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1. Introduction

Since its introduction nearly 20 years ago, discrete dislocation dynamics (DDD) simulation,
i.e. the numerical integration of the equations of motion of crystal dislocations,has become a stan-
dard tool for studying the plastic properties of crystalline materials on the sub-micron scale. To
mimic the incidental initial defect configuration in customary experimental samples, initial con-
ditions of DDD simulations usually consist of a random dislocation configuration, relaxed in the
absence of externally applied loads. Since only the outcome of this procedure is relevant to the sub-
sequent simulation, the dynamical properties of the relaxation process arestill largely unexplored.
The two dimensional case of infinite, straight, parallel edge dislocations is particularly interesting
because of the significant reorganization and short range pattern formation during the relaxation
process [1 – 4]. Only recently has a numerical study with 1024 such dislocations revealed a slow,
glassy dynamics in the initial relaxation stage, marked by clean power law relaxation of several
measurables like the average velocity or the total elastic energy, with exponents−0.90 and−0.60,
respectively [5]. This non exponential relaxation clearly hints at some kind of a collective behavior
behind the relaxation process.

The present paper aims to enhance these studies by introducing a model of the relaxation of
random dislocation arrangements and testing some of its predictions in a simple numerical setting.
In Section 2, the mental frame of the model is set up based on a chemical analogy. This chemical
model is then applied to the dislocation case. In Section 3, model predictions are systematically
compared to the results of numerical simulations. Finally, Section 4 gives a summary and outlines
future directions.

2. Theory

The driving force behind the relaxation of two dimensional dislocation systems is to decrease
the total elastic energy of the embedding crystal through screening the longrange stress fields of
individual dislocations. This is analogous to the well known screening of the electric field in charge
carrying fluids such as ionized gases and conduction electrons in metals [4]. The screening length
in the dislocation case was found to be in the order of the average dislocationspacing [2]. On the
microscopic level, screening manifests itself as the formation of dislocation multipoles with zero
net Burgers vectors [1, 3]. A similar picture emerges from the work of Wilkens [6] who proved
that i) the elastic energy density of a random dislocation system diverges logarithmically with the
system size and that ii) this divergence can be canceled by restricting density fluctuations at short
distances in a certain way (restricted random distribution). Point ii) is equivalent to a special kind
of pair correlations or, in other words, a special kind of screening.

From the dynamics point of view, the first emerging question is the characterization of the build
up process of a single multipole. To this end, two well known features of individual dislocations
are recalled. i) The elastic stress field generated by a straight dislocation isinversely proportional
to the distance from the dislocation line (at least at distances larger than the core radius). ii) The
dynamics of dislocations is often overdamped, i.e. their velocity is a function ofthe stress acting
on them. These two properties hint at a two stage build up step for multipoles:glide motionof an
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external dislocation with gradually increasing velocity, followed by a (relatively quick) trapping
eventat an equilibrium position inside the multipole.

The above two steps bear some similarity with the general features of chemicalprocesses,
namely that reactants undergo periods of Brown motion before entering intoa reaction event. In
this analogy, moving dislocations (and possibly multipoles) play the role of reactant molecules
and low mobility multipoles the role of the products of the chemical reaction. To exploit this
chemical analogy, we restrict the present analysis to the single slip of infinite, straight, parallel
edge dislocations, where the two possible Burgers vectors represent two kinds of reactants. It is
appropriate to note here that, in spite of the overly simplified dislocation geometryconsidered, the
essence of the following analysis is built onto general features of dislocation systems, extending its
validity to more complex slip geometries, too.

2.1 Kinetics of a bimolecular chemical reaction

In the above spirit, this section reviews the reaction kinetics of the bimolecular synthesis reac-
tion

A +B → C. (2.1)

The presentation follows the excellent work of Ovchinnikov and Zeldovich[7]. We consider an
equal initial density of the reactants,

ρ0
A = ρ0

B. (2.2)

Because of the stoichiometry of reaction (2.1), this equality is an invariant ofthe reaction. Further-
more, reaction (2.1) is “turned on” at a random arrangement of reactant molecules A and B at time
t = 0.

According to Ovchinnikov and Zeldovich, reaction (2.1) started from initialcondition (2.2)
proceeds in three consecutive stages.

Stage 1 comprises those molecular level reaction events which are accessible through the short
range motion of reactants (short range being defined as not much more than the initial
inter reactant spacing). Some of the reactant molecules cannot react in this way because
of initial density fluctuations present in the system. These “excess” molecules will react
in later stages. The kinetics of stage 1 can be modeled with the well known rate equation

ρ̇A = ρ̇B = −gρAρB (2.3)

where the bimolecular reaction rateg is determined by the details of the reaction in
question. For instance, for diffusion controlled reactionsg = 4πDr0 [8] wherer0 is the
molecule radius andD the relative diffusion coefficient. The solution of rate equation (2.3)
with initial condition (2.2) takes the form

ρA = ρB =
ρ0

A

1+gρ0
At

at t ≥ 0, ρA = ρB =
1
gt

at t ≫ (gρ0
A)−1. (2.4)

Stage 2 of reaction (2.1) is entered when the number of excess molecules becomes dominant
among the reactants. Excess molecules find each other via long range Brownian mo-
tion which defines the kinetics of this stage. For simplicity, we start the discussion in the
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limit of an infinitely large reaction rateg → ∞. In this case, molecules A and B can not
coexist at any timet > 0 at any location, therefore the system can be fully characterized
with the density differenceκ = ρA −ρB. I.e., in regions with only molecules AρA = κ
andρB = 0, otherwiseρA = 0 andρB = −κ. The dimensions of regions withκ > 0 and
κ < 0 are determined by the diffusion lengthL =

√
Dt. To predict the evolution of excess

molecule densities, first the initial spatial fluctuation spectrum ofκ should be determined.
It approximately obeys the Poissonian distribution, i.e.〈(κ0V)2〉 ≈ ρ0

AV = ρ0
BV for any

region with volumeV. On the other hand, the smallest region size still not affected by
diffusion evolves asV(t) ∝ L3 ∝ (Dt)

3
2 . The combination of these two ideas leads to

2ρA = 2ρB = 〈|κ|〉 ≈
(

ρ0
A

V(t)

)

1
2

∝
(

ρ0
A

)
1
2

(Dt)
3
4

(2.5)

(see [7] for details). This formula only makes sense when the diffusion length L is larger

than the initial intermolecular distance
(

ρ0
A

)− 1
3 . Another, but upper, time limit is marked

by L reaching system sizeLs. It is also worth noting that thet−
3
4 decay in Eq. (2.5) is

slower than thet−1 extinction law of stage 1 (see Eq. (2.4)). Coming back to finite values
of g, this difference implies a crossover between stage 1 and stage 2 behavioratt ≈ D3

(ρ0
A)2g4 .

Stage 3 steps in when the diffusion lengthL reaches the system sizeLs. Being irrelevant to the
following, its discussion is omitted here.

2.2 Density fluctuation dominated stage of the relaxation of dislocation systems

As discussed above, the relaxation of two dimensional random dislocation configurations and
the kinetics of chemical synthesis reactions are parallel to some extent. In thissection we will adapt
the concepts of Section 2.1 to the relaxation ofN infinite, straight, parallel edge dislocations in a
single slip geometry. We start with formulating the dynamics problem of the dislocation system in
question and proceed with working out two variants of a relaxation model, witha difference in the
bonding strength between mobile excess dislocations and background multipoles.

We start the formulation by choosing thez axis of a Cartesian coordinate system in the line
direction of dislocations and thexz plane of the same system parallel to their slip plane. In the
following, dislocationi (i = 1. . .N) will be characterized with its intersection point with thexy
plane~r i and its Burgers vector~bi = sib~ex wheresi = ±1 is the sign of theith dislocation,b is
the common magnitude of the Burgers vectors of dislocations in the system and~ex is the unit
vector pointing in thex direction. To get a smooth evolution of the total elastic energy1, we take
the dislocation numberN conserved (to avoid energy jumps associated with multiplication and
annihilation events). Furthermore, we use a vanishing net Burgers vector ∑N

i=1si = 0 (obligatingN
to be even). Dislocation climb is disregarded and overdamped dislocation glideis assumed with a
linear stress velocity rule. On these conditions, the equation of motion takes theform

1
χ

ẋi = ∑
j 6=i

bsisjτint(~r i −~r j)+bsiτext (2.6)

1A detailed analysis of the evolution of the total elastic energy is left to a subsequent paper.
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whereχ denotes dislocation mobility,τint(~r) the xy component of the elastic stress in position~r
generated by a positive dislocation in the origin of the coordinate system andτext thexycomponent
of the externally applied stress. In an infinite embedding crystal,τint(~r) takes the form

τint(~r) = Gb
x(x2−y2)

(x2 +y2)2 (2.7)

whereG denotes the shear modulus of the crystal. Note that the elastic dislocation–dislocation
interaction described by Eq. (2.7) is inversely proportional to|~r| in the entire crystal space (i.e. the
formula assumes a point like dislocation core) and has a strong angular dependence. In the present
paper the external stressτext is always zero; the caseτext 6= 0 is relegated to a subsequent paper.

For clarity reasons, dimensionless coordinates will often be used in the following. Eqs. (2.6)
and (2.7) only restrict dimensionless physical units up to an arbitrary lengthl . The choicel = ρ− 1

2

will be used below, yielding dimensionless length and time coordinatesx′ = x
√ρ andt ′ = tρχGb2,

respectively. As a convention, dimensionless quantities will be denoted by an apostrophe.
Consider now the relaxation of a random dislocation configuration. As already mentioned,

this process can be viewed as the gradual formation of strongly bound multipoles from the initial
individual dislocations. In line with the chemical case, three relaxation stages may be hypothesized.

Stage 1 is characterized by rapid, short range dislocation motion, whereby the bulk of dislocations
gets trapped in multipoles. However, the Burgers vectors of some “excess” dislocations,
stemming from density fluctuations in the initial configuration, can not be locally compen-
sated. These excess dislocations compensate the Burgers vectors of each other during the
subsequent

Stage 2 via long range glide motion. As in the chemical case, the dynamics of stage 2 can be
captured through the evolution of the typical sizeL of regions containing only excess
dislocations with the same sign. The long range glide motion governing this evolution
proceeds above a background of compensated multipoles. It is not obvious to what extent
the moving excess dislocations drag the background multipoles with themselves.There-
fore, the two extremes are worked out and compared to simulation results in thefollowing.
Similarly with the chemical case, one expects the onset of stage 2 when the region sizeL
reaches the average dislocation spacing (supposing a fast enough multipole formation in
stage 1). Similarly,

Stage 3 is entered whenL reaches the system sizeLs.

In the following, the dynamics of the density fluctuation dominated stage 2 will be worked
out in the above two extreme cases. First the evolution equation of region size L is derived. Based
on the solutionL(t), evolution of the moments of dislocation velocity is predicted with the aim of
comparing them to numerical simulations (see Section 3).

2.2.1 Free-flight model

The case of freely flying excess dislocations only differs from the chemical case in the dy-
namics of excess particles (dislocation glide instead of Brownian motion). Themodified stage 2
behavior is treated here in a simple scaling framework.
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As discussed above, during stage 2, excess dislocations with the same signform regions of
typical sizeL. A typical excess dislocation will then be attracted towards multipole formation by an
excess dislocation in the neighboring region. The typical distance betweenthese two dislocations is
proportional toL, leading to a typical excess dislocation velocity proportional to1

L . By identifying
the growth rate of region size with dislocation velocities (just like in the chemical case), one arrives
at

dL′

dt′
∼ 1

L′ ⇒ L′ ∼
√

2t ′. (2.8)

As can be seen, the evolution exponent1
2 of L′ coincides with that in the chemical case. Eq. (2.8)

only makes sense when the dimensionless region sizeL′ is between the average dislocation distance
1 and the system sizeLs

√ρ. Assuming a large enough reaction rate for multipole formation, this
leads to the following time constraints for stage 2 behavior:

1
2

< t ′ <
1
2

ρL2
s. (2.9)

While calculating thenth moment of dislocation velocity,〈|v′|n〉, we neglect the motion of
multipoles, so that〈|v′|n〉 ∼ Ev′n whereE is the concentration of excess dislocations andv′ =

dL′/dt′ the typical excess dislocation velocity. As in the chemical case,E(t ′) is equal to the initial
excess dislocation concentration in a region with sizeL′(t ′) since density fluctuations belowL′(t ′)
are already smoothed out. This leads toE =

√
L′2/L′2 = 1/L′ and, with Eq. (2.8), finally to

〈
∣

∣v′
∣

∣

n〉 ∼ Ev′n =
1
L′

1
L′n ∼ 1

(2t ′)
n+1

2

. (2.10)

2.2.2 Dragged multipole model

Consider now the case when excess dislocations drag background multipoles with themselves.
Since each region contains only excess dislocations with the same sign, this leads to regions moving
as rigid blocks. This has three consequences. i) Excess dislocation mobilityis reduced proportional
to the concentration of excess dislocations, implyingv′ ∼ 1/L′2. ii) Since rigid regions can not
inter-penetrate, the displacement needed to join two charged neighbors reduces fromL′ to 1 (the
average dislocation distance). iii) Such an event leads to a region size enhancement by∆L′ ∼ L′.
All this leads to

dL′

dt′
∼ ∆L′

1
v′

∼ 1
L′ ⇒ L′ ∼

√
2t ′. (2.11)

As can be seen, region size evolution, and so the time constraints of stage 2,too, will be equal to
the free-flying case.

On the other hand, the evolution of the moments of dislocation velocity will differ,since
now all dislocations are in motion and with a typical velocity different from the free-flight case.
Quantitatively this leads to

〈
∣

∣v′
∣

∣

n〉 ∼ v′n ∼
(

1
L′2

)n

∼ 1
(2t ′)n . (2.12)

As can be seen, the velocity exponents predicted by the two models differ for ordersn 6= 1.
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3. Numerical simulations

3.1 Simulation method

To test the predictions of the two relaxation models in Sec. 2.2.1 and Sec. 2.2.2,we performed
discrete dislocation dynamics simulations of the relaxation of initially random dislocation systems.
To this end, the two dimensional single slip geometry described in Sec. 2.2 was confined to a square
shaped simulation area with sides parallel to thex andy axes and side lengthLs. Periodic boundary
conditions were used both for dislocation kinematics and interactions (the method of the latter was
taken from [9]). Eq. (2.6) was solved with an adaptive step size 4.5th order Runge–Kutta–Fehlberg
method. As mentioned earlier, in the simulations the dislocation number was kept constant, i.e.
neither multiplication nor annihilation was allowed, to avoid discontinuities in the evolution of the
elastic energy. To avoid the prohibitively small time steps caused by narrow dipoles, the few nar-
rowest ones were removed from the system and relaxed to their equilibrium“by hand”. The number
of removed dipoles was adjusted to cause no observable changes on the simulation results. All sim-
ulations were started from random configurations of an equal number ofpositive and negative sign
dislocations.

3.2 Simulation results and discussion

As expected, individual relaxation simulations showed strongly fluctuating activity in the form
of a series of dislocation avalanches with decreasing amplitudes (for a recent review on intermittent
plastic behavior see [10]). To get access to the smooth behavior described in Sec. 2.2, averages
of large numbers of independent simulations were calculated. Results with 16, 32, 48 and 64
dislocations (i.e. with system sizesL′

s = 4, 4
√

2, 4
√

3 and 8) are presented below, with a statistics
of 104–105 in each case. Simulation of larger systems is in progress.

Figure 1 displays the evolution of the mean square velocity〈v2〉 at different system sizes, along
with the predictions of the free-flight and multipole drag models. As can be seen, the multipole
drag exponent significantly differs from the simulation results while the free-flight exponent almost
agrees with them. There is a small difference, though, although its character is hard to establish at
the current simulation statistics. An end of the scaling region can not be identified either. On the
other hand, the start of the scaling region is clearly att ′ ≈ 0.4 for all system sizes which agrees
well with the predicted1

2 for the case of a large reaction rateg (see Eq. (2.9)). This is a strong
argument in favor of the consistency of the model with the numerics. It is alsonotable that results
for different system sizes can be collapsed in the entire time range by rescaling 〈v2〉 with ln(L′

s).
The origin of this scaling property is at this point unclear. It might be connected to the logarithmic
divergence of the elastic energy of excess dislocations with the system size or perhaps to the finite
simulation box size.

The evolution of higher order velocity moments〈|v|3〉 and〈v4〉 was also calculated from the
available numerical data. Although their statistical noise is even larger than that of 〈v2〉, they clearly
support the free-flight model against the multipole drag model.

As the last result in this section, the evolution of the average velocity〈|v|〉 is presented in
Figure 2. The average velocity is close to a power law function with an exponent≈−0.86 for over
a decade of time for the largest system size. This is close to the exponent−0.90 found earlier on the
initial part of the scaling regime in a larger system withL′

s = 32 [5]. The difference might be due to
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Figure 1: Numerically observed evolution of〈v2〉 for different system sizes (see legend) and model functions
proportional to the predictions of the multipole drag and free-flight models.〈v2〉 values are collapsed with
the scaling function ln(L′

s). All units are dimensionless.

non-power law corrections (see next paragraph). It is also clearly seen that the common prediction
of the two models is not far from the numerical curves. The difference between the predictions of
the models and the numerical results is analyzed below in detail. Still in Figure 2, the beginning
and end of the scaling region is clearly visible. In line with the prediction in Eq. (2.9), the former is
independent of the system size while the latter is an increasing function of it. Again, a logarithmic
factor is able to collapse the data, although its form ln(5L′

s) is slightly different from the case of
〈v2〉.

To analyze the difference between the numerical results and the predictions of the models,
their ratio is displayed in Figure 3. As can be seen, a logarithmic correction is able to describe the
observed difference2 which might be rationalized by completing the equation of motion in Eq. (2.8)
(or Eq. (2.11)) with a logarithmic factor of the region sizeL′. This modification might also have
the potential explaining the deviation between the numerics and the current model for 〈v2〉.

Besides this, the onset of stage 2 can be clearly identified in Figure 3 to be att ′ ≈ 0.4 for all
system sizes which is consistent with the numerical results for〈v2〉 and the models, too, assuming
a large value of reaction rateg. Stage 2–stage 3 transition times can also be read from Figure 3 and
their values are consistent with the proportionality toρL2

s predicted by the models (see Eq. (2.9)).
Even the prefactor toρL2

s, ≈ 0.15, does not fall too far from the predicted12. These findings
strongly support that the model is relevant in the numerically studied time regime.

4. Summary and future directions

The relaxation of initially random systems of infinite, straight, parallel dislocations was stud-

2A power law correction with a small exponent is able to fit the difference, too, but this form is harder to rationalize.
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Figure 2: Evolution of 〈|v|〉 with the common prediction of the two models and a power law fitto the
numerical curve at the largest system size. Simulation results are collapsed using function ln(5L′

s). All units
are dimensionless.
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Figure 3: Ratio of the numerical values of average velocity and the common prediction of the models,
together with a logarithmic fit to the stage 2 part of the numerical curves.
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ied. Noting kinematic similarities between chemical synthesis reactions and multipole formation
during dislocation relaxation, the theory for the kinetics of the chemical casewas adapted to the
relaxation process in the special case of single slip. The central element of both models is the grad-
ual extinction of initial density fluctuations at increasing length scales. The adapted model predicts
a slow, glassy, power law evolution for the moments of the velocity distribution. The obtained
exponents are in line with discrete dislocation dynamics simulations in the limit of weakcoupling
between mobile excess dislocations and background multipoles and a sufficiently large multipole
formation rate.

Besides these results, plenty of questions are still open. Numerical simulations revealed a
weak (presumably logarithmic) deviation in the evolution of the moments of the velocity distribu-
tion from the predictions of the simple scaling model. A weak (most likely also logarithmic) system
size dependence also emerged. It is not clear at the moment if these deviations are intrinsic to the
relaxation process or are the results of the specific boundary conditionsused in the simulations.
Going to larger simulated system sizes could certainly reveal more details of these deviations but
hard computational limits inhibit the simulation of radically larger systems. Moving toO(N) algo-
rithms like particle-particle–particle-mesh [11, 12] or stochastic [13] methods might be an option,
although the involved meshing of the simulation volume may give an inaccurate representation of
region sizeL. Beyond numerical improvements, new questions like the evolution of elastic energy
or the application of nonzero external stresses can be raised. We defer these topics to a subsequent
publication.
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