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Scaling and glassy dynamics in the relaxation of dislocatigstems Ferenc F. Csikor

1. Introduction

Since its introduction nearly 20 years ago, discrete dislocation dynamicB)Biulation,
i.e. the numerical integration of the equations of motion of crystal dislocati@sshecome a stan-
dard tool for studying the plastic properties of crystalline materials on thersaton scale. To
mimic the incidental initial defect configuration in customary experimental samipi¢igl con-
ditions of DDD simulations usually consist of a random dislocation configuratedaxed in the
absence of externally applied loads. Since only the outcome of this precisdalevant to the sub-
sequent simulation, the dynamical properties of the relaxation processldargely unexplored.
The two dimensional case of infinite, straight, parallel edge dislocationstisyarly interesting
because of the significant reorganization and short range pattenation during the relaxation
process[|1 H4]. Only recently has a numerical study with 1024 such disos revealed a slow,
glassy dynamics in the initial relaxation stage, marked by clean power lavwatelaxof several
measurables like the average velocity or the total elastic energy, with exiser@90 and—0.60,
respectively[[5]. This non exponential relaxation clearly hints at songkdda collective behavior
behind the relaxation process.

The present paper aims to enhance these studies by introducing a modelelattation of
random dislocation arrangements and testing some of its predictions in a simpeical setting.
In Section[P, the mental frame of the model is set up based on a chemicajyariihis chemical
model is then applied to the dislocation case. In Sedfion 3, model predictiersystematically
compared to the results of numerical simulations. Finally, Se€lion 4 gives a syranthoutlines
future directions.

2. Theory

The driving force behind the relaxation of two dimensional dislocation sysie to decrease
the total elastic energy of the embedding crystal through screening thedogg stress fields of
individual dislocations. This is analogous to the well known screeningeoéléctric field in charge
carrying fluids such as ionized gases and conduction electrons in njgtalfigdscreening length
in the dislocation case was found to be in the order of the average dislosptieing [R]. On the
microscopic level, screening manifests itself as the formation of dislocation meKipath zero
net Burgers vectorg][{] 3]. A similar picture emerges from the work of &itk[6] who proved
that i) the elastic energy density of a random dislocation system divergasttomically with the
system size and that ii) this divergence can be canceled by restrictisgydiimctuations at short
distances in a certain way (restricted random distribution). Pbint ii) is atgrivto a special kind
of pair correlations or, in other words, a special kind of screening.

From the dynamics point of view, the first emerging question is the chaizatien of the build
up process of a single multipole. To this end, two well known features ofishal dislocations
are recalled. i) The elastic stress field generated by a straight dislocatimeiisely proportional
to the distance from the dislocation line (at least at distances larger thanrtheaclius). ii) The
dynamics of dislocations is often overdamped, i.e. their velocity is a functidimeo$tress acting
on them. These two properties hint at a two stage build up step for multipglids:motionof an
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external dislocation with gradually increasing velocity, followed by a (neddyi quick) trapping
eventat an equilibrium position inside the multipole.

The above two steps bear some similarity with the general features of chericalsses,
namely that reactants undergo periods of Brown motion before entering iraction event. In
this analogy, moving dislocations (and possibly multipoles) play the role ofafamolecules
and low mobility multipoles the role of the products of the chemical reaction. Téo#xpis
chemical analogy, we restrict the present analysis to the single slip of infatigeght, parallel
edge dislocations, where the two possible Burgers vectors represehinus of reactants. It is
appropriate to note here that, in spite of the overly simplified dislocation geoowigidered, the
essence of the following analysis is built onto general features of disdocsystems, extending its
validity to more complex slip geometries, too.

2.1 Kinetics of a bimolecular chemical reaction

In the above spirit, this section reviews the reaction kinetics of the bimoleguitresis reac-
tion
A+B—C. (2.1)

The presentation follows the excellent work of Ovchinnikov and Zeldoffith We consider an
equal initial density of the reactants,

PR = P8 (2.2)

Because of the stoichiometry of reacti¢n}2.1), this equality is an invarighea®action. Further-
more, reaction[(2] 1) is “turned on” at a random arrangement of reaoiaiecules A and B at time
t=0.

According to Ovchinnikov and Zeldovich, reactidn {2.1) started from init@idition (2.2)
proceeds in three consecutive stages.

Stage 1 comprises those molecular level reaction events which are akedsilgh the short
range motion of reactants (short range being defined as not much maréhthaitial
inter reactant spacing). Some of the reactant moleculesatneact in this way because
of initial density fluctuations present in the system. These “excess” mokeuiillereact
in later stages. The kinetics of stage 1 can be modeled with the well knowrgreagan

Pa = Ps = —0PAPB (2.3)

where the bimolecular reaction ratpis determined by the details of the reaction in
question. For instance, for diffusion controlled reactigns 4mDrg [B] whererq is the
molecule radius and the relative diffusion coefficient. The solution of rate equatfor] (2.3)
with initial condition (2.2) takes the form

0

1 _
Pa of att >0, Pa =P = o att > (gog) L. (2.4)

Pa=ps ="
A = OB 14900

Stage 2 of reaction[ (3.1) is entered when the number of excess molecale®mdze dominant
among the reactants. Excess molecules find each other via long rangei@rawo-
tion which defines the kinetics of this stage. For simplicity, we start the diseussite



Scaling and glassy dynamics in the relaxation of dislocatigstems Ferenc F. Csikor

limit of an infinitely large reaction ratg — . In this case, molecules A and B can not
coexist at any time > 0 at any location, therefore the system can be fully characterized
with the density differenc& = pa — pg. l.€., in regions with only molecules pa = K
andpg = 0, otherwisepa = 0 andpg = —k. The dimensions of regions with > 0 and

k < 0 are determined by the diffusion lendth= 1/Dt. To predict the evolution of excess
molecule densities, first the initial spatial fluctuation spectrum skhould be determined.

It approximately obeys the Poissonian distribution, {(@°V)?) ~ p2V = pQV for any
region with volumeV. On the other hand, the smallest region size still not affected by
diffusion evolves a¥ (t) O L3O (Dt)g. The combination of these two ideas leads to

Nl

2pp =2ps = (|K|) = (V(t (Db)3

(see [J] for details). This formula only makes sense when the diffusiagtienis larger
than the initial intermolecular distanc(pg)*%. Another, but upper, time limit is marked
by L reaching system sizks. It is also worth noting that the decay in Eq.[(2]5) is
slower than thé~! extinction law of stage 1 (see E{|. (2.4)). Coming back to finite values
of g, this difference implies a crossover between stage 1 and stage 2 beha\zioz'poD)—ig“.

A

Stage 3 steps in when the diffusion lengtlieaches the system sikg. Being irrelevant to the
following, its discussion is omitted here.

2.2 Density fluctuation dominated stage of the relaxation of disloca@in systems

As discussed above, the relaxation of two dimensional random dislocatidigarations and
the kinetics of chemical synthesis reactions are parallel to some extent. $ethicsn we will adapt
the concepts of Sectidn .1 to the relaxatiorNoihfinite, straight, parallel edge dislocations in a
single slip geometry. We start with formulating the dynamics problem of the digdocsystem in
guestion and proceed with working out two variants of a relaxation modelandifierence in the
bonding strength between mobile excess dislocations and background tesltipo

We start the formulation by choosing thexis of a Cartesian coordinate system in the line
direction of dislocations and thez plane of the same system parallel to their slip plane. In the
following, dislocationi (i = 1...N) will be characterized with its intersection point with tkhe
planer; and its Burgers vectd?)i = sbé wheres = £1 is the sign of thath dislocation,b is
the common magnitude of the Burgers vectors of dislocations in the systerg,andhe unit
vector pointing in thex direction. To get a smooth evolution of the total elastic engrgie take
the dislocation numbel conserved (to avoid energy jumps associated with multiplication and
annihilation events). Furthermore, we use a vanishing net Burgersvglttos = 0 (obligatingN
to be even). Dislocation climb is disregarded and overdamped dislocationigghdsumed with a
linear stress velocity rule. On these conditions, the equation of motion tak&sthe

1.
}Xi = ;bssj Tint(Ti —Tj) + DS Text (2.6)
J#I

1A detailed analysis of the evolution of the total elastic energy is left to a subsegaper.
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where x denotes dislocation mobilitygin(F) the xy component of the elastic stress in position
generated by a positive dislocation in the origin of the coordinate systemaatigexy component
of the externally applied stress. In an infinite embedding crystalr) takes the form

2
Tine(F) = Gbm 2.7)
whereG denotes the shear modulus of the crystal. Note that the elastic dislocationati®io
interaction described by Ed. (P.7) is inversely proportiondfftin the entire crystal space (i.e. the
formula assumes a point like dislocation core) and has a strong anguéardée. In the present
paper the external stress; is always zero; the caggy; # 0 is relegated to a subsequent paper.
For clarity reasons, dimensionless coordinates will often be used in theviiafjo Egs. [2]6)
and [2.7) only restrict dimensionless physical units up to an arbitrary léngtie choicd = p*%
will be used below, yielding dimensionless length and time coordinates,/p andt’ = tpxGI?,
respectively. As a convention, dimensionless quantities will be denoted ayastrophe.
Consider now the relaxation of a random dislocation configuration. Aad@renentioned,
this process can be viewed as the gradual formation of strongly bound ntestifpom the initial
individual dislocations. In line with the chemical case, three relaxation stagg be hypothesized.

Stage 1 is characterized by rapid, short range dislocation motion, whigsebulk of dislocations
gets trapped in multipoles. However, the Burgers vectors of some “éxtistscations,
stemming from density fluctuations in the initial configuration, can not be locaitypen-
sated. These excess dislocations compensate the Burgers vectars oftesx during the
subsequent

Stage 2 via long range glide motion. As in the chemical case, the dynamics ef Ztean be
captured through the evolution of the typical sizeof regions containing only excess
dislocations with the same sign. The long range glide motion governing this evolutio
proceeds above a background of compensated multipoles. It is nousheiavhat extent
the moving excess dislocations drag the background multipoles with themséhe®-
fore, the two extremes are worked out and compared to simulation resultSatitiveng.
Similarly with the chemical case, one expects the onset of stage 2 when itie segpL
reaches the average dislocation spacing (supposing a fast enougloladtifmation in
stage 1). Similarly,

Stage 3 is entered whenreaches the system sike

In the following, the dynamics of the density fluctuation dominated stage 2 will dr&ed
out in the above two extreme cases. First the evolution equation of regmh sizlerived. Based
on the solutiorL(t), evolution of the moments of dislocation velocity is predicted with the aim of
comparing them to numerical simulations (see Sedion 3).

2.2.1 Free-flight model

The case of freely flying excess dislocations only differs from the chencase in the dy-
namics of excess patrticles (dislocation glide instead of Brownian motion).nduified stage 2
behavior is treated here in a simple scaling framework.



Scaling and glassy dynamics in the relaxation of dislocatigstems Ferenc F. Csikor

As discussed above, during stage 2, excess dislocations with the sanfersigregions of
typical sizel.. A typical excess dislocation will then be attracted towards multipole formatiomby a
excess dislocation in the neighboring region. The typical distance betivesmtwo dislocations is
proportional toL, leading to a typical excess dislocation velocity proportionz%l.tBy identifying
the growth rate of region size with dislocation velocities (just like in the chemasd); one arrives
at

dl” 1

—~ = = L'~ V2t 2.8
dar L’ (2.8)

As can be seen, the evolution expongrif L’ coincides with that in the chemical case. Hg.](2.8)

only makes sense when the dimensionless regiorLsizgdetween the average dislocation distance

1 and the system sida;,/p. Assuming a large enough reaction rate for multipole formation, this

leads to the following time constraints for stage 2 behavior:

1 1
s <t < Ipl2 2.9
> <U<5pLs (2.9)

While calculating thenth moment of dislocation velocity,v'|"), we neglect the motion of
multipoles, so that|V'|") ~ EV" whereE is the concentration of excess dislocations ahe-
dL'/dt’ the typical excess dislocation velocity. As in the chemical cB$g) is equal to the initial
excess dislocation concentration in a region with iZ€) since density fluctuations below(t")
are already smoothed out. This lead&te- vL'2/L'? = 1/L’ and, with Eq. [2]8), finally to

11 1

VI ~EV = = .
<| ‘> L/ L/ (Zt,)%l

(2.10)

2.2.2 Dragged multipole model

Consider now the case when excess dislocations drag background tesltipth themselves.
Since each region contains only excess dislocations with the same sign, dsitdeegions moving
as rigid blocks. This has three consequences. i) Excess dislocation mishiitiuced proportional
to the concentration of excess dislocations, implyihg- 1/L2. ii) Since rigid regions can not
inter-penetrate, the displacement needed to join two charged neighbocesefromL’ to 1 (the
average dislocation distance). iii) Such an event leads to a region siaaaathent byAL’ ~ L’.
All this leads to

dl’ Al 1 f—
v

As can be seen, region size evolution, and so the time constraints of stage ®jll be equal to
the free-flying case.

On the other hand, the evolution of the moments of dislocation velocity will difiece
now all dislocations are in motion and with a typical velocity different from tlee{flight case.
Quantitatively this leads to

n
(V[N ~ VM~ (L1,2> ~ (2tl’)” (2.12)

As can be seen, the velocity exponents predicted by the two models differdiersn = 1.
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3. Numerical simulations

3.1 Simulation method

To test the predictions of the two relaxation models in §ec.]2.2.1 anfl Set v@e2rformed
discrete dislocation dynamics simulations of the relaxation of initially random distotsystems.
To this end, the two dimensional single slip geometry described if Skc. 2. 2wfasad to a square
shaped simulation area with sides parallel toxla@dy axes and side length,. Periodic boundary
conditions were used both for dislocation kinematics and interactions (the dnetttiwe latter was
taken from [P]). Eq.[(2]6) was solved with an adaptive step sizthdrder Runge—Kutta—Fehlberg
method. As mentioned earlier, in the simulations the dislocation number was kegiaioy i.e.
neither multiplication nor annihilation was allowed, to avoid discontinuities in the gvalof the
elastic energy. To avoid the prohibitively small time steps caused by naipmled, the few nar-
rowest ones were removed from the system and relaxed to their equilitiuinand”. The number
of removed dipoles was adjusted to cause no observable changes onulagien results. All sim-
ulations were started from random configurations of an equal numipasitive and negative sign
dislocations.

3.2 Simulation results and discussion

As expected, individual relaxation simulations showed strongly fluctuatitigitgt in the form
of a series of dislocation avalanches with decreasing amplitudes (fogiet rewview on intermittent
plastic behavior seg J[L0]). To get access to the smooth behavior debanitsec| 2]2, averages
of large numbers of independent simulations were calculated. Results witB216l8 and 64
dislocations (i.e. with system size§= 4, 4/2, 4/3 and 8) are presented below, with a statistics
of 10°~1CP in each case. Simulation of larger systems is in progress.

Figure[1 displays the evolution of the mean square velduftyat different system sizes, along
with the predictions of the free-flight and multipole drag models. As can be see multipole
drag exponent significantly differs from the simulation results while thefliglet exponent almost
agrees with them. There is a small difference, though, although its chaisabted to establish at
the current simulation statistics. An end of the scaling region can not be iédrgither. On the
other hand, the start of the scaling region is clearly at 0.4 for all system sizes which agrees
well with the predicted% for the case of a large reaction raygsee Eq.[(2]9)). This is a strong
argument in favor of the consistency of the model with the numerics. It isnalsble that results
for different system sizes can be collapsed in the entire time range tlirese/2) with In(L%).
The origin of this scaling property is at this point unclear. It might be cotatkto the logarithmic
divergence of the elastic energy of excess dislocations with the systerargizrhaps to the finite
simulation box size.

The evolution of higher order velocity moments|®) and (v*) was also calculated from the
available numerical data. Although their statistical noise is even larger thieaf tva), they clearly
support the free-flight model against the multipole drag model.

As the last result in this section, the evolution of the average veldpity is presented in
Figure[?. The average velocity is close to a power law function with an expien—0.86 for over
a decade of time for the largest system size. This is close to the expe@&ttfound earlier on the
initial part of the scaling regime in a larger system with= 32 [g]. The difference might be due to
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Figure 1: Numerically observed evolution ¢¢) for different system sizes (see legend) and model functions
proportional to the predictions of the multipole drag arekfilight models.(v?) values are collapsed with
the scaling function IfL,). All units are dimensionless.

non-power law corrections (see next paragraph). It is also cleagly that the common prediction
of the two models is not far from the numerical curves. The different@dmn the predictions of
the models and the numerical results is analyzed below in detail. Still in Fijure Betfinning
and end of the scaling region is clearly visible. In line with the prediction in[E§)(the former is
independent of the system size while the latter is an increasing function afainAa logarithmic
factor is able to collapse the data, although its forigbly) is slightly different from the case of
(v2).

To analyze the difference between the numerical results and the predicfidhe models,
their ratio is displayed in Figulg 3. As can be seen, a logarithmic correctidndég@adescribe the
observed differenéavhich might be rationalized by completing the equation of motion in Ed. (2.8)
(or Eq. {2.1]1)) with a logarithmic factor of the region size This modification might also have
the potential explaining the deviation between the numerics and the curreat food/?).

Besides this, the onset of stage 2 can be clearly identified in Fijure 3 tat’oe at4 for all
system sizes which is consistent with the numerical resulté/forand the models, too, assuming
a large value of reaction rate Stage 2—stage 3 transition times can also be read from Higure 3 and
their values are consistent with the proportionalitytc predicted by the models (see Ef-[2.9)).
Even the prefactor t@L2, ~ 0.15, does not fall too far from the predicte}:l These findings
strongly support that the model is relevant in the numerically studied time regime.

4. Summary and future directions

The relaxation of initially random systems of infinite, straight, parallel dislonatiwas stud-

2p power law correction with a small exponent is able to fit the differenasg,liat this form is harder to rationalize.
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Figure 2: Evolution of (Jv|) with the common prediction of the two models and a power lawofithe
numerical curve at the largest system size. Simulationtseare collapsed using function(BL). All units
are dimensionless.
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Figure 3: Ratio of the numerical values of average velocity and thernom prediction of the models,
together with a logarithmic fit to the stage 2 part of the nuoaicurves.



Scaling and glassy dynamics in the relaxation of dislocatigstems Ferenc F. Csikor

ied. Noting kinematic similarities between chemical synthesis reactions and multpoiation
during dislocation relaxation, the theory for the kinetics of the chemical waseadapted to the
relaxation process in the special case of single slip. The central elefmthanodels is the grad-
ual extinction of initial density fluctuations at increasing length scales. @iaptad model predicts
a slow, glassy, power law evolution for the moments of the velocity distributidme dbtained
exponents are in line with discrete dislocation dynamics simulations in the limit of eeg)ing
between mobile excess dislocations and background multipoles and a stlffiaege multipole
formation rate.

Besides these results, plenty of questions are still open. Numerical simslatiosaled a
weak (presumably logarithmic) deviation in the evolution of the moments of theiethistribu-
tion from the predictions of the simple scaling model. A weak (most likely also ifigaic) system
size dependence also emerged. It is not clear at the moment if these desvaantrinsic to the
relaxation process or are the results of the specific boundary conditsausin the simulations.
Going to larger simulated system sizes could certainly reveal more detailssef deeiations but
hard computational limits inhibit the simulation of radically larger systems. Movir@t) algo-
rithms like particle-particle—particle-mesh J11] 12] or stochastif [13] methodktrban option,
although the involved meshing of the simulation volume may give an inaccuratsesyation of
region sizeL. Beyond numerical improvements, new questions like the evolution of elagtigyen
or the application of nonzero external stresses can be raised. Wettefe topics to a subsequent
publication.
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