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Why is important to understand weak-interactions?

@ Weak interaction determines the duration at which many
astrophysical processes occur:

e Time scale for hydrogen burning in the sun (pp-chain) and massive
starts (CNO).
@ The time scale for the r-process is determined by beta decays (and
maybe neutrino absorption rates).
@ In several astrophysical conditions all forces except weak interaction
are in equilibrium and the dynamics is governed by weak
interaction (core collapse supernovae).

@ Neutrinos provide an additional “window” for the observation of
the universe providing additional information to observations in the
electromagnetic spectrum.
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Semileptonic Weak Processes in Stars

N (anti)neutrino capture(anti)neutrino scattering
6=k -V G= Vi -V,

- K
bound-statg” decagontinuum charged (anti)lepton capture
=\ +k 4= -k

@ What is the structure of the operators?

@ How to calculate the relevant nuclear states?
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From QCD to Nuclear Structure

Finite nuclei

Few-nucleon systems

Nuclear Structure
)

Nucleon-nucleon interaction

@ hadron structure

quarks and gluons
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@ deconfinement
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From QCD to Nuclear Structure
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Realistic N-N potentials

Argonne V18
@ QCD motivated
4] symmetries, meson—exchange
picture CD Bonn
o chiral effective field theory
@ Short-range phenomenology Nijmegen I/l

@ short-range parametrization or
contact terms Chiral N3LO
@ Experimental two-body data
o scattering phase-shifts & deuteron
properties reproduced with high Argonne V18 +
precision lllinois 2
@ supplementary three-nucleon force

o adjusted to spectra of light nuclei Chiral NSLO +

N2LO
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Ab initio Methods

solve the quantum many-body problem for A
nucleons interacting via a realistic NN-potential

@ exact numerical solution possible only for small systems at an
enormous computational cost

@ Green’s Function Monte Carlo: Monte Carlo sampling of the
A-body wave function in coordinate space

@ No-core Shell Model: large-scale diagonalization of the Hamiltonian
in a harmonic oscillator basics



Nuclear models
[e]e]e] ]

Ab initio Methods: GFMC
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Theoretical models

Limits of nuclear
existence

Towards a unified
0% Shell ML
Model description of the nucleus

Ab initio
few-body
calculations No-Core Shell Model
G-matrix

Provide an approximate solution to the many-body problem
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Theoretical models: basics

@ They assume the existence of shells. Magic numbers are obtained
when a shell is completely fill.

@ Shells results from the bunching (grouping) of levels coming from
an independent particle average potential. Hartree-Fock method
provides a way of obtaining this potential.
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Independent-Particle Model

@ Assume the existence of some single-particle wave functions that
are the solution of a Schrédinger equation

ho(r) =T + Ulga(r)} = gaa(r)

The independent-particle motion hamiltonian is then:

A
Ho =) T(k)+ U(r)
k=1

Eigenfunctions are the product of single-particle wave functions:

A
Cararan (1,2, A) = | | by (r2)

k=1
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System identical particles

Wave function should be antisymmetric. For two particles:

L B _L ¢a(1) ¢b(2)
\/z[¢a(1)¢b(2) Pa(2)¢p(1)] = V2| 94(2) (1)

A-particle Wave function (Slater determinant):

Dup(1,2) =

Gay(r(1))  ¢a,(r(2)) -+ ¢q,(r(A))
1| a(r(1))  ¢ay(r(2)) --- ¢a,(r(A))

(Dlllaz...aA(l, 2,,A) = E

Gay(r(D)) o, (r(2)) -+ ¢a,(r(A))

In principle an infinite number of Slater determinants.
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Residual interaction: Correlations

Residual interaction induces correlations between particles. In order to
include them it is necessary to go beyond the mean-field.

Spherical Mean field

breaking symmetries mixing different mean
of the system field configurations
@ Nilsson

@ Tamm-Dancoff
@ Deformed

Hartree-Fock

@ Random Phase

Approximation
@ Hartree-Fock

@ Interacting shell-model
Bogoliubov
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Shell Model

@ Define a valence space

@ Define an effective interaction
HY = EY — Hgff‘Peff = E‘I’eff

@ Build and diagonalize the Hamiltonian
matrix.

In principle, all the nuclear properties are described simultaneously.
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Notation

In order to compute any transition mediated by the weak interaction we
need to evaluate the matrix element of the relevant weak operator
between some initial and final states:

i) = Ji, Ti, Ty,)
|f> = |Jf7 Tf’ TZf)

@ J angular momentum of the state
@ T isospin of the state

@ T, third component of the isospin (= (N — Z)/2)
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Nuclear beta decay, energetics

Q-value defined as the total kinetic released in the reaction
@ 5 decay, Q- =M, - M;+E; - Ey

AZN) > AZ+1,N-1)+e +7,
o " decay, Qrc = Qp+ +2me = M;—M;+ E; — Ey

AZN)—>AZ-1,N+1)+e" +v,
@ Electron capture,

A(Z,N)+e - AZ-1,N+1)+v,
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Transition rates for 8 decay

Fermi'’s golden rule:

&pr dPp. Pp,
Q) Qrhy 2rhy?

2
1=z f My PRy 6 oy + e+ py — pi)

1
M =5 D, D KAHWDP

lepton spins M;,My
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Transition rates for 8 decay

dQ. dQ,
4 4m

A=5—5 f IMifP6(M}* + E, + E, — M}“)p, pydpedp,

W = E./(m.c?)

Mre _ pgruc
Wy = : ) / = Q2 +1
meC MeC
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Transition rates for 8 decay

mc*G?, Wo
1= 2 — 4 f CW)F(Z, W)(W? = D'2W(W, = W)>dw
7y 1

1 ,dQ, dQ,
con = f My P e

F(Z, W) Fermi function, takes in account the distortion of the electron

(positron) wave function due to Coulomb effects.
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Transition rates for 8 decay

We need to compute shape factor,

1 1 dQ, dQ
_ H,i 2 e v
con =g [5 2 X kg

lepton spins M;,M ¢

between states:
iy = [JiM;; T;T,,)
Ify =WMp; TrT, 5e7;7)
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Weak Hamiltonian

Current-Current interaction:

H, - f/K PrI ) jur)
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Weak Hamiltonian

Current-Current interaction:
. Gy .
(fIH i) = $fd3r<Jfo;Tszf;e, VI ju I iMi; TiT ;)

Assuming plane waves for electron and neutrino:

(e;V1jul0) = e PP Ty (1 — ys)v
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Weak Hamiltonian

Current-Current interaction:

.G
(fIH)i) = 721# f &re I My TyTo |\ T M3 TiT,)

Ly = wy, (1 —ys)v
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Non relativistic reduction

Assuming one nucleon participates in the decay and that we can use the
free current (impulse approximation):

FIH = G—\/;Z,I f Pre 8Ty (1 + gays)tat
v ( Laa )¢ (o

o (1 0. [ 0 o). (0 1
y_O_I’y__O_O’ys_IO

CFIHL i) = % f Pre 97 (Il + gal - Ot
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Non relativistic reduction

Generalization to A particles:
H, = “re o1k + gal - M)k
oS

e™4T = 3, AL+ 1)(—i) ji(gr)Yin(6, ¢)

(qr)

A YT

@ Zero order: Allowed transitions (Fermi, Gamow-Teller)

@ Higher orders: Forbidden transitions.
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ft-value

_In2 (M
K
For Allowed transitions: C(W) = B(F) + B(GT),

1 CW)F(Z, W)(W? = D'2W(W, — W)>dw

In2 In2
A= —==—=[B(F) + B(GT)1f(Z, Wy)
iy K
K
flip=———— K=6147.0+245

B(F) + B(GT)’
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Fermi Transitions

A

Z (M TyTo| D LM TiT )P
My k=1

B(F) = [TiTi + 1) = T;i(Ty; + 1)167,.1,07, 7,07, .1 21

B(F) =

2]

Energetics:

Eias = Qg +sign(T)[Ec(Z + 1) = Ec(Z) — (m, — mp)]
AEc = 1.4136(1)Z/AY3 = 0.91338(11) MeV

Selection rule:
AJ=0 AT =0 mp=ny
Sum rule (sum over all the final states):

S(F)=8S_(F)=S8.(F)=2T;; =(N-2)
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Gamow-Teller Transitions

2

A
-7 . ke k\( 7 A2
BGT) = 55 K Ty Ty ;a KN TiT,)

ga = —1.2695 + 0.0029

Selection rule:
AJ=0,1(noJ;=0—Jr=0) AT =0,1 mi=ny
lkeda sum rule:

S(GT) = S_(GT) — S4+(GT) = 3(N - Z)
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Summary

Electron capture
-
_—
15 Beta decay

20

(Z-1.A)
@ In neutron rich nuclei GT. strength represent a small part of lkeda sum
rule [3(N-Z)].

@ For neutron rich nuclei GT_ constitutes most of the lkeda sum rule. Most
of the strength is located in a resonance with a width of several MeV and
atenergy: Egt — Ejas = 7.0 — 28.9(N — Z)/A MeV.

@ Fermi transitions only contribute to the 8~ direction. All the strength
(N-Z) is located at the IAS state at an energy with respect of the parent
state: Qias = AEc — (m, — my)
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Electron capture and Neutrino absorption

Fermi'’s golden rule:

LPp;r &Pp,

2
= — Mz’zz h36(4) + Dy — Di — De
o e f IMifl”2rh) 6™ (pr + pv — Pi — Pe) iy )

Electron capture: (Z,A) + e~ = (Z—-1,A) + v,

2

Gy 2
Tif(Ee)ve = %F(Z E.)[B(F) + B(GT)]p;

Neutrino absorption: (Z,A) + v, —» (Z+ 1,A) + e~

G2
oif(E) = Kfﬁpew(z + 1, E,)[B(F) + B(GT))

) 6GEV2 (mec?)?

v =2.505(2) x 107* cm?
mn-c

0]
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Example: Solar neutrino rate on Cl

Neutrinos detected via reaction:

el + Ve — Ar+ e

175 ms
PP 5
37
35.04d 3ica
3/0+ 0 Qgc=11639
s so17_ossw 48
[ 10keV,
12t 5450 051
37 N .08 £ {50
i B8 Sy
18 - 3;/22 5/'2:‘3’2 — 50492 “Z/:“
1/223/25/2 AEAESQOE éz& 060 keV,
z
Q =813.5 Eas EEPX ew v T
EC (U2,312,512)* 3840 _4.5% 47
S S617 sow 45
st | o001 s a0 | g
2 o] zpser P 500 00
= i = R et
1gAr N
3/2* 0 100% 5.1 P Y
712 A 1380.25
stable 0 B 104ns 137088 640 51 | g1 ps
17 12265 32 0sew 51

$iK
Summing over all final states and integrating over 8B neutrino spectrum
the cross section is o = 1.14 x 107** cm?. Multiplying by the total 3B
flux (5.69 X 1070 cm™2 57!

6.6 SNU (10736 captures per target per second)
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Neutrino scattering

Neutrinos can also interact via the neutral current.

@ Vector part of the current describes elastic scattering (responsible
for neutrino trapping in supernovae):

2

2
E2 [ —(1 - 4sin? ew)z]
@ Axial vector part describes neutrino scattering:
Z,A)+v > (Z,A)" +v
2

e —(E, - w)’B(GTy)

O_i,f(Ev)

withw = Ey — E;. In general, multipoles beyond allowed transitions
are necessary. See Donelly and Peccei, Phys. Repts. 50, 1 (1979).
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Exercise: Neutrino trapping in supernovae

During the collapse of the core of a massive star the densities become so
large that even neutrinos become dynamically trapped in the collapsing
core at densities ~ 10'2 gem™3,

The neutrino mean free path (1, = 1/no) can be estimated from the
previous expression for the cross section (assume matter composed of
nuclei with A = 110 Z = 40).

PNAG% 2a72 9 2872
1/, = ———FEN- =~ 25x%x 10 2ESN-/A
[ 4n(fic)*A " pIRENT

A, ~ 220 m (E, = 20 MeV)

The diffusion time for a distance of 30 km is:

317

~ 41
L ms

t
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SN1987A

Type Il supernova in LMC neliotrinos E, ~2.7x10% erg
(~ 55 kpc)

 Kamiokande Il
IMB

40,0 o

30,0

Energy (Mev)

20,0

100

) 100 150
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light curve

AT T T

@ Bouchet & Danziger (1993)

39 m Suntzeff et ol (1992, 1997)

N WNBRAMK Fronston & Keama 1997: ]
a2 I 0069 Mo *Co -
g’ ® C 0.0033 My “Co |
~ 53 j E ﬁ 0.0001 Mp *Ti 9
° Egrav ~ 10”7 erg F 37 -
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Schematical Evolution

——Progenitor (~ 15 M)
NN N
< (Lifetime: 1~2-10"y)

~’~',H551-" ™\
- Extended Mantle \

o Early

_"Protoneutron’,
. Star_~ .
M
Late Protoneutron Star
(R ~ 20 km) N
S - ~ &
& %,
N %
&
/ \ / \
[
B -
e +p—n-+y, Collapse of \
and Core (~1.5 My) \ / \/ /
Photodisintegration N
of Fe Nuclei ~ L 7
"White Dwarf" 30000 - 60000 km/s
(Fe-Core) (R ~ 10000 km)
(From H.-Th. Janka)
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Presupernova Models

@ Describe the massive star evolution through the various hydrostatic
burning stages (H, He, ..., Si) and follows the collapse of the central
iron core until densities ~ 10'? g cm? are reached.

@ Large nuclear networks are used to determine the nuclear energy
generation and the associated nucleosynthesis. Transition to
Nuclear Statistical Equilibrium takes place after Silicon burning (Iron
core formation).

@ Neutrinos produced by weak interactions can leave the star
unhindered.
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Early iron core

@ The core is made of heavy nuclei (iron-mass range A = 45-65) and
electrons. Composition given by Nuclear Statistical Equilibrium.
There are Y, electrons per nucleon.

@ The mass of the core M. is determined by the nucleons.

@ There is no nuclear energy generation which adds to the pressure.
Thus, the pressure is mainly due to the degenerate electrons, with a
small correction from the electrostatic interaction between
electrons and nuclei.

@ Aslongas M. < My, = 1.44(2Ye)> My, (plus slight corrections for
finite temperature), the core can be stabilized by the degeneracy
pressure of the electrons.
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Onset of collapse

There are two processes that make the situation unstable:

@ Silicon burning is continuing in a shell around the iron core. This
adds mass to the iron core increasing M..

@ Electrons can be captured by protons (free or in nuclei):
e +AZ,N)->AZ-1,N+ 1) +v,..

This reduces the pressure and keep the core cool, as the neutrinos
leave. The net effect is a reduction of Y, and consequently of the
Chandrasekhar mass (M)
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Nuclear Statistical Equilibrium

@ Processes mediated by the strong and electromagnetic interactions
are in equilibrium. As neutrinos escape the weak interaction is not
in equilibrium.

@ Processes of creation and destruction are in equilibrium:
AZN)2Zp+Nn+y's

@ Composition depends only on (T, p, Y.) and its determined by the
Entropy (~ T3 /p). Large entropies (small p, large T) favors free
nucleons. Small entropies (large p, small T') favors bound nuclei.
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Nuclear abundances in NSE

NSE implies:
H(Z,A) = Zpy + (A = D)un

with the chemical potentials given by (Boltzmann)

w(Z,A) = m(Z,A)c® + kT In

nZ A [ 22 \?
Gz, A) \m(z, Akt

and the partition function:

G(Z,A) = Z(2Ji + 1)e EilkT
i
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Solution to NSE

Saha equation (n; = n(A;, Z;)):

nZ,A) =

G(Z,A)A3? 2N ( 2rh? )3/2(A—1> BZAKT
24 P\ m, kT
with the constrains
@ >, m;A; = n(conservation number nucleons)
e >;nZ; = n, = nY, (charge neutrality)

Partition function determines composition during collapse (Bethe et al,
1979)

G(T) =~ exp(akT)

n
6akT
Energy liberated during the collapse increases the internal excitation of
the nuclei. Matter remains relatively cool and with low entropies (~ 1k)
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T T T T
[ T=9.01 GK, p= 6.806409 glom’, ¥,=.0.433

Log (Mass Fraction)

Log (Mass Fraction)

30 40 50 60 70 80 920
N (Neutron Number)
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Initial conditions

The dominant contribution to the pressure comes from the electrons.
They are degenerate and relativistic:

Y,
P/pz%

U is the chemical potential of the electrons:
te = 1.11(p7Y)'? MeV

Forp7 = 1 (p = 107 g cm™3) the chemical potential is 1 MeV, reaching
the nuclear energy scale. At this point is energetically favorable to
capture electrons by nuclei.
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How to determine the evolution

@ Composition determined by NSE, function of temperature, density
and Y,.

@ Weak interactions are not in equilibrium. Change of Y, has to be
computed explicitly (Y; = n;/n):

Y, = Z Y.Z;
i
Yo== Y ALY+ Y Y,
i i
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Presupernova evolution

@ 7T =0.1-0.8 MeV,
p=10"-10""gem™.
Composition of iron group nuclei.

R [km] Initial Phase of Collapse
(t~0)

Rpe~ 3000
@ Important processes:

o electron capture:

e +(N,Z) > (N+1,Z-1)+v,
e [~ decay:

(N,Z2) > (N=-1,Z+1)+e +7,

@ Dominated by allowed transitions
05 10 - MC\MU) Md (Fermi and Gamow-Teller)

Si-burni hell .
mburning she @ Evolution decreases number of

electrons (Y,) and Chandrasekar
mass (M., = 1.4(2Y,)* M)



Electron capture in Core-collapse supernovae
0000000000 e00000

Laboratory vs. stellar electron capture

15—
E Laboratory
10
i Low-lying
| Strength
57
e o1,
il L Z.A)
0

(Z-1.A)

Capture of K-shell electrons to

tail of GT strength distribution.

Parent nucleus in the ground
state

Z-1.A)

Supernova

Gamow-Teller
Resonance

electron
distribution

zA)

Capture of electrons from the high energy tail of
the FD distribution. Capture to states with large
GT matrix elements (GT resonance). Thermal

ensemble of initial states.
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Beta-decay

Electron capture
-
—_—

Beta decay 20
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GT in charge exchange reactions

GT strength could be measured in Charge-Exchange reactions:
@ GT_ provedin (p,n), (3He, 1.
e GT, provedin (n, p), (¢, 3He), (d, *He).

Mathematical relationship (E, > 100 MeV/nucleon):

do . _
0gg Q) ® S(E)BGT)

2 ek 111\2
_ (84 SNl Xk ot
BGn = (gv) 2Ji+ 1



Electron capture in Core-collapse supernovae
0000000000000 e00

Independent Particle Model

GTJr strength in 28Ni measured in (n, p).

T

58N| (El- Kateb et al 1994)]
< 10 -
IS
c
g
7
it
O o5l -

0 — =Y Il Il Il Il
2 0 2 4 6 8 10

E (MeV)

Independent particle model.

.
I
— fsp

L7

]
..—— B’Z
Tor2 moooo—

R ; ,
e —— _—
f1, seesessscescssss e ;
v : n Q..—l— %/2
58j 72 ....v.......»n..o-
58CO

The IPM allows for a single transition (f72 — f5/2. It does not correctly
reproduce the fragmentation of GT strength (correlations).



Shell-Model vs experiment
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Consequences weak rates

(A. Heger et al., 2001)

[T 10

L 15 M, T

101067

10°

p (gcm

108

sl b FEd ] Mol )

sl vl vl il s

lO’S‘M“ ey b boen s Do by Do s bl
10® 10° 10* 10° 102 10' 10° 10° 10 10° 102 10' 10°

Time till collapse (s) Time till collapse (s)
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Collapse phase

R [km]

Fe

~ 100 |-+ __

Neutrino Trapping Important processes:

(t~0.1s, Q;~10% g/em?) @ Neutrino transport

(Boltzmann equation):
v+ A 2 v+ A (trapping)
v+e 2 v+ e (thermalization)

cross sections ~ E2

@ electron capture on protons:

e +pa2n+v,
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(Un)blocking electron capture at N=40

Independent particle treatment
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Electron capture: nuclei vs protons

Electron capture rates

Energetics
40— R e

30

10,45‘””\ "

= ) "
. P9 cm}s) * 1or QL= Mnpp ___—--~7]
Abundances [T
100 T T ———— ol nn i | Pttt
10%° 10t 10%
p(gem™)

Abundance

Ry = 2 Yidi = Y{Ay)
R,=Y,4,, Yi=nin

St bt bl vl

o ot
p(gcm™)



Electron capture in Core-collapse supernovae
[e]ele] ]

Reaction rates
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Electron capture on nuclei dominates over capture on protons



Neutrino-nucleus interactions

Neutrino-nucleus interactions

Neutrino-nucleus interactions are necessary for several applications

@ During the collapse of a massive star neutrino-nucleus inelastic
scattering can play a role in the dynamics.

@ Neutrinos emitted from the exploding core can contribute to the
nucleosynthesis of several key isotopes ('!B, 1°F, 138La, 189Ta)
(v-process).

@ The r-process is thought to occur in the neutrino-driven wind from
a proto-neutron star. Neutrino-nucleus interactions will compete
with beta-decays.

@ The detection of neutrinos from astrophysical sources requires the
knowledge of neutrino-cross sections on the detector material.
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Neutrino interactions in the collapse

Bruenn and Haxton (1991)
Based on results for >°Fe
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Neutrino absorption on >°Fe

Neutrino-nucleus cross sections are difficult to measure. v, absorption is
measured in '2C and *°Fe. No data for inelastic scattering exists.

5Fe(v,, 7)*°Co measured by KARMEN collaboration

(v, from muon decay):

Oexp = 2.56 = 1.08(stat) + 0.43(syst) x 1074 cm?

om = 2.38 x 107% cm?
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Neutrino scattering from (e, e’)
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Neutrino scattering from (e, e’)

DECOMPOSITION OF
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Spherical nuclei: Orbital part strongly suppressed.



Neutrino Scattering from (e, e’)

B(M1) (13)
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Neutrino-nucleus interactions
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Weak processes in the r-process

V. charge-current interactions can accelerate the
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Neutrinos from supernovae

Raffelt et al., astro-ph/0303226
Traditional Improved
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Neutrino nucleosynthesis
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Neutrino detection on Earth

ICARUS (3 kton liquid “°Ar detector)
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At supernovae neutrino energies large contribution of forbidden
transitions.
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