

PoS

R-Process Nucleosynthesis in Alfvén Wave-driven Proto-Neutron Star Winds

Takeru K. Suzuki, Shigehiro Nagataki, Shinya Wanajo[‡]

E-mail: stakeru@provence.c.u-tokyo.ac.jp, nagataki@yukawa.kyoto-u.ac.jp, wanajo@astron.s.u-tokyo.ac.jp

We propose magnetic proto-neutron star (PNS) winds driven by Alfvén waves as well as the neutrino heating as an appropriate site for the r-process nucleosynthesis. Alfvén waves excited by surface motions of a PNS propagate outwardly, and they heat and accelerate the wind by dissipation. In the Alfvén wave-driven wind, larger entropy per baryon and shorter dynamical time scale are achieved, which favors the r-process. A PNS with surface $B_0 \gtrsim 5 \times 10^{14}$ G, gives suitable wind properties for the r-process in a typical case. We also perform nuclear reation calcuations and confirm this result; the 3rd peak elements are sufficiently synthesized in the Alfvén wavedriven wind in such a condition.

International Symposium on Nuclear Astrophysics — Nuclei in the Cosmos — IX June 25-30 2006 CERN, Geneva, Switzerland

^{*}Gradate School of Arts & Sciences, University of Tokyo

[†]Yukawa Institute for Theoretical Physics, Kyoto University; Kavli Institute for Particle Astrophysics and Cosmology Stanford Linear Accelerator Center

[‡]Department of Astronomy, University of Tokyo

1. Introduction

A neutrino-driven wind is probably the most promising site of the rapid neutron capture process (r-process). However, it is difficult to realize the suitable condition for the r-process in the wind of the standard proto-neutron star (PNS) (*e.g.* [1]). Recently roles of magnetic fields are highlighted to suitable circumstances for the r-process, namely short dynamical timescale, t_{exp} , and large entropy per baryon, *S*. Thompson (2003) [2] considered large-scale scale magnetic fields which confine the plasma to achieve enough *S*. As another possibility, Suzuki & Nagataki [3] proposed that Alfvén waves generated from magnetic PNS give faster acceleration (smaller t_{exp}) and larger heating (larger *S*) in the wind by the additional momentum and energy inputs. In this contribution, we firstly introduce basic properties of Alfvén wave-driven winds, and then, present results of nucleosynthesis calculations.

2. Model

We consider steady-state winds from PNSs with radius, $R_{NS} = 10$ km, under the Newtonian gravity. We assume radial expansion of magnetic flux tubes in which the winds flow out, giving magnetic flux conservation, $Br^2 = B_0 r_0^2$, where B_0 is the surface magnetic field strength. Difference from the standard neutrino-driven wind is that we take into account the acceleration by the wave pressure, P_w , in the momentum equation and the heating, \dot{q}_w , by the wave dissipation in the energy equation which are

$$v\frac{dv}{dr} = -\frac{GM}{r^2} - \frac{1}{\rho}\frac{dP}{dr} - \frac{1}{\rho}\frac{dP_w}{dr}$$
(2.1)

and

$$\dot{q_{\nu}} + \dot{q_{w}} = \nu \left(\frac{d\mathscr{E}}{dr} - \frac{P}{\rho^{2}}\frac{d\rho}{dr}\right), \qquad (2.2)$$

respectively, where \dot{q}_v is cooling/heating by neutrino and the other variables have the usual meanings. The acceleration $(\frac{dP_w}{dr})$ and heating (\dot{q}_w) by the Alfvén wave are determined by a suitable dissipation model. Here, We assume wave action, defined as $H_w \equiv \frac{\delta B^2}{8\pi} \frac{(v_A+v)(v_A+v)}{v_A}$ which is an adiabatic constant in unit of energy flux, follows an exponential decay on r with dissipation length, l:

$$H_w = \frac{R_{\rm NS}^2}{r^2} H_{w,0} \exp\left(\frac{R_{\rm NS} - r}{l}\right),\tag{2.3}$$

We inject Alfvén waves with initial amplitude, $\delta B_0/B_0 = 0.1$ at the surface, and we construct transonic wind solutions (see [3] for more detailed setting of the model and subsonic cases.) We only consider strong magnetic field cases, $B_0 = 10^{14} - 10^{15}$ G, because otherwise the Alfvén waves only give a tiny effect on the winds. *l* can be estimated from the solar wind studies by one of the authors [4-6], in which weakly nonlinear ($\delta B_0/B_0 \sim 0.1$) waves dissipate typically after propagating ~ 10 wavelengths, corresponding to $l \stackrel{<}{\sim} 10R_{\rm NS}$ in the present PNS conditions.

3. Results

Figure 1 shows the structures of the Alfvén wave-driven winds. The left panels present dependence on surface magnetic field, B_0 , and the right panels present dependence on dissipation length,

Figure 1: Structures of Alfvén wave-driven winds. The top panels show density in unit of 10^5 g cm⁻³, ρ_5 , temperature in 10^9 K, T_9 , and velocity in 10^7 cm s⁻¹, v_7 . The middle panels exhibit entropy per baryon, *S*. The bottom panels show the heating by waves, \dot{q}_w , and by neutrinos, \dot{q}_v . The left panels show dependence on B_0 (= 5 × 10¹⁴ G; solid, 3 × 10¹⁴ G; dotted, 0 G; dashed) for fixed $l = 10R_{\rm NS}$ and the right panels show dependence on l (= 5 $R_{\rm NS}$; solid, 30 $R_{\rm NS}$; dashed) for fixed $B_0 = 5 × 10^{14}$ G.

l. Thanks to the wave pressure, the wind is accelerated faster as B_0 increases. The heating due to the wave dissipation also gives larger *S* in the larger B_0 case. Therefore, the conditions in the Alfvén wave-driven winds are favorable for the r-process. Faster dissipation (smaller *l*) leads to more rapid increase of *S*, which is also better for the r-process.

In Figure 2 we compare the results of t_{exp} and S with the r-process condition¹ by [1],

$$S \stackrel{>}{\sim} 2 \times 10^3 Y_e \left(\frac{t_{\exp}}{s}\right)^{1/3},$$
(3.1)

where Y_e is electron fraction which our model does not explicitly include. For standard $Y_e (= 0.4 - 0.5)$, Alfvén -driven winds of PNSs with $B_0 \approx 5 \times 10^{14}$ G satisfy the condition, provided $l < 10R_{\rm NS}$.

Next, we calculate the actual nucleosynthesis in the Alfvén wave-driven winds [8]. We perform nuclear reaction network calculations by adopting the physical conditions (ρ and T) which change with time according to the outward velocities along with the flows. Figures 3 and 4 show the dependences of the synthesized elements on B_0 and l, where we assume electron fraction = 0.4.

¹This is strictly the condition for α -process [7] which determines a neutron-to-seed ratio before the neutron capture occurs.

Figure 2: $t_{exp}(s)$ (X-axis) and S at T = 0.2MeV (Y-axis) for various parameters of Alfvén waves. Open circles, filled triangles, and open squares are results with l = 5, 10, & 30, respectively. Numbers denote magnetic field strength at the surface. For example 6(14) indicates $B_0 = 6 \times 10^{14}$ G. Results with the same B_0 are connected by dashed lines. Solid lines are the conditions for the r-process by [1] for $Y_e = 0.4 \& 0.5$.

Figure 3: Results of the synthesized elements in the Alfvén wave-driven winds. The red, black, and blue lines correspond to $B_0 = 6 \times 10^{14}$ G, 5×10^{14} G, and 4×10^{14} G, respectively, where we adopt constant $l = 5R_{\rm NS}$.

Figure 4: The same as Figure 3 but for the 1 dependence. The red, black, and blue lines correspond to $l = 2R_{\rm NS}$, $5R_{\rm NS}$, and $10R_{\rm NS}$, respectively, for $B_0 = 5 \times 10^{14}$ G.

Figure 3 illustrates that larger B_0 favors the r-process. While the 3rd peak elements (mass number, $A \approx 195$) are not produced in the $B_0 = 4 \times 10^{14}$ G case (see [8] for non magnetic field case), they are synthesized in the $B_0 = (5,6) \times 10^{14}$ G cases. In the $B_0 = 6 \times 10^{14}$ G case, sizable amounts of elements with A = 230 - 240 are also synthesized. This is because the nonequilibrium circumstances with small t_{exp} and large S are achieved in larger B_0 , which is suitable for the r-process.

Figure 4 exhibits that smaller *l* is favorable to the synthesis of the r-process elements; the 3rd peak elements are produced in the cases with $l = (2,5)R_{NS}$, while they are not in the case with $10R_{NS}$. This is because *S* should be large in the inner region where the α -process [7] takes place to give a sufficiently large neutron-to-seed ratio, which requires small *l*. Otherwise if *l* is large, the wave heating occurs in the outer region and the increase of *S* is a little to slow; in the case with $l = 10R_{NS}$, the 3rd peak elements are not synthesized.

References

- [1] Hoffman, R. D., Woosley, S. E., & Qian, Y.-Z. 1997, ApJ, 482, 951
- [2] Thompson, T. A. 2003, ApJ, 585, L33
- [3] Suzuki, T. K. & Nagataki, S. 2005, ApJ, 628, 914
- [4] Suzuki, T. K. 2004, MNRAS, 349, 1227
- [5] Suzuki, T. K. & Inutsuka, S. 2005, ApJ, 632, L49
- [6] Suzuki, T. K. & Inutsuka, S. 2006, JGR, 111, A06101
- [7] Woosley, S. E. & Hoffman, R. D. 1992, ApJ, 395, 202
- [8] Wanajo, S., Suzuki, T. K. & Nagataki, S. 2006, submitted to ApJL