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We summarize some of the new results emerging from our recentmulti-dimensional simulations

of core collapse and explosion. We see a new role for rapid core oscillations and acoustic power

in igniting asymmetrical supernova explosions and obtain explosions for all progenitors studied.

Furthermore, we have explored the effects of rapid rotationand have estimated the degree of

anisotropy of the emergent neutrino emissions in the generic context. All these aspects bear

on the mechanisms of explosion and pulsar proper motion. While more detailed calculations are

called for, if any of the newly-identified phenomena survive, we suggest that the field of supernova

theory may be entering a new and productive phase.
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1. Possible Surprises in Supernova Theory

The mechanism for the explosion of core-collapse supernovae has vexed theorists for decades.
Though no definitive answers have achieved consensus, some new ideas have emerged from the
recent generation of multi-dimensional computer simulations that have stimulated thought, and
some controversy. None more so than the model proferred by Burrows et al.[1]. This model
emerges naturally from our 2D radiation hydrodynamic runs using the multi-group flux-limited
diffusion (MGFLD) variant of VULCAN/2D and does not hinge upon neutrino heating to ignite
explosion. Rather, acoustic radiation from the damping of core g-mode oscillations substitutes as
the driver of explosion. First, an advective-acoustic oscillation à la Foglizzo[2, 3] with a period
of ∼10−30 milliseconds (ms) begins in earnest hundreds of milliseconds after bounce. Its growth
saturates due to the generation of secondary shocks, and kinks in the resulting shock structure
funnel and regulate subsequent accretion onto the inner core. However, this instability is not the
primary agent of explosion. Rather, it is the acoustic power generated early on in the inner turbulent
region stirred by the accretion plumes, and most importantly, but later on, by the excitation and
sonic damping of core g-mode oscillations. Anℓ = 1 mode with a period of∼3 ms grows at
late times to be prominent around∼500 ms after bounce. The accreting protoneutron star is a
self-excited oscillator, tuned to the most easily excited core g-mode. The angular distribution of
the emitted sound is fundamentally aspherical. The sound pulses radiated from the core steepen
into shock waves that merge as they propagate into the outer mantle and deposit their energy and
momentum with high efficiency. The ultimate source of the acoustic power is the gravitational
energy of infall and the core oscillation acts like a transducer to convert this accretion energy
into sound. An advantage of the acoustic mechanism is that acoustic power does not abate until
accretion subsides, so that it is available as long as it may be needed to explode the star.

Whether all, some, or none of this phenomenology survives remains to be seen. Currently,
there is no other supernova code that combines the features necessaryto simulate this model: 1)
multi-group, 2) general grid that can liberate the inner core to executeℓ = 1 g-mode oscillations, 3)
general gravity, and, we believe, 4) moving grid capability. Due to the finite-difference character
of 2D codes that employ spherical coordinates all the way to the center, to the singularity in those
coordinates at that center, and to the reflecting boundary condition frequently imposed at this center,
spherical-coordinate codes are likely to inhibit core translational motions artificially and, hence, to
inhibit theℓ = 1 g-modes that are central to the mechanism we have identified. In fact, mostmulti-
D supernova codes either do the inner core in 1D, or excise the inner core altogether. Hence, testing
the acoustic model will be a challenge.

Nevertheless, we present here in graphical form a subset (by no means exhaustive) of the
special features that mark our recent multi-D simulations. First, in the left panel of Fig. 1 we
present an equatorial slice of the mass density at early and late times for oneof our collapse runs
of the 15-M⊙ progenitor model of Woosley, Heger, & Weaver[4](WHW02). The plus signs mark
the zone positions. This figure serves to demonstrate that we maintain approximately five zones
per decade in density even around the neutrinospheres near 30 kilometers (km). Though better
resolution is desirable, this resolution is not bad. On the right panel of Fig.1 we depict the
position(s) of the shock along the two poles of our axially-symmetric calculations for simulations of
the 11.2, 13, and 20 M⊙ models of WHW02. This slice provides a glimpse of the advective-acoustic
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oscillation of the shock (termed the Standing-Accretion-Shock-Instability, “SASI,” by Blondin,
Mezzacappa, & DeMarino[3]) before explosion. The SASI excursions≥200 milliseconds after
bounce are large, the top and bottom hemispheres are not in phase, the dominant frequency is an
increasing function of progenitor mass (actually, accretion rate while stalled[5]) and ranges from
∼30 to∼80 Hertz, and the average radius of the shock is larger for the smallest progenitor. The
vigorous stirring and turbulence generated by the SASI sets the stage forthe excitation of the
core oscillations and explosion by the core acoustic model. The left-hand-side and right-hand-side
of Fig. 2 portray maps of the entropy distributions along the poles (plus z andminus z in our
cylindrical coordinate system) versus time for a simulation of the 11.2 and the 20M⊙ models of
WHW02. These plots cover the SASI phase to the onset and early development of the explosion.
High entropies (dark) generated by the superposition of multiple shocks and neutrino heating are
an index of explosion. Note that the delay to explosion is not short and thatthe two models explode
in opposite directions (though the 11.2-M⊙ model is more symmetric). The direction of explosion
is stochastic and completely determined by chaos and chance.

As an aside, we show in the left panel of Fig. 3 the magnetic fields that would be necessary to
compete with the local pressure in the polar directions. The darkest regions (highest fields) obtain
in the center, where the pressure is very high. Note that fields as high as 1014 gauss would be called
for even at radii as large as 200 km and that fields as high as 1017−18 gauss would be required in
the centers. Such high fields (β = 1) might obtain for the most rapidly rotating progenitors[6],
particularly at radii of 30-300 km, but for slowly rotating progenitors, which seem generic[7], they
are unlikely to be generated.

On the right-hand-side of Fig. 3, we provide a 3D rendition at a time just afterbounce, but be-
fore explosion, of the simulation by Dessart et al.[8] of the dynamics of a white dwarf in the context
of accretion-induced-collapse (AIC). Such models achieve the Chandrasekhar mass and rapid rota-
tion by accretion from a stellar companion. The surfaces are isodensity contours and the arrows are
velocity vectors, with rotation included. The collapse proceeds mostly along the poles where the
centrifugal effect is minimal. The equatorial material is soon supported in quasi-Keplerian orbits in
the inner regions and constitutes the early disk. Within 100 milliseconds of bounce, the explosion
(not shown) blasts asymmetrically along the poles; within∼250-300 milliseconds, wide-angle,
bipolar, neutrino-driven jets emerge. Due to rapid rotation of the inner core, the neutrinospheres
are grossly aspherical and the core is quite oblate (with 1:2 - 1:3 axis ratios). As Fig. 3 indicates,
VULCAN/2D is capable of incorporating modest or extreme rotational effects, depending on the
initial rotational structure of the progenitor. This is a useful feature.

Finally, we show on the left in Fig. 4 the force on the inner core due to neutrino recoil and
on the right the corresponding impulse (time integral of the force) versus timeduring the first post-
bounce second of our simulation of the 11-M⊙ model of Woosley & Weaver[9]. The MGFLD
version of VULCAN/2D is uniquely capable of providing semi-realistic value for these quantities.
We find that during the pre-explosion phase, the neutrino recoil averages to small values, but that
with explosion the neutrinos emerge anisotropically. In our axisymmetric calculations, the neutrino
flux for all species is higher andhotterin the direction of explosion. As a result, the recoil effects of
both neutrinos and matteradd. This phenomenology provides a natural mechanism for pulsar kicks:
the accumulating neutrino impulse and the asymmetric matter blast impart a systematic recoil to the
residual protoneutron star, in a fashion that is quite natural for a top-bottom asymmetric explosion.

3



P
o
S
(
N
I
C
-
I
X
)
0
3
2

New ideas in the theory of core-collapse supernova explosions Adam Burrows

This recoil grows over a long time (many seconds, as inferred from our simulations). Which effect
dominates, the matter recoil or the neutrino recoil, remains to be determined, butat this stage in
our theoretical explorations either could.

What the actual contributions of sound and neutrinos are to the supernova phenomenon as a
function of progenitor remains to be determined and will require even more sophisticated numerical
tools than we have applied to date to reach an accepted answer. However,we see in our current
suite of multi-D calculations a possibly pivotal role for mechanical and acoustic power and for core
motions.
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Figure 1: Left: Illustration of the temporal evolution of the equatorial density profiles at selected post-
bounce times (earlier is darker), for the 15-M⊙ model of WHW02. Symbols correspond to the VULCAN/2D
grid-point locations along the equatorial direction and inthis specific run. Although the resolution could be
improved, our standard grid setup allows the coverage of every density decade with at least 5 points, even at
late times.Right: Time evolution of the shock radius along the poles for our VULCAN/2D simulations of
the 11.2-M⊙ (dark), 13-M⊙ (gray), and 20-M⊙ (light) models of WHW02.

Figure 2: Time evolution of the entropy profiles along the poles of the 11.2-M⊙ (left panel) and 20-M⊙
(right panel) models of WHW02, as calculated by Burrows et al.[1, 5]. The positions of the shocks are
clearly indicated by the abrupt transition from the low entropy (light shaded region) of the infalling material.
Grayscale bars indicating the values of the logarithm of theentropy (per baryon per Boltzmann constant) are
provided on the right-hand-sides of each panel and go from light (entropy∼ 1) to dark (entropy≥ 100 per
baryon per Boltzmann’s constant).
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Figure 3: Left: Grayscale of the time evolution after bounce of the quantity
√

(8πP) (in gauss), where
P is the thermal pressure, for the 11.2-M⊙ model of WHW02. This quantity corresponds to the value of
the local magnetic field required to have equal thermal and magnetic pressure contributions (a plasmaβ of
unity). Right: A snapshot employing isodensity contours during the immediate post-bounce phase of the
simulation of a rapidly rotating white dwarf created in accretion-induced collapse. The arrows indicate the
direction and magnitude of the velocity vectors, includingthe effect of rotation. This model soon explodes
along the poles, leaving behind a thick disk of material (Simulation performed and published by Dessart et
al.[8].

Figure 4: Left: Angle-averaged force due to the emergent neutrinos as a function of time after bounce for
the 11-M⊙ model of WW95, from the calculations of Burrows et al.[1].Right: Time integral (impulse) of
the instantaneous force shown in the left panel as a functionof time after bounce. Since by∼1 second after
bounce a 1.4 M⊙ neutron star had formed, the kick imparted as a result of the anisotropy of the neutrino
emissions was no more than∼10 km s−1 at that time, but was still increasing at the end of the calculation.
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