

Measurements of the (n,γ) and (n,n') reaction cross sections on ^{186,187,189}Os and ¹⁸⁷Re-¹⁸⁷Os cosmochronology

Mariko Segawa^{1*}, Y. Nagai¹, Y. Temma¹, T. Masaki¹, T. Shima¹, T. Ohta¹, A. Nakayosi¹, J. Nishiyama², M. Igashira²

¹Research Center for Nuclear Physics, Osaka University
10-1 Mihogaoka, Ibaragi, Osaka 567-0047, Japan
²Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
O-okayama, Meguro, Tokyo 152-8550, Japan
E-mail: segawa.mariko@jaea.go.jp

We measured the neutron capture cross sections of the ^{186,187,189}Os isotopes reaction by taking their pulse height spectra for neutrons between 10 and 90 keV by means of an anti-Compton NaI(Tl) spectrometer, and also the neutron inelastic scattering cross section for ¹⁸⁷Os as well as the neutron elastic scattering cross sections for ^{186,187}Os using ⁶Li-glass scintillation detectors with a small systematic uncertainty.

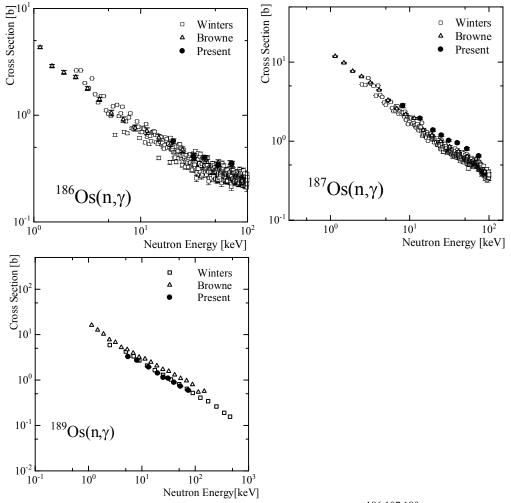
International Symposium on Nuclear Astrophysics – Nuclei in the Cosmos – IX CERN, Geneva, Switzerland 25-30 June, 2006

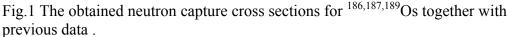
^{*} Speaker Mariko Segawa present address: ¹Japan Atomic Energy Agency 2-4 Shirakata shirane, toukaimura, nakagun, Ibaraki 319-1195, Japan

1. Introduction

The ¹⁸⁷Re nucleus is known to be produced only by the r-process, its half-life of 42.3+1.3 Gyr is quite long, and the geochemical property of Re is similar to that of Os [1]. Hence, in taking the ratio of ¹⁸⁷Re abundance to that of the isobaric daughter ¹⁸⁷Os, one could derive the stellar duration of the r-process nucleosyntheis and deduce the age of universe. These features of ¹⁸⁷Re mentioned provides the Re-Os pair to be one of the good cosmochronometers [2]. However, there are several problems inherent to this chronometer. First, ¹⁸⁶Os is the s-only isotope, and therefore ¹⁸⁷Os is also produced by the s-process by ¹⁸⁶Os. Second, the first excited state is so low at 10 keV in ¹⁸⁷Os that the state could be significantly populated at a stellar temperature. Hence, ¹⁸⁷Os is depleted by the neutron capture process not only via the ground state of ¹⁸⁷Os but also its excited state. In order to extract the abundance of ¹⁸⁷Os, which can be attributed to ¹⁸⁷Re decay, one must know both the production and depletion rates (via the excited state as well as the ground state) of ¹⁸⁷Os. The production rate of ¹⁸⁷Os and the depletion rate of ¹⁸⁷Os via its ground state could be obtained by measuring the neutron capture cross section of ¹⁸⁶Os and ¹⁸⁷Os, respectively. On the other hand, the depletion rate via the excited state should be calculated theoretically, since it is not possible to measure the neutron capture cross section for the first excited state of ¹⁸⁷Os. In order to construct reliable theoretical models to calculate the excited state neutron capture cross section, the measurements of the inelastic scattering cross section off the ground state $(J^{\pi} = 1/2^{-})$ of ¹⁸⁷Os to its excited 10keV state $(J^{\pi} = 3/2^{-})$), and of the neutron capture cross section of the ground state $(J^{\pi}=3/2)$ for ¹⁸⁹Os were suggested.

So far, the neutron capture cross sections for 186,187,189 Os, and the neutron inelastic scattering cross section for 187 Os were extensively measured by several groups. However, previous data are not consistent and/or have a large uncertainty, and therefore they are hardly used to discriminate theoretical models [3,4,5,6,7].


Hence, in the prsent study we aimed to accurately measure the neutron capture cross sections of ¹⁸⁶Os, ¹⁸⁷Os, and ¹⁸⁹Os, and the inelastic scattering cross section for ¹⁸⁷Os for neutrons between 10 and 90 keV by developing a new experimental method.


2. Experimental procedures and results

The experiments were carried out using pulsed keV neutrons, which were produced by the ${}^{7}\text{Li}(p,n){}^{7}\text{Be}$ reaction. A pulsed proton beam was provided from the 3.2 MV Pelletron accelerator at Tokyo Institute of Technology.

2.1 Neutron capture reaction cross sections for ^{186,187,189}Os

The measurements of the neutron capture cross sections for ^{186,187,189}Os were carried out by employing a prompt discrete γ -ray detection method. Prompt γ -rays emitted from the neutron capture reaction of Os isotopes were detected by means of an anti-Compton NaI(Tl) spectrometer [7]. The cross sections were obtained by comparing the γ -ray yield of the ^{186,187,189}Os(n, γ) reactions to that of the ¹⁹⁷Au(n, γ) reaction, whose cross section is well known within an error of 3 %. The obtained capture cross sections of ^{186,187,189}Os are shown in Figs.1 together with previous ones. The obtained cross sections decrease quite smoothly with increasing neutron energy, and therefore the present keV neutron capture reaction is considered to dominantly proceed via an s-wave neutron capture process. The present result for ¹⁸⁷Os is \sim 20 % larger than previous data, while the result for ¹⁸⁶Os (¹⁸⁹Os) is in good agreement with the previous result taken by Browne et al.[4] (Winters et al.[3]).

2.2 Neutron elastic and inelastic scattering cross sections for ¹⁸⁷Os

The measurement of the neutron elastic scattering cross sections of ¹⁸⁶Os and ¹⁸⁷Os, and of the inelastic scattering cross section of ¹⁸⁷Os was performed by detecting neutrons scattered by the samples with four ⁶Li-glass detectors with a TOF method (see also Ref. [8], in which one can find a detailed description of the present experimental method). A schematic view of the experimental setup is shown in Fig. 2.

In this study we used neutrons of E_n =10-70 keV, but not mono-energetic neutrons. Note that both neutrons scattered inelastically and elastically by ¹⁸⁷Os were measured simultaneously

by ⁶Li-glass detectors. Hence, we could not separate neutrons scattered inelastically by ¹⁸⁷Os from those scattered elastically by ¹⁸⁷Os. In order to subtract the yield of the elastically scattered neutrons from total neutrons scattered by ¹⁸⁷Os to obtain the yield due to the inelastic scattering by ¹⁸⁷Os, we measured the neutron yield Y_n (¹⁸⁶Os) due to the elastic scattering by ¹⁸⁶Os. Note that Y_n (¹⁸⁶Os) only contained the neutrons due to the elastic scattering by ¹⁸⁶Os, since the first excited state of ¹⁸⁶Os is as high as 137 keV. Here, energy dependence of the elastic scattering by ¹⁸⁶Os is calculated to be the same as that for ¹⁸⁷Os (private communication by Goriely et al.).

Using the thus obtained neutron yield due to the inelastic scattering by ¹⁸⁷Os, we could determine the neutron inelastic scattering cross section by referring the neutron elastic scattering cross section for ¹²C, which is known accurately within an uncertainty of 4%. The detailed analysis for the elastic as well as inelastic scattering cross sections for Os isotopes mentioned is in progress.

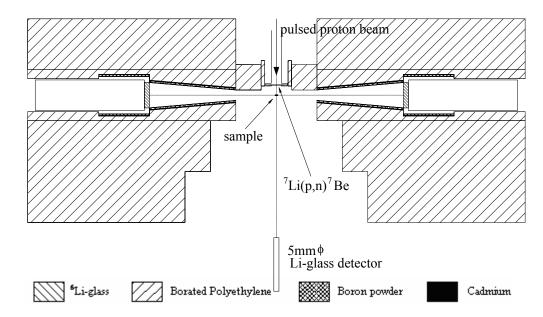


Fig.2 Experimental set up for neutron inelastic scattering cross section measurement for Os isotopes.

3. Summary

We measured successfully prompt γ -rays from the neutron capture reactions for ^{186,187,189}Os using an anti-Compton NaI(Tl) spectrometer. We also succeeded to measure the inelastically scattered neutrons spectrum for ¹⁸⁷Os accurately.We expect that the inelastic scattering cross section for ¹⁸⁷Os could be determined with an uncertainty of less than 10% with use of this newly constructed system. Detailed data analysis is in progress.

References

[1] M. Linder et al., Geochem. Consochem. Acta. 53. 1593 (1989).

- [2] D. D. Clayton, Astrophys. J. 139, 637 (1964)
- [3] R. R. Winters, Astron. Astrophys. 171, 9 (1987)
- [4] J. C. Brown, Phys. Rev. C23, 1434 (1981)
- [5] R.L. Macklin, R. R. Winters et al, Astrophysi. J. 274, 408 (1983)
- [6] R.L. Hershberger, R.L. Macklin et al, Phys. Rev. C 28 2249(1983)
- [7] M. T. Mcellistrem, R. R. Winters, R. L. Hershberger et al, Phys. Rev. C 40, 591 (1989)
- [8] M. Segawa et al, Nucl. Instr. and Meth. A 564, 370-377 (2006)