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A new algorithm is proposed for solving large networks of stiff coupled differential equations in

various scientific applications. The algorithm replaces differencing of abundance variables with

evolution of discrete populations. It reproduces quantitatively the results of standard methods,

but with important advantages. (1) The algorithm is explicit, yet it decouples accuracy from sta-

bility for stiff systems, permitting explicit integration with a timestep set by the former rather

than the latter, thereby avoiding implicit solves. (2) It exploits sparseness perfectly, computing

only those reaction links that the physical system traverses. (3) It scales linearly with the number

of couplings for large sparse networks, in contrast to the quadratic to cubic scaling of standard

methods. (4) Unlike Monte Carlo, for large physical particle number, execution time is indepen-

dent of the number of test particles, allowing even weaker populations to be tracked efficiently.

(5) The decoupling of stability from accuracy allows stable tuning of large networks to optimize

accuracy versus computational time. We propose that this new approach can be used to solve

large, stiff networks for many complex systems, such as the coupling of realistic networks to

multidimensional hydrodynamics, that tax the capability of standard methods.
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1. Introduction

Phenomena in many scientific disciplines may be modeled by fluxes transferring population
between sources and sinks for various species. Let us refer generically to these sources and sinks as
boxes, and term the resulting systems of boxes connected by fluxesreaction networks. Of particular
interest in the present context are thermonuclear reaction networks in astrophysics, but the method
described here should be applicable to a much broader class of problems. For such systems one
usually solves numerically a coupled set ofN ordinary differential equations

dYi

dt
= ∑

j

Fi j, (1.1)

whereYi(i = 1. . .N) describe the abundances,t is the the time, the fluxes between speciesi and j
are given byFi j , and the sum for eachi is over all j coupled toi by a non-zeroFi j . Thus, Eqs. (1.1)
describe a continuous and deterministic evolution of populations between the boxes.

2. The Explicit Stochastic Method

Nature does not know about differential equations like (1.1). Instead, new species are produced
when initial species interact according to the physical theory governing the system and undergo
reactions that alter populations. For microscopic systems these reactions and decays are inherently
stochastic: in a thermonuclear reaction network, an individual nucleus of13N does not evolve
continuously to other isotopes. Instead, in any time interval it has a certain probability to remain
13N, a certain probability to beta decay, a certain probability to capture a proton and emit a gamma
ray, and so on, with these (stochastic) probabilities governed by the rules of quantum mechanics.

The description implied by Eq. (1.1) may be converted into a stochastic description more in
keeping with actual physical processes through the following steps. Assume the boxesi to have
populationsYi. In a small time∆t, the total number of particles transferred from boxi to box j is
given byFi j∆t and the total number of particles transferred to all boxes from boxi is ∆Yi = ∑ j Fi j∆t,
where we assume on physical grounds that∑ j Fi j∆t ≤ Ni. Therefore, the probabilityPi j for a given
entity in boxi to make a transition to boxj is

Pi j =
Fi j∆t

∑
j

Fi j∆t
=

Fi j

∑
j

Fi j
, (2.1)

and the sum of all such probabilities (including the probability of no transition) is unity,∑k Pik = 1.

This suggests the algorithm indicated schematically in Fig. 1 to evolve network populations.

3. The Large Particle Number Limit of the Stochastic Algorithm

The preceding discussion has introduced the stochastic method in a basic form that closely
approximates the actual physical processes modeled by Eqs. (1.1). As a numerical method, the
algorithm in this form works best for evolution of strong populations, since resolution of weak
populations requires tracking large total numbers of test particles. In the (usually fulfilled) case
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Figure 1: The stochastic algorithm.

corresponding to a macroscopic number of physical particles, it is no longer necessary to track
the evolution of individual test particles explicitly by throwing dice because we already know the
outcome of this exercise with extremely high certainty. In the large particle number limit, we
may simply transfer whole blocks of test particles to daughter boxes in proportion to the fluxes
connecting the parent and daughter boxes in a given timestep. Then the change in populationNi

for box i in the time interval∆t is given by

∆Ni = ∑
j

∆Ni j = ∑
j

Fi j∆t. (3.1)

However, because of the physical heritage of the model (evolution of populations), we cannot
transfer particles that don’t exist and therefore no negative fluxes are permitted:Fi j →max(Fi j,0)≡
F̃i j . The corresponding algorithm is efficient and reproduces the results of a variety of test networks
from various fields of science. Although it is an explicit algorithm (all information needed to
advance a timestep is known at the beginning of the timestep, without iteration or matrix inversion),
it has proven stable for applications in very stiff systems, as will be demonstrated below.

4. An Example: Hot CNO Burning under Nova Conditions

Figure 2(a) compares some representative stochastic populations under nova (hot CNO) condi-
tions with the results of a standard implicit calculation. Note the almost perfect agreement between
implicit and stochastic methods over six orders of magnitude in the mass fractions in Fig. 2(a).
Figure 2(b) displays the fastest and slowest rates entering a representative stochastic nova simula-
tion as a function of time. The difference of about 18 orders of magnitude between the fastest and
slowest rates at any timestep is an indication that this is an extremely stiff system. For standard
explicit algorithms, the largest timestep permitted by stiffness stability criteria generally is of order
the inverse of the fastest rate in the network. For the calculations illustrated in Fig. 2(b), the inverse
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Figure 2: (a) Representative isotopic mass fractions under nova conditions computed with the explicit
stochastic algorithm (symbols), compared with an implicit backward Euler calculation (dashed lines). The
network contained 145 isotopes, with 924 non-zero couplings. For simplicity in interpretation, constant
temperature and density profiles were assumed. (b) Rates and timescales characteristic of a stochastic nova
simulation. Conditions as for part (a) but with a larger reaction library: 896 isotopes with 8260 couplings
were included but the stochastic algorithm traverses only the non-zero flux links in any timestep. (c) Com-
parison of maximum stable timestep [' 1/ratemax from part (b)] possible for a standard explicit integration
with much larger stable timestepsdt anddt ′ for some representative explicit stochastic integrations.

of the fastest rate gives the lower curve in Fig. 2(c). Thus a normal explicit algorithm would be
restricted by stability requirements to timesteps lying approximately in the shaded region below
this curve (dt ' 10−7 seconds or less).

In contrast, we show two curves in Fig. 2(c) for stable stochastic integration (adaptive) timesteps
lying far above this region. The curve markeddt is for a timestep small enough to give accuracy
comparable to Fig. 2(a). This timestep is some 105 times larger than would be stable for a normal
explicit integration. The curve markeddt ′ is for a much larger timestep that compromises accu-
racy for the weaker transitions but remains stable and calculates stronger transitions correctly. The
timestepdt ′ ∼ 100 seconds is about 109 times larger than would be stable for a standard explicit
algorithm. Since this is comparable to the characteristic timescale (∼ 103 seconds) of the physical
event being simulated, this stable explicit integration timestep is effectively arbitrarily large with
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Figure 3: The scaling of execution time with the size of the network for the explicit stochastic algorithm.

respect to the usual upper limit for explicit methods.

5. Scaling with Network Size

Implicit methods scale from quadratically to cubically with network size. The structure of the
explicit stochstic algorithm implies linear scaling for large sparse networks. We give an example
of actual scaling for explicit stochastic integration in Fig. 3, which shows the variation of time
to execute the stochastic algorithm (taking the same constant timesteps for all cases) with the
size of the network. These calculations assumed a constant density of 500 g cm−3 and constant
temperatures ranging from 0.05× 109 to 0.55× 109 K. The scaling with respect to network size
is indeed seen to be weakly linear. The slope of computing time versus number of couplings
depends indirectly on the temperature because the algorithm exploits the sparseness optimally,
calculating only those transition links corresponding to fluxes above a user-specified minimum
value. For higher temperatures, the number of fluxes exceeding this threshold can increase and
more calculations are required in each timestep.

6. Approach to Equilibrium

Perhaps the most difficult issue for stiff systems is the approach to equilibrium. Initial tests
of the present explicit method in various astrophysics and geochemical applications indicate that
it remains stable in the approach to chemical and nuclear statistical equilibrium. We are presently
testing the method extensively for the nuclear statistical equilibrium conditions appropriate for
Type Ia supernova explosions. If these tests are successful, the explicit stochastic method could
represent a major advance in the solution of large stiff networks for astrophysics and a number of
other disciplines.
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7. Summary and Conclusions

We conclude by summarizing briefly the most important properties of the stochastic algorithm
as applied to the solution of large, sparse reaction networks: (1) The algorithm decouples stability
and accuracy issues for the stiff system. (2) The algorithm exploits the sparseness of the equivalent
linear algebra system perfectly, since the population naturally follows only the paths of non-zero
transition probability. (3) The scaling of the explicit stochastic algorithm is weakly linear with size
of the network for sparse systems, in contrast to the quadratic to cubic scaling of implicit solvers.
(4) In the large physical particle number limit, execution time is independent of the number of test
particles (unlike Monte Carlo), allowing even weak populations to be tracked efficiently. (5) The
algorithm allows a user-defined tradeoff of accuracy against computational time that is independent
of stability issues. These characteristics suggest that the explicit stochastic algorithm can be used
to solve a variety of large network problems in many scientific and technical fields that lie beyond
the grasp of currently-used technologies.
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