent
cycles are less effective. After the sixth cycles very little changes could be detected.

One should anticipate the repetitive nature of R(t) are related to the changes in the microstruc-
ture within one thermal cycle. The snapshots of the morphology during one such stabilized cooling
and heating cycle, the seventh one, (starting from the initial configuration shown in Fig. 8d ) at se-
lected intervals is displayed in Fig. 9. It is clear that during heating, the martensite domains shrink,
opening up the austenite phase and some martensite domains even disappear. However, during
cooling these domains reappear and the eventual morphology at the end of the cycle is practically
recovered. As can be seen, the final configuration obtained during the seventh cycle, Fig. 9d can
be seen to be practically the same as Fig. 8d which is the initial configuration for the seventh cycle.
These observations are consistent with that observed in experiments [8].

To understand the repetitive nature of the energy bursts and the reversal of the morphology
under thermal cycling, we need to understand the role played by the training cycles. Indeed, the
repetitive pattern of the energy bursts during successive cycles (after the training period) is an
indication that the system traverses through the same set of metastable states. From Fig. 8a, we
note that the initial configuration for the first cycle has a large number of small domains compared
to the configuration obtained after the sixth cycle shown in Fig. 8 d. In addition, the twin interfaces
of Fig. 8a are rough. Such configurations are generally expected to have higher energy compared
to straighter ones. During the first few cycles, the free energy landscape is so modified that it

11
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Figure 9: Sequential morphological snapshots for T = 1.6(a),4.0(b), —2.0(c),—8.0(d) during the seventh
cycle. The initial configuration for the cycle is that shown in Fig. 8(d).
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Figure 10: Development of Tweed like pattern

smoothen’s out the energy barriers corresponding to large number of twin interfaces in Fig. (8a)
with very little change in the area fraction. As in the case of power law distribution, a crucial
role in smoothening process is actually played by the long-range interaction term, as the growth
(shrinkage) of a martensite domain is influenced by the configuration of rest of the domains. To
verify this, we have computed the free energy F g arising from the long-range interaction between
the domains and find that it actually becomes more negative with successive cycles saturating after
first few cycles. This additional contribution leads to a reduction in the local free energy, F., as
well. The net effect is to create a deeper set of metastable states for the system to circulate for
the stabilized cycles. Within one such stabilized cycles, say seventh, the starting configuration
(Fig. 8d) has the lowest free energy reaching a maximum at the end of a heating cycle, ie., at
T =4.0, Fig. 9b. Thereafter it decreases during cooling. The increasing or decreasing width of
the martensite domains as we decrease or increase the temperature is surprisingly similar to that
observed in experiments. ( See Fig. 12 of Ref.[8].)

5. Pretransitional effects

Now we consider the possibility of recovering pretransitional effects in our model. As men-
tioned in the introduction, the mechanism attributed by Kartha et. al. [4], is the dependence of
the elastic constant on local disorder in composition. It is clear that once the basic mechanism
is included, the model should lead to results similar to that in Kartha et. al. We shall adopt the
same idea and assume that the transition temperature depends on local compositional fluctuations

12
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through To(T) = To( ¢) — Adc(T), where A is the relative strength of coupling to compositional fluc-
tuations dc, assumed here to be randomly distributed. In scaled variable that we use, this leads to T
being replaced by T = 7( ¢) +adc, where c is the average concentration and a is a scaled variable.

In our simulations, we assume that the initial concentration fluctuations, considered as frozen,
are drawn from a normalized Gaussian. Here we just need to solve the equations of motion numer-
ically for various values of T and a. (We have varied a from 0.0 to 1.2.) The range of values of 3
and y wherein we find the tweed structure is in the region of relatively low values. (3 < 20 and
y < 0.7.) Here, we report results fora= 0.9, 3 =10 and y = 0.1. A typical set of morphologies are
shown in Fig. 10. The pretransitional effects become noticeable even when 7 = 4. For T = 2 the
directionality of the tweed pattern is already evident. As we decrease the temperature, this structure
becomes more dominant. It must be mentioned here that in our case, these patterns do not change
after reaching a steady state. Thus, we do not have the dynamic tweed structure reported by Kartha
et. al. This is because, in our model the effect of temperature goes only in the local free energy and
there are no thermal fluctuations. We also note that the pretransitional effects are pronounced when
both 3 and y are small. However, we note that including the changes in the transition temperature
on local disorder is somewhat similar to the contribution from defects except that internal stresses (
arising from deviations from the average concentration) are of much smaller magnitude compared
to that due to defects.

6. SUMMARY AND DISCUSSIONS

The paper summarizes the results of a comprehensive study of the dynamics of strain driven
martensitic transformations within the framework of a two dimensional square-to-rectangle transi-
tion. Due to the fact that the long-range term is introduced phenomenologically, the model should
be viewed as a model whose primary aim is to capture the essential physics of the transformations.
We however note that it includes all the important contributions arising from different mechanisms
in a transparent way. In doing so, we are able to study the dynamics of the strain driven transition
that explains the three unusual features of the martensitic transformation that were sought to be
modeled. The first important feature that emerges from the model is the fact that the elastic en-
ergy stored is released in the form of bursts. (Note that we have also established a correspondence
between the dissipative functional and the energy of AE signals.)

Second, the model provides a proper basis to explain the power law statistics of the AE signals
observed in experiments. The power law statistics arises due to the fact that we have included
threshold dynamics, dissipation, the generation of large number of metastable states during the
transformation, and a relaxation mechanism for the stored energy whose time scale is much faster
than the time scale of the drive force. It is interesting to point out that both cases of single-defect
and multi-defect nucleation lead to power laws strongly suggesting that quenched defects do not
play any role in the power law. The model also predicts the near repetitive bursts of energy under
successive thermal cycles in a small temperature interval as observed in experiments on acoustic
emission [8, 29, 28]. This comes as a surprise as the nature of correlation in the latter case is
“periodic’ in contrast to the scale free nature of correlations discussed in the power law statistics
of AE signals. More importantly, these bursts of energy have been shown to be correlated to
the growth and shrinkage of martensite plates. The underlying cause of the correlated nature of
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AE signals and reversal of the morphology during successive cycles after the training cycles has
been traced to the influence of the long-range interaction term. The role of training cycles is
also elucidated. During the training period the long-range term has a tendency to smoothen out
higher energy barriers in the free energy landscape which induces a transformation pathway along
a unique set of low energy metastable configurations. Finally, it is not surprising that the model
also reproduces tweed like features.

Itis interesting to note the similarity of morphological patterns with real micrographs. Patterns
studied in the context of single-defect and multi-defect nucleation show that the eventual morphol-
ogy are independent of the the original defect configuration. It is not clear if this is true of real
systems although experiments of Vives et. al., [5] provide an indirect evidence. In addition, the
model shows hysteresis under thermal cycling. Even though, the model explains several generic
features stated above, we stress that our model is not material specific.

As mentioned the pretransitional effect is pronounced when both 3 and y values are small.
The low values of y is physically understandable as one expects that there would be hardly any
dissipation in the high temperature phase where there are no martensite domains. The smallness
of B is also understandable physically (as the magnitude of fluctuations in the composition is not
high). However, the value of 3 cannot be determined in terms of the elastic constants as in the case
where the kernel is derived by using the compatibility relation [4].

References

[1] S. Muto, S. Takeda, R. Oshima, and F. E. Fujita, J. Phys.: Condens. Matter 1, 9971 (1989).
[2] R. Oshima, M. Sugiyama and F. E. Fujita, Metall. Trans A, 19A, 803 (1988).

[3] 1.M. Robertson and C. M. Wayman, Phil. Mag A, 48, 421 (1983); ibid 48, 443 (1983); ibid 48, 629
(1983).

[4] Sivan Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham, Phys. Rev. B 52, 803 (1995).

[5] E. Vives, J. Ortin, L. Mafiosa, I. Rafols, R. Pérez- Magrané and A. Planes, Phys. Rev. Lett. 72, 1694
(1994).

[6] E. Vives, I. Raflos, L. Mafiosa, J. Ortin and A. Planes, Phys. Rev. B 52, 12644(1995); See also, LI.
Carrillo, LI.Mafiosa, J. Ortin, A. Planes, and E. Vives, Phys. Rev. Lett. 81, 1889 (1998).

[7] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988);

[8] F. C. Lovey and V. Torra, Prog. Mater. Sci. 44, 189 (1999).

[9] P. L. Ferraglio and K. Mukherjee, Acta Metall 22, 835(1974).
[10] J. W. Brooks, M. H. Loretto and R. E. Smallmann, Acta Metall. 27, 1829 (1979).
[11] A. G. Khachaturyan, Theory of Sructural Tranformationsin Solids (Wiley, New York).
[12] R. Ahluwalia and G. Ananthakrishna, Phys. Rev. Lett. 86, 4076 (2001).
[13] S. Sreekala and G. Ananthakrishna, Phys. Rev. Lett. bf 90, 135501-1 (2003).
[14] S. Sreekala, R. Ahluwalia, and G. Ananthakrishna, Phys. Rev. B 70,224105 (2004).
[15] G.S. Bales and R. J. Gooding, Phys. Rev. Lett. 67, 3412(1991).

14



A two-dimensional model for some unusual features of martesites S. Sreekala

[16] A.C.E. Reidand R. J. Gooding, Phys. Rev. B 50, 3588(1994).

[17] L. D. Landau and E. M. Lifschitz, Theory of Elagticity, 3rd ed.(Pergamon, Oxford, 1986).
[18] W. Cao, J. A. Krumhansl and R. J. Gooding, Phys. Rev. B 41, 11319 (1990).

[19] J. A. Krumhansl, Solid State Commun. 84, 251(1992).

[20] A.E. Jacobs, Phys. Rev. B 31, 5984 (1985).

[21] S. Kartha, T. Castan, J. A. Krumhansl and J. P. Sethna, Phys. Rev. Lett. 67, 3630 (1991).
[22] S. R. Shenay, T. Lookman, A. Saxena and A. R. Bishop, Phys. Rev. B 60, R12537 (1999).
[23] Y. Wang and A.G. Khachaturyan, Acta Mater. 45, 759(1997).

[24] This choice is not unique. Further, it may be possible to derive an appropriate kernel which couples
bilinear terms in £(r) and &(r’). However, we expect that the functional form of B(k/k) would be
complicated.

[25] J. Weiss, F. Lahaie, and J. R. Grasso, J. Geo. Research, 105, 433 (2000).
[26] C. Sagui and R. C. Desai, Phys. Rev. E, 49, 2225 (1994).
[27] 1. Rafols and E. Vives, Phys. Rev. B 52, 12651 (1995).

[28] A. Amengual, LI. Mafosa, F. Marco, C. Picornell, C. Segui, and V. Torra, Thermochim. Acta 116,
195 (1987).

[29] C. Picornell, C. Segui, V. Torra, F.C. Lovey, and R. Rapacioli, Thermochim. Acta 113, 171 (1987).

15



