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1. Introduction

The general topic of statistical analysis of CMB data is & weide area. Rather than present
a very broad overview, we instead concentrate on a singlgingitopic, namely the use of the
evidence in Bayesian inference. Bayesian methods for petearastimation are now very widely
accepted within the CMB community, but the use of the eviddncselect between different mod-
els for the data is a relatively recent development. We bbgimtroducing the concept of the
evidence, then explain how it can be computed and concludéubtrating its use in a number of
cosmological examples.

2. Model selection and Bayesian evidence

Let us begin by defining the evidence in completely generatde Suppose we collect a set
of N data pointd; (i = 1,2,...,N), which we denote collectively as the data vecdidr Suppose
further that we propose some model (or hypothekisior the data that depends on a sethdf
parameter®; (j =1,...,M), that we denote by the parameter vedor

Bayes’ theorem states that

Pr(D|6,H)Pr(B|H)

Pr6|D,H) = PHD|H) )

2.1)

where the meaning of each term is as follows. The prig6 ) represents our state of knowledge
(or prejudices) about the parameter values before angltbm data. This is modulated by the
likelihood, P D|6,H), of the data given a particular set of parameter values. fioiduct gives
(to within a constant factor) the posterior(BfD,H), which encodes all the inferences regarding
the parameter§. The normalisation of the posterior is given by the evideRdd) |H), and it is
this quantity that may be used to decide which of a set ofredtere models best describes the data.

Suppose, for example, that we have two alternative mddglsndH, for describing a data-
set D, whereHp depends on the parameter $gt andH; on the setf;. ForH; (i=0,1), the
probability density associated with the observed datis

PHDH;) = [ Pr(D|8, H)Pr(8]H) A6 (22)

In either caseHy or Hi, the evidence is the average of the likelihood with respedhé prior.
Thus a model has a large evidence if more of its allowed paexspace is likely, given the data.
Conversely, a model has a small evidence if there are lagpsaf its allowed parameter space
with low likelihood values. Hence evidence naturally iqmanates Occam’s razor: a simpler theory
is preferred to a more complicated one, unless the lattégrgisantly better at describing the data.
In performing model selection, one then merely needs toidenghe ratio

Pr(Hi1|D)  Pr(D|H;) Pr(Hy)
Pr(Ho|D)  Pr(D|Ho) Pr(Ho)’

(2.3)

in which the prior probabilities of the hypotheses also appk: is often true that FHo) = Pr(H;),
in which case the preferred model is simply that with thedatgvidence. In some cases, however,
the priors are not equal and the proper form (2.3) should bd.us
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Figure 1: A coin tossing experiment.

2.1 A simple example

A real case (reported in the newspapers) in which Bayesiatehszlection has been applied
concerned a Belgian one Euro coin (see [16]). In a coin tgsskperiment the coin came down
heads 140 times, and tails 110. What is the evidence ratid:fat is biased’ versud ‘it is fair'?

Clearly one can only answer this with a definite form iftr, so let us assumid; corresponds
to a uniform prior ovef0, 1] for the probabilityp of heads: so Fp|H;) = 1. Then,

Ny !ny!

1
Pr(D|H :/PrD ,H1) Pr(p|H;)d :/ H(1l-pTdp= —————
(D[H1) (Dlp.Hy)Pr(plHy)dp= | p™(1-p)™ dp R

Meanwhile, if the coin is fair then PD|Hp) = (1/2)™ . Thus, for the numbers given, the ratio
of evidences is

Pr(D|H1)  2%°1401110! 0.48

Pr(D|Ho) 251! T

If the two hypothesis are equally likely a priori, so tha{l®s) = Pr(H1), then (2.3) shows the
hypothesidHg that the coin is fair is favoured by 2 to 1 relative to our aitdive hypothesisl;. As
discussed in [16], by different choice of priors pntailored to be more favourable to the outcome
actually observed, it is possible to reverse the sense stthinparison. However, even the most
extreme choice of prior is unable to match the type of ‘prdibdkin favour of H; that standard
frequentist significance methods yield.

2.2 Another simple example (more relevant to astronomy)

Suppose we have data at known sample points and want to krtberd is a ‘trend’ present
(see Fig. 2). Thus, the two alternative models for the daga ldi: y; = ag+ a1% + & andHg:
y, = ap + &, wheree is a noise vector belonging t9(0, 0?) (say). To perform a model selection,
we need to specify priors aa anda;. If we let these be uniform (and uncorrelated) ofrepo, )
then we can perform the integrals analytically (the actaahfof priors is not too important if data
is definitive). In this case, one finds that

Pr(D|H;) 2mo? I3 (% — %) (vi — 9]
Pr(D|Ho) > (x —x)? exp{ }7 (2.4)

B 202 5 (% — X)2
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Figure 2: Linear regression.

which depends on the (positive) exponential of the cor@iatoefficient squared. Note that one
aspect we have glossed over here is that the use of an infinige thas led to improper priors af
anda;, and there has been no attempt in (2.4) to deal with the iafimrmalisation factors which
arise from these. Despite this, the emergence in this apiprofthe correlation coefficient as the
important statistic, is clearly satisfying.

3. Evaluation of the evidence

In general, evaluation of the evidence integral (2.2) hdsetperformed numerically, and is
computationally challenging. For ease of notation, let tst fewrite Bayes’ theorem (2.1) as

Pr(de,Hi) _ Pr(d’i’rz_'cll)’fhr)(e‘Hl) - Pl(e) _ L|(9)E7|'E(9)’

so that the evidence integral becomes

E ~ [ Li(6)m(8)a6.

If the dimensionM of the parameter space is sma¥l € few), one may calculate the unnor-

malised posterioP(0) = L(8)m(0) over a grid in parameter space and perform simple quadrature
to obtain the evidence trivially. For higher-dimensionabldems, this approach rapidly becomes
impossible and one needs to find alternative methods.

3.1 Gaussian approximation to the posterior
The simplest approach is to use a multivariate Gaussiarogjppation to the ‘unnormalised’
posterior about its peak (see e.qg. [7])
Pi(6) ~ Pi(B)exp[-3(6—8)' V(8- B)],

whereV-1=_-H = — DDInE(Qﬂezé IS the inverse covariance matrix. In this approximation,
the evidence integral is analytic and givenBy~ (2mM/2| V;|Y/2L;(8)m(6). Hence the log evi-
dence ratio is

In (E—Z) =1In <E—:> +3 [(Mo— M3)In(271) + In (%)] +In <%>,
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Figure 3: Gaussian approximation to the posterior for the stand®s@DM model with parameters
(ah, ax, 8, T,In A ns), wheref is the ratio of the angular diameter distance to the sounddat decou-
pling; the data sets used are WMAP1, ACBAR, CBI, VSA, SDSSI48d. The black contours are derived
from 10* MCMC samples and the red contours are the Gaussian apprioingiom [27]).

where the hats on variables denote their values at the pethle glosterior. In particular, we note
that In(Lo/L1) = —2A%2 if the likelihoods are Gaussian, andfig/ i) = In(A81/A8y) if the priors
are uniform with widtha\6.

In using this approach, it can be useful to choose ‘normakipeeters to improve the accuracy
of the approximation. In cosmological parameter estinmboparticular, the Gaussian approxi-
mation can be made very accurate by using the ‘physicalalsées proposed by [13] (see Fig. 3).

3.2 Savage-Dickey density ratio

The Gaussian approximation is poor for complicated or nmmatal posteriors, especially in
the wings of the distribution and at any abrupt cut-offs itasg from priors. One can, however,
calculate an exact evidence for an arbitrary posteriorguie Savage—Dickey density ratio [6],
provided: (i)Ho andH; are nested hypothesis, which implieg(8) = L1(6, Y = ,); and (ii)
the prior on the parameters is separable, which impl¢€8., @) = m(6)m (). In this case, the
evidence ratio becomes

Eo  Pu(yp)

Bt 7a(o)’
wherePy (@) = [Pi(0, ) dB is the properly normalised marginalised posterior for trueleiH,,
evaluated atp = ;. The main problem with this method, however, is that thenestion of the
marginalised posterior needs MCMC sampling, often rengisome annealing to probe the wings
of the distribution. Hence the resulting evidence valudaslisastic and is often just as diffcult to
evaluate in practice as the more general methods we disei®s.b
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3.3 MCMC sampling and thermodynamic integration

Calculating the evidence using MCMC sampling (with anmaglifrom the full posterior re-
quires no assumptions regarding hypotheses or priors. dsie method is thermodynamic inte-
gration (see e.g. [9]). One begins by defining

A :/L)‘(Q)n(e)de, (3.1)

so the required evidence valueHg1). One then performs MCMC sampling frobd (8)71(6),
starting withA = 0 and slowly raising its value according to some annealitgdale untilA = 1.
The Ng samples corresponding to any particular valué ohay be used to obtain an estimate of
the quantity
J(nL)L*mde 1 & InL(8

fLAmde ~ N ,Z
From (3.1), this quantity can also be written as

1dE dInE
(nbx = EdA  dA’

and so the (log of) the evidence is given by

<In L>)\ =

N
INE(1) = InE(0) +/01(In L), dA ~ ﬁl(ln Lja BA),
=
where we use the fact th&i(0) = 1, and whereN, andAA; are the number ok values and the
corresponding stepsizes in the annealing schedule.

Although entirely general in its applicability, thermo@ymic integration clearly produces ev-
idence values that are stochastic. The major problem, hewesthat accurate evidence values
require slow annealing. Moreover, common schedules, ssidim@ar or geometric ones, can get
stuck in local maxima. Nonetheless, [21] proposes a ‘sekeeinnealing’ method in which ‘bad’
regions die without tunneling and no ‘good’ sample is evestidged. This method is not so
troubled by the existence of local optima, but the annealiiibslows at phase transitions of the
system. Itis also worth noting that, independent of its ngeérmodynamic integration, annealing
can greatly improve MCMC chain mobility during burn-in bypdying the likelihood gradually.

3.4 Nested sampling

A new technique for efficient evidence evaluation (and tradpction of posterior samples)
has recently been proposed by [22]. In this approach, onedbyg defining the quantity

X(A) :/L(e>>A 7(6)d6,

which is simply the prior mass contained within the regionpafameter space over which the
value of the likelihood exceeds. It is useful also to define the inverse functib(X), such that
L(X(A)) = A. One may now make a change of variable that converts the-dioignsional evi-
dence integral (2.2) into the one-dimensional integrae (Sig. 4).

E:/L(G)n(@)d@:/o‘lL(X)dX.
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Area E

Figure 4: Geometrical interpretation of the variables in nested dagp

1. Set j=0; initially Xx=1, E=0

2. Sanple N points {6;} randomy from m(6)
and cal cul ate their |ikelihoods

3. Set j—j+1

. 4. Find point with | owest Iikelihood

| . val ue (Lj)
- o "6'1' 5. Remmining prior volume X; = tjXj_1 where
x N-1.
L(z) Pr(tj[N) = Nt;;

or just use (tj)=N/(N+1)

6. Increment evidence E— E+L;w;

L} 7. Rermove | owest |ikelihood point from

" active set
v' 8. Replace with new point sanpled from
T m(6) within hard-edged region L(6)>L;

9. If LmaXj<aE (where a=sone tol erance)
s s s ' -a r‘- . [ = E_>E+XJZIN:1L(9|)/N, StOp
' ~ el se goto 3

Figure 5: The nested sampling algorithm and its pictoral represiemtéthe latter from [16]).

Let us now suppose one can evaluafe= L(X;) where 0< Xy < --- < Xp < X1 < 1. In this case,
one can therefore estimafeby any numerical method:

m
E= Ljo, (3.2)
&
wherew; are an appropriate set of weights; for a simple trapeziuswwyl= %(Xj_l —Xj+1).

In nested sampling the summation (3.2) is performed astridltesd in Fig. 5. The key ad-
vantages are that: (i) in cosmological applications nessedpling typically requires- 100 times
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Figure 6: Practical nested sampling: single ellipsoidal method)(kid clustered ellipsoids method (right).

fewer samples than thermodynamic integration to calcw@aitdence to same accuracy; (ii) nested
sampling does not get stuck at phase changes, unlike thgmawoic integration. In addition to
efficient evaluation of the evidence, posterior sampleseamgly obtained as a by-product. One
simply takes the full sequence of sampled poitand weights théth sample byp; = Liw; /E.
For example, if one were interested in deriving constrammsome quantity, then its mean and
standard deviation are given by

Ho =) PQ(6), o :Z(plQ(ei)_UQ)z-

The main problem to address in the nested sampling algorighmow to sample efficiently
from the prior (which is often uniform) within some complied, hard-edged likelihood constraint.
This is not well-suited to standard MCMC techniques. The pablished technique thus far [19]
involves fitting an ellipse to the active points and selagtivithin it, but this is still problematic in
a number of ways, particularly for multimodal posteriorgisldifficulty is illustrated in Fig. 6 (left
panel), from which it is clear that sampling from the singlse will have a very low acceptance
rate. Moreover, this problem becomes rapidly worse as th&beu of dimensions increases.

In such a situation, one would instead wish to sample frontweseparate ellipses illustrated
in Fig. 6 (right panel), in which case the acceptance rateldveemain very high. [20] propose
a clustered nested sampling algorithm that can accommaualttmodal posteriors. In this ap-
proach k-means clustering (see [16]) is used to find exastlydusters at each stage of the nest.
The volumes of the enclosing ellipsoid(s) in the clustened @nclustered cases are calculated and
the clusters accepted if the total enclosing volume is reddny a specified fraction and the clus-
tered ellipsoids do not overlap. The process is then regdagearchically. The advantage of this
approach is that one need not know the number of clustersvianaé and it provides an elegant
method for parallelising the process. Nonetheless, théadetvould still be inefficient for elon-
gated ‘banana-shaped’ degeneracies. Fig. 7 shows theesmoighined in applying the algorithm
to a simple toy posterior consisting of three Gaussian pegke estimated log-evidence value is
InEegst= —5.164 0.09 as compared with the true valuegp,e = —5.22.

4. Cosmological applications of Bayesian model selection

Although the use of the evidence to perform Bayesian modetsen is relatively new in
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Figure 7: lllustration of cluster nested sampling applied to a pasteonsisting of three Gaussians.

cosmology, there already exist a number of areas in whichsitdeen applied. In this final section,
we give a brief outline of some of these investigations, i aim of illustrating the wide range
of applications for the evidence.

4.1 Extending the cosmological parameter set

The most obvious use for the evidence in a cosmological gbrgen deciding whether the
existing cosmological data imply the need for more free p@&tars than in the standardCDM
model. In this application, the hypotheses (models) arariglenested. Care must be taken, how-
ever, since evidence values clearly depend on the choicaraihpeterisation and the associated
priors. It must also be remembered that evidences for diffemodels can only be compared when
considering the same (combined) dataset.

Several investigations have been performed using differédence evaluation methods. The
earliest use of evidence in this context was by [10] in refatio fixing or varying the Hubble
parameter. In terms of full, multi-parameter cosmologicaldel fitting to combined datasets,
however, [23] presented the first account, in which thermadijc integration was used to eval-
uate evidences for a set of models of increasing complexétgmnely ACDM + Qi + f, + (R,ny).
Subsequently, [1] used the Gaussian approximation anchttdymamic integration to investigate
the model seN\CDM + 3 isocurvature mode models; [27] used the Gaussian appatiximand
the Savage—Dickey density ratio to evaluate evidenceshmmiodel set®\CDM-HZ + ng + Qy
and ACDM + simple isocurvature mode; and [19] used nested samplingléztsfrom the model
setACDM-HZ 4 ns+w. All find the maximum evidence for the standak€ DM model with a
variable power-law inders.

4.2 The form of the primordial power spectrum

More extensive investigations into the preferred modetterprimordial power spectrum have
been performed by [2] using Bayesian evidence. Fig. 8 shbeventodels of the primordial power
spectrum considered. In particular, the ‘Lasenby & Dorg@cirum results from a cosmological
model with a novel boundary condition that restricts thaltobnformal time available to the uni-
verse [15]. Also investigated was a ‘broken spectrum’ mdkat consisted of two scale-invariant
sections joined by a sloping line segment. Some exampleerg@results are given in Table 1,
from which we see that the Harrison-Zel'doviah, & 1) model is strongly disfavoured relative to



Methods and tools for statistical analyses of CMB data Anthony Lasenby and Michael Hobson

35r

35

30 301

Harrison-Zeldovich
b ¢ ——— — ——— -

25

P(K) [/10™]
P(k) [/10™]
b

201

20

Single index with cutoff

5
0.0001 0.001 0.01 0.1
k [Mpc']

15
0.0001 0.001 0.01 0.1

k Mpc ]

Figure 8: Models of the primordial power spectrum: parameterisedetofleft) and free-form fit in bins
(right).

Model INnE; — InEg
Constanin 0.0+ 0.5
H-Z -4.4+0.5
Running -0.8+ 0.6
Cutoff 0.44+05
Broken -2.7+0.6
Binned -6.1+ 0.6
Lasenby & Doran|| 4.1+ 0.5

Table 1: Differences of log evidences (for primordial parameteos |l models with respect to single index
model within a current (near) concordance cosmolo@y:= 1.024 Qyh? = 0.0229h = 0.61, Qgmh® =
0.118, as compared to the Lasenby & Doran model (treated aspatn

a power law with variablens. The binned model is also disfavoured indicating it is urssaily
complicated to explain the data. Interestingly, the LagefitDoran model is clearly the most

favoured.

4.3 Arotating universe and Bianchi models

Several authors have commented on a significant North/Smytmmetry in the WMAP data,
plus strange alignments between low multipoles. [11] fid’lanchi VI, template to the WMAP
sky and found a best fit witlg = 0.5. The coldest part of the template corresponds with a non-
Gaussian spot found in [28] and investigated further in Hdwever,Qy = 0.5 is in conflict with
most other astrophysical indicators. Can one achieve time $& models including\? This has
recently been investigated by [12] and a full Bayesian exgbion of the parameter space of this
model has been performed by [3].

Generally, a non-zerf has the effect of the shortening conformal time availahhe, 0 one
needs very smah values in order to get similar smaller scale effects. Oneodisrs it is impossible
to find a good model in which the Bianchi template cosmolodyesmatch those of a background
cosmology that fits existing data (e.g. the acoustic pealg\ertheless, it is still interesting to

10
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Figure 9: Simulated skies containing standard CMB anisotropiesléftpsuperposed on a Bianchi template
(top left) with different amplitudes (bottom 8 panels). TBianchi amplitude parametes, which measures
the vorticity, and the log-evidence difference obtainegisirown in each case.

evaluate the evidence for the Bianchi ytodel, treating it merely as a template. How much do
we really need it in our data?

As an illustration, we can simulate maps containing Biatetmiplates with different vorticities
and see how well the evidence value can discriminate betwmelels with and without a Bianchi
component. From Fig. 9, we find that we start to be able to idiscate, at about the level of
the original Bianchi template. Indeed, considering thistfe real data (né\ now), then in [3]
evidence is found in favour of the introduction of a Bianamplate. Since the original version of
this paper, however, new calculations have shown that tlikeese difference is only weak (less
then 1 unit in IrE for both the WMAP1 and WMAP3 data sets), so the jury is still o whether
the introduction of a template of this kind is really needed.

4.4 Combining cosmological datasets

One often estimates cosmological parameters by a joinysisadf a number of datasets. The
standard technique for independent datasets is simply toptguikelihoods. Freedom exists,
however, in the relative ‘weight’ given to each datasefs thieighting is usually ad-hoc — datasets
are excluded (weight zero), or included (weight unity). téasl one can include weights as hy-

11
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Figure 10: Left: posterior ellipses for joint data sets with differiggometric degeneracies with a centre
separation of 7 units. Right: the corresponding r&ior each case (and the case where the axis orientation
6 = 11/6) as a function of the separate of the centres of the disimibs (from [18]).

Basic parameter Prior
(Y (0.0050.05)
dm (0.01,0.4)
Qk (—-0.3,0.3)
h (0.4,0.9)
Ns (0.8,1.2)

T (0.01,0.7)
log 101%A¢ (1,5)

Table 2: Prior ranges assumed in the test for mutual consistencyffefeint cosmological datasets.

perparameters, then marginalise them out [14]. One canhgsevidence to select between the
modelsHo = ‘all weights unity’ andH; = ‘each dataset has free weight 0)’ to determine if the
data support introduction of hyperparameters [7].

Another approach to testing the mutual consistency of wiffe datasets [18] is to use the
evidence to select between moddis= ‘all datasets generated by same cosmological parameters
andH; = ‘each dataset generated from different set of cosmologiaeameters’, then calculate
the ratio

_ E(D|Ho) Pr(Ho) ~ E(D[Ho) Pr(Ho)

~ E(D[Hy) Pr(H1)  [kE(Dk|H1) Pr(Hp)

A toy example is illustrated in Fig. 10. The method has begqgliegh to real data (also by [18]),
for the joint datasets CMB (WMAP1+VSA+CBI+ACBAR) + SDSS + $A, in the context of
a ACDM model, using the priors listed in Table 2. For differeataket combinations one finds:
INR=0.23 for CMB + SDSS; IiR= 1.5 for SDSS + SN1A; IR = 1.6 for SN1A + CMB; and
INnR= 4.5 for CMB + SDSS + SN1A. Thus, in general, the null hypothésjss favoured.

R

4.5 Component separation

Observations of the CMB are contaminated by foregroundsirttifrequency observations

12



Methods and tools for statistical analyses of CMB data Anthony Lasenby and Michael Hobson

allow a component separation to be performed. Several bimtinon-blind methods have been
proposed, but the current approach for Planck is to userspecatching independent component
analysis (SMICA) [5] to determine the component power gjpeahd mixing matrix, followed by
the maximum-entropy method (MEM) or Wiener filter ([8],[24b obtain the component maps
and refined power spectra. The evidence can be used to gead iafboth stages.

In the SMICA algorithm the evidence provides a means of daténg the number of compo-
nents present in the data. The SMICA approach modelstlilequency observations as a noisy
mixture of n. Gaussian random fields. The analysis is performed in hagrgpace, using the
model dim = By A sim+ nym, Where By and A denote the beam and mixing matrices respectively.
Thus the model data covariance matrices réad= B;AS;A'B} + Ny, with S; and N; (block)
diagonal. We may construct the corresponding data covaeiab, and form the log-likelihood

InL = _%; [Tr(bm;l) +In|Dy|| .

One maximises |h using a combination of expectation maximisation and caatigiggradient al-
gorithms to obtain estimateS, and A. Calculating the Hessian matrix at the peak allows one to
calculate the Gaussian approximation to the evidence. Gayetinen plot the evidence versasto
estimate the number of components [26].

In the MEM/Wiener filter algorithm the evidence can be usedatermine the appropriate
level of regularisation in performing the reconstructigXll regularised harmonic-space methods
involve minimising some function of the form.

F (stm) = X2(8em) — Q¢S 8¢m)-

At each? one can determine, by maximising the evidence (using a Gaussian approximgation
This enables automatic, optimal, scale-dependent raégalemm and stable iterative updating of
power spectra. One can also use the Hes&fapn = O0F (sy,) at the peak to estimate the co-
variance matrix of the reconstruction errors. The generthod is easily extended to accommo-
date anisotropic noise, cut-sky data and (weakly) spgtiatying spectral parameters [25]. The
method has recently been applied to the Planck Working GRorgmponent separation challenge
with promising results (see Fig. 11); more sophisticatethds are to come.

4.6 Obiject detection

An important issue in the analysis of CMB data is the detactiod characterisation of discrete
objects, such as SZ clusters and point sources. A numberyafSim approaches to discrete object
detection have been proposed by [9] and shown to outperftandard linear filtering techniques
(see also [17]).

One approach is to detect objects simultaneously. One a&ssam unknown numbeM of
objects in the model of the dat® = n + S ; s(ax), whereay are the parameters characterising
thekth object. Assuming the background emission and noise tadbs$ian, the likelihood function
is simply
exp{—3[D —s(6)'N-Y[D-s(0)]}

(zn)Npix/2|N|l/2 ’

L(D|0) =

13
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Figure 11: Application of MEM component separation to the WG2 challengpnsisting of 9 Planck chan-
nels, all with 10 arcmin beams and containing CMB, dust,-free and synchrotron emission. Top row:
CMB map input (left), output (middle), residuals (right)ofBom left: CMB power spectrum input (green),
output (black) and errors bars (red). Bottom right: CMB pogectrum residuals for various methods.

wheref = (ay, ap,...,an,N) is the total parameter vector. One can set prior§apacer(6) =
m(ay)--- (ay) andN, e.g. P(N) = uNe H /N1. One then explores the posterior distribution using
MCMC sampling to obtain optimal values of parameters, arsb@ated errors, in a single step.
The number of objects present is determined by maximisindeace with respect tbl. A toy
example is shown in Fig. 12. The main problem with this apginoia that it is computationally
very demanding, taking nearly 1 hour on a 1 GHz intel proaessobtain the results shown.

An alternative approach is to detect objects iterativel\s@guentially. At each iteration or
pixel, the model contains only a single object. One then m#ds the posterior in the object
parametersay using some optimiser or MCMC sampling. For each ‘identifielject, one then
selects between the modetis = ‘there is no object centred in this pixel’ ardl = ‘there is an
object centred in this pixel'. This is performed by calcingtthe ratio

_ E(D[Hy) Pr(H1) _ E(D[H1) (Nobj)

R= E(D|Ho) PriHo) _ E(D[Ho) Nopx

and one only accept objects wikhabove some threshold (usually zero). The iterative/sdgien
approach is very fast, detecting many 100s of objects ing@sstthan a minute.

5. Conclusions

The Bayesian framework provides a unified approach to datlysis, providing two levels of
inference: parameter estimation and confidence limits byimmaing or exploring the posterior;

14



Methods and tools for statistical analyses of CMB data Anthony Lasenby and Michael Hobson

0.8

0.6

Is)

y (pixel
0.4

0.2

100

x (pixels)

1500
200

150

1000
y (pixels)
100

Number of samples

500

50

I

; 5 |
0 2 4 6 8 10 12 50 100 150 200

Number of objects x (pixels)

Figure 12: Simultaneous Bayesian object detection: true map (to; ldétta map (top right); evidence
versusN (bottom left); posterior samples ftf = 7 model.

and model selection by integrating the posterior to obtaéretvidence. There exist several methods
for evaluating the evidence: Gaussian approximation aadstvage—Dickey density ratio (which
are approximate or restricted in their applicability); atheérmodynamic integration and nested
sampling (which are generally applicable).

Model selection using the evidence has many (cosmologagblications, including: the
inclusion of additional free cosmological parameters; fiilen of primordial power spectrum;
Bianchi models and other exotic models; combining cosmotbglata-sets and consistency checks;
number of components and regularisation in component agpay and object detection. Further
(cosmological) applications remain — you might like to trjor yourself!
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