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1. Introduction

There is by now a compelling evidence that statistical hadronization model (SHM) reproduces
particle abundances and transverse momentum spectra in high energy collisions (

√
s & 10 GeV )

of elementary particles and heavy ions[1, 2].
However, the success of SHM, especially on elementary particles collisions, triggered much

debate and it is still controversial [4, 5, 6, 7]. In fact, it is widely believed that an equilibration at
the level of formed hadrons through a collisional process cannot occur because the system expands
too quickly and kinetic calculations, also in heavy ion collisions, seem to confirm this [7]. There-
fore, the apparent statistical equilibrium, must be an inherent property of the hadronization process
itself. To account for these features of hadron production it has been proposed that the statistical
equilibrium is not genuine (as was pointed out by Hagedorn many years ago [8]), but is mimicked
by a special property of the quantum dynamics governing the hadronization: the so-called phase
space dominance [6].

As will be discussed in the following, both genuine statistical equilibrium (which is the SHM
fundamental ansatz) and phase space dominance are highly non-trivial hypotheses and before dis-
cussing possible mechanisms responsible for the apparent equilibrium features, it would be at least
desirable to discriminate between the two aforementioned scenarios. For this purpose, it is nec-
essary to design a more stringent test of genuine statistical equilibrium because inclusive hadron
production at high energy collisions seems not to be sensitive enough to the quantitative difference
between statistical hadronization and phase space dominance model.

As was proposed in [9], a hopefully more sensitive probe is provided by the rates of exclusive
channels, which, being far less inclusive quantities than average hadron multiplicities, could be
different enough in the two scenarios to allow drawing some conclusion.

Exclusive rates measurements are available at energies significantly below 10 GeV. A nice
feature of such low energy data is that, to a very good approximation, all collision energy is spent
into particle production (one single cluster at rest in the centre-of-mass frame) unlike at high en-
ergy, so that the initial kinematical state is completely known. In calculating the model prediction
in this scenario, none of the relevant conservation laws, including energy-momentum, angular-
momentum, parity and isospin, can be neglected, as pointed out in ref. [10].

In this work, we provided a suitable definition of the probability of asymptotic states in the
SHM enforcing the maximal set of conservation laws (the full set of observables relevant to the
orthochronous Poincaré group, the Isospin, the C-parity and abelian charges) and we calculated the
probability of channels.

Confined states within the system have been described in a field theory framework. This is
necessary in order to avoid identifying confined states as multiparticle states in a non-relativistic
quantum mechanical approach (as was done in [11]), that is suitable as long as the sistem size
is larger than the Compton wavelength of particles involved (i.e. when relativistic effects can be
neglected), whereas it entails difficulties at smaller volumes.

Taking advantage of the formalism developed and of purposely devised numerical methods
we made a preliminary test on e+e− collisions. It should be stressed, from the very beginning,
that all the results we will show are preliminary and they can be consistently improved. It is also
worth mentioning that we have confined ourselves to e+e− annihilation although the best system
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to examine would be pp annihilation at rest where much data on exclusive decays channels in 2,
3 and 4 bodies have been collected. However, the annihilation proceeds from a mostly unknown
mixture of protonium atomic states and it is quite difficult to determine initial isospin and angular
momenta.

We also compared the branching ratios of heavy resonances with statistical model predic-
tions. The identification of (heavy) resonances with extended clusters is a tempting conceptual
step. Hagedorn first put forward this idea in the ’60s [8] laying the foundations of the Statistical
Bootstrap Model. Also the MIT Bag model conceives resonances and hadrons as extended massive
objects from the very beginning, giving rise to many physical consequences. It is therefore natural
to make the same identification in the framework of the statistical hadronization model and check,
on the basis of existing measurements, whether at least heavier resonances decay statistically into
multi-hadronic channels. If this turned out to be the case, we would achieve a major confirmation
of the old Hagedorn idea that resonances are in turn made of resonances and hadrons.

2. Statistical hadronization and phase space dominance

In the SHM, each multihadronic state within a cluster compatible with its quantum numbers
is equally likely. The collection of such states defines the microcanonical ensemble of the cluster,
which is then the best suited framework to evaluate observables quantities as statistical averages.
Nevertheless, because of difficulties arising in microcanonical calculations and the indefiniteness
of cluster’s quantum numbers, a comparison with the data has been mostly made as yet by introduc-
ing simplifying assumptions, in the canonical or grand-canonical ensemble, where the numerical
analysis is much easier and can be partially worked out analytically.

While in the microcanonical ensemble, one deals with mass and volume of clusters, in the
canonical or grand-canonical ensemble one introduces temperature through a saddle-point expan-
sion [11, 12]. In this framework, the model has given strikingly good predictions of average multi-
plicities in heavy ion collisions [2] and in elementary collisions as well [1] with only 3 free param-
eters, which is a minimum among hadronization models. Moreover, the hadronization temperature
has been found to be constant for many kinds of reactions in a wide range of centre-of-mass ener-
gies, around 160 MeV [13], intriguingly close to the estimated critical temperature of QCD for the
phase transition between hadron gas and Quark-Gluon Plasma (QGP).

As pointed out in the introduction, its apparent success in reproducing observables related to
the hadronization process triggered some debate about the interpretation of the model [4, 5, 6, 7]
since it is widely believed that an equilibration cannot occur after hadronization through inelastic
hadron collisions [7]. Therefore, there have been some attempts to explain why we observe this
statistical features in hadron production. A very interesting new idea has been recently put forward
in [5, 14] where the author argues an analogy between thermal radiation in the Unruh-Hawking
effect and hadron production in high energy collisions.

Apart from explanations based on other physical models, two main options arise to account
for these observations:

• Genuine statistical equilibrium: it is an inherent property of hadronization itself, i.e. hadrons
are born at equilibrium within a finite volume. This implies a spacial extension of the hadron-
emitting source as in SHM.
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• Phase space dominance: the apparent thermal-like features are an effect of a special property
of the quantum dynamics governing hadronization, which tends to evenly populates all final
states [6].

The basis of the latter argument is the similarity between the (classical) phase space volume of a
set of particles, or channel, {N j} ≡ N1, . . . ,Nk (where N j stands for the multiplicity of the species
j) and the general expression of the decay rate of a massive particle (cluster) in relativistic quantum
mechanics.

If we let P be the initial four-momentum, V the volume and let pn ≡ (εn,pn) be the four
momentum of the particle n; the phase space volume Ω{N j} of the channel {N j} turns out to be [11]
(in Boltzmann statistics):

Ω{N j} =
V N

(2π)3N

{
k

∏
j=1

1
N j!

[∫
d3p
]N j
}

δ 4

(
P−

N

∑
n=1

pn

)
(2.1)

where N = ∑ j N j. This quantity is proportional to the probability of observing the channel {N j} as
a consequence of the decay of a cluster of volume V and momentum P.

On the other hand, the expression of the decay rate into the channel {N j} of a massive particle
in relativistic quantum mechanics reads:

Γ{N j} =
1

(2π)3N

{
k

∏
j=1

1
N j!

[∫ d3p
2ε j

]N j
}

δ 4

(
P−

N

∑
n=1

pn

)
|M f i|2 (2.2)

where M f i is the Lorentz-invariant dynamical matrix element governing the decay. Assuming, for
sake of simplicity, spinless particles, |M f i|2 may in principle depend on all relativistic invariants
formed out of the four-momenta of the N particles, as well as on all possible isoscalars formed out
of the isovector operators. Nevertheless, if we assume M f i to be weakly dependent on kinematical
variables, expression (2.2) becomes quite similar to (2.1) were not for the invariant measure (the
so-called invariant momentum space d3p/2ε instead of the proper phase space V d3p) and for the
absence of any parameter connected to spacial extension.

This phenomenon is called phase space dominance because the decay rate is governed by the
available phase space volume rather than dynamical matrix element. For instance, if we assume
that |M f i|2 = αN , i.e. the whole dynamics reduces to the same multiplicative constant α for each
particle in the channel, it can be then shown that the expression of the mean number of particles of
the species j is well approximated by, at large N:

〈n〉 j '
α

(2π)3

∫ d3p
2ε j

e−βε j (2.3)

which is very similar to a thermal distribution which one obtains from (2.1) at large multiplicities:

〈n〉 j '
V

(2π)3

∫
d3p e−βε j (2.4)

where β = 1/T is the inverse temperature. Conversely the constant β in Eq. (2.3) is not a tem-
perature, rather a parameter which is related to the hadronization scale. Yet, the ratios of average
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multiplicities of particles of different species mimic a thermodynamic behavior. The authors of
ref. [6] work out a more specific example based on QED and they conclude, quite reasonably, that
a fairly good fit to particle multiplicities may be obtained if integral expressions like (2.3) are used
instead of an actual Boltzmann integral.

It should be emphasized that phase space dominance is a highly non-trivial assumption. In
fact, the recovery of a thermal-like expression like (2.3) owes to a very special form of the matrix
element |M f i|2, where both the dependence on kinematical and isospin invariants was disregarded.
If a different form, still perfectly legitimate and possible, is assumed, the thermal-like behavior is
spoiled. Therefore, an observed phase space dominance in multihadron production is not a trivial
fact and tells us something important about the characteristics of non perturbative QCD dynamics,
besides providing us with an empirically good model.

3. A crucial test: exclusive rates

In the light of the arguments discussed in last section we conclude that a deeper test of the
model is needed in order to identify a genuine statistical-thermal behaviour and distinguish be-
tween it and possible pseudo-statistical models like phase space dominance. We need to investi-
gate observables more sensitive to distinctive features of the SHM. It would be then desirable to
bring out effects related to finite volume, which is a peculiarity of the statistical model. Indeed,
the study of average inclusive multiplicities or inclusive pT spectra does not allow to draw clearcut
conclusions because these observables are not sensitive enough to different integration measures
(i.e. V d3p versus d3p/2ε respectively in (2.4) and (2.3)) and much information is integrated away.

As has been proposed in [9], a much more effective test would be studying the production rates
of exclusive channels of a collision, i.e. Γ{N j}/Γ{N′

j}, that is the relative probability of observing a
well defined set of particles (channel) in the final state of a collision. Thereby, we would compare
directly with the experimental data expressions like (2.1) and (2.2) which are more sensitive to the
integration measure in the momentum integrals and the shape of dynamical matrix element.

Unfortunately, exclusive channels can be measured only at low energy (
√

s ∼ few GeV) since
the number and the complexity of final states become quickly prohibitive, from the experimental
point of view, as centre-of-mass energy increases. This energy range is well below the pertur-
bative scale to let us argue that any perturbative effect (like e.g. jets formation and kinematical
anisotropies), eventually leading to a multi-cluster scenario, should not show up.

It can be therefore assumed, that in the final state of a low energy (some GeV) collision, one
single cluster is formed at rest in the centre-of-mass frame (see fig. (1)); where cluster’s mass
and internal quantum numbers are fixed by

√
s and initial state conditions. At such low energies,

none of the relevant conservation laws, including angular momentum, parity and isospin, can be
neglected, as pointed out in ref. [10] where pp annihilation at rest was studied in this approach.
This makes calculations rather cumbersome and hard from the numerical point of view. None of
the many previous studies in literature (among the others [15]) has tackled the problem without
introducing approximations which unavoidably implied large errors in the calculations. The mi-
crocanonical partition function of a relativistic gas with angular momentum conservation has been
calculated in [16] by using a projection method. Although this work represents the best attack to
the problem to date, the final expression has been obtained in a large-volume approximation and
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Figure 1: Pictorial representation of a low energy (. 5 GeV) collision in the statistical model. One single
cluster is formed at rest with a mass M =

√
s and with quantum numbers given by the initial state conditions.

only for spinless particles. Fully microcanonical calculations including both four-momentum and
angular momentum conservation have not ever been done, and only recently the increased comput-
ing power and purposely designed techniques allowed the calculation of averages in the hadronic
microcanonical ensemble, though only with energy and momentum conservation [17, 18, 12].

The first, fundamental, problem to face is how to write the probability of a channel {N j} when
all conservation laws are enforced. We must thus provide a formulation of the SHM in the full
microcanonical ensemble of the relativistic hadron gas, where all conserved quantities in strong
interaction are constrained.

4. Probability of states in the statistical hadronization model

The definition of a probability of a channel, or a general final state, in the SHM is not straight-
forward as it might seem, in spite of the simplicity of the key assumptions of the model. In fact,
the basic postulate tells us that localized states compatible with cluster’s quantum numbers are
equiprobable, but these states do not coincide with observable free-particle asymptotic states. Such
difference is, for practical purposes, not an issue when the volume is sufficiently large and can thus
be disregarded in most applications where the canonical or grand-canonical ensemble are used. Yet,
it is relevant in principle and may result in quantitative differences when the volume is comparable
with the pion Compton wavelength, i.e. less than O(10) fm3, as in the case of low energy collision
of our interest. In such a situation one should, in principle, take into account that confined states
within the cluster cannot be identified with multiparticle asymptotic states.

The SHM assumes that the cluster can be described as a normal statistical mixture of multi-
hadronic states compatible with its initial quantum numbers. Accordingly, if we confine our-
selves to energy-momentum conservation, we can write down a microcanonical partition function
Ω, which is defined as the collection of all states within the cluster volume V with total four-
momentum equal to the cluster’s four momentum P:

Ω = ∑
hV

〈hV |δ 4(P− P̂)|hV 〉 , (4.1)

6
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where P̂ is the four momentum operator1 and the set {|hV 〉} is a generic basis of the localized
system. Eq. (4.1) can be generalized by replacing δ 4(P− P̂) with a generic projector Pi over all
conserved quantities:

Ω = ∑
hV

〈hV |Pi|hV 〉 . (4.2)

The states |hV 〉 in (4.2) are not the observable asymptotic free states | f 〉 of the Fock space.
Instead, a suitable probability definition should involve these states. To do this, one can recast the
microcanonical partition function (4.2) by using the completeness of states | f 〉:

Ω = ∑
hV

〈hV |∑
f

| f 〉〈 f |Pi|hV 〉 = ∑
f

〈 f |Pi ∑
hV

|hV 〉〈hV | f 〉 ≡ ∑
f

〈 f |PiPV | f 〉 (4.3)

where PV = ∑hV
|hV 〉〈hV | is the projector onto localized states. We note that the last expression of

Ω in Eq. (4.3) is a proper trace, whereas it was not in Eq. (4.2) as the states |hV 〉 do not form a
complete set of the full Hilbert space.

The quantity:
ρ f ≡ 〈 f |PiPV | f 〉 (4.4)

is the microcanonical state weight of the asymptotic state | f 〉. It can be proved that, in the rest
frame of the cluster (i.e. P = (M,0)), if we assume a spherically symmetric shape (actually we
will assume clusters to be sharp spheres), ρ f (up to a normalizing constant 1/Ω) fulfills all needed
requirements of a good definition of probability for the ideal hadron gas [19].

In order to calculate ρ f , it is convenient to insert a resolution of the identity by using again the
completeness of a set of Fock states | f ′〉’s:

ρ f ≡ ∑
f ′
〈 f |Pi| f ′〉〈 f ′|PV | f 〉 (4.5)

and work out the matrix elements 〈 f |Pi| f ′〉 and 〈 f ′|PV | f 〉 separately.
The projector Pi is the projector onto an irreducible state of the orthochronous Poincaré group

IO(1,3)↑ 2 and of the internal symmetry group, that is, in our case, the isospin group SU(2) and
U(1)’s related to baryon number and strangeness; in other words, we assume SU(3) flavour sym-
metry to be completely broken, i.e. SU(3)→ SU(2)⊗U(1). Pi can be then written as:

Pi = PPJλΠPII3PCPQ (4.6)

where I and I3 are the isospin and its third component and

PII3 = |I, I3〉〈I, I3| ; (4.7)

C is the C-parity3 and

PC| f 〉 =
1+C Ĉ

2
| f 〉, (4.8)

1Note that in what follows operators will be distinguished from ordinary numbers by a “̂”.
2Strictly speaking, projection operators cannot be defined for non-compact groups, nevertheless, we will maintain

this naming relaxing mathematical rigor.
3Of course, the projection PC makes sense only if I3 = 0 and Q = 0; in this case, PC commutes with all other

projectors
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where C is the charge conjugation operator and Ĉ its unitary representation. In Eq. (4.6), Q =

(Q1, . . . ,QM) is a set of M abelian charges (in fact they are 2, baryon number and strangeness) and
PPJλΠ is the projector over the maximal set of space-time observables (four-momentum P; spin J
and its third component λ ; parity Π), i.e. an irreducible state of the orthochronous Poincaré group
IO(1,3)↑:

PPJλΠ =
1
2 ∑

z=I,Π

dimν
∫

dµ(gz) Dν†
i i (gz) ĝz (4.9)

where µ is the invariant group measure, z is the identity or space inversion Π, gz ∈ IO(1,3)↑±,
Dν(gz) is the matrix of the unitary irreducible representation ν pertaining to the state i, and ĝz

is the unitary representation of gz in the Hilbert space. Working in the rest frame of the system,
with P = (M,0), the matrix element Dν†

i i (gz) vanishes unless Lorentz transformations are pure
rotations and this implies the reduction of the integration in (4.9) from IO(1,3)↑ to the subgroup
T(4)⊗SU(2)⊗Z2 [11] (replacing SO(3) with universal covering group SU(2)). Therefore, it can
be proved that PPJλΠ reduces to [11]:

PPJλΠ = (2J +1)δ 4(P− P̂)

∫
dR DJ

λλ (R−1) R̂
I+ΠΠ̂

2 , (4.10)

dR being the invariant SU(2) measure normalized to 1, Π being the parity of the system and Π̂ is
the spacial inversion operator unitary representation. The appeal of the above expression resides in
the factorization of projections onto the energy-momentum P, spin-helicity J,λ and parity Π which
allows us to calculate the contribution of angular momentum and energy-momentum conservation
separately.

The other projector appearing in Eq. (4.5) is the projector on a finite volume PV . According to
its definition, PV , is the projector identity as far as internal symmetries are concerned and it com-
mutes with the projectors PCPI,I3PQ. The situation is rather different for space-time symmetries.
In fact rotation and space inversion operators commute with PV provided the system is spherical in
shape, while space-time translation symmetry is not fulfilled because of the finite volume.

According to the discussion at the beginning of this section, we defined PV in a quantum
field theory framework identifying localized states as states |ψ〉 of the quantum field operator Ψ
associated to particles vanishing out of the system region. This has been done in order to avoid
describing confined states as multiparticle states, which entails difficulties when the volume is
small. In fact, particle number operators in the whole space are essentially different from those in a
finite region. As an example, an N-pion state in a finite region has non vanishing components on all
free states of the pion field, i.e. on the states with 0,1,2, . . . pions. This problem is mostly known
to physicists as expounded by Landau [20]: when trying to localize an electron, electron-position
pairs unavoidably appear.

Confined states have been then described in a proper quantum relativistic field theory frame-
work in order to account for these relativistic effects related to the finite size of the system. For
instance, in case of only one scalar particle:

PV =
∫

V
Dψ |ψ〉〈ψ | (4.11)

8
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where |ψ〉 ≡ ⊗x|ψ(x)〉 and Dψ is the functional measure; the index V means that the functional
integration must be performed over all functions having as support the system region V . A gen-
eralization of Eq. (4.11) to particles endowed with spin can be obtained by using a definition for
general charged fields (in Schrödinger representation) corresponding to particles (either bosons or
fermions) with spin S given in [21]:

Ψτ(x) =
1

(2π)
3
2

∫ d3p√
2ε

DS
τσ ([p])a(p,σ) eip·x +DS

τσ([p]C−1)b†(p,σ) e−ip·x (4.12)

Ψ̃τ(x) =
1

(2π)
3
2

∫ d3p√
2ε

DS
τσ ([p]†−1)a(p,σ) eip·x +DS

τσ([p]†−1C)b†(p,σ) e−ip·x

where ε =
√

p2 +m2 is the 0-th component of the four momentum p; a, a† and b, b† are respec-
tively annihilation and creation operators for particles and antiparticles and [p] denotes the SL(2,C)
matrix which transforms p0 = (m,0) to p = (ε ,p). The transformation C in the last equation, if
understood as the corresponding matrix C ≡ iσ2, fulfills the following properties:

C = CT = C∗, C2 = −1 and CAC−1AT = I (det A) (4.13)

for A ∈ SL(2,C) and gives the spin-statistics connection :

DS
τσ(C2) = (−1)2Sδτ ,σ . (4.14)

Fields Ψ and Ψ̃ are also correct degrees of freedom for neutral particles, provided b†’s operators
are replaced with a† in 4.12 [21]. We will thus write the projector on a finite volume PV as:

PV =

∫

V
DψDψ̃ |ψ , ψ̃〉〈ψ , ψ̃ | . (4.15)

Let us now first evaluate the matrix elements of PV and Pi on single particle states | f 〉 ≡
|p,σ〉 and | f ′〉 ≡ |p′,σ ′〉. For sake of simplicity, we omit to enforce parity, C-parity and isospin
conservation, i.e. we let:

Pi ≡ PPJλ = δ 4(P− P̂)(2J +1)

∫
dR DJ

λ λ (R−1) R̂ . (4.16)

By using the same notation of [21], the matrix element of PPJλ on single particle states will be
written as [19]:

〈p,σ |PP,J,λ |p′,σ ′〉 = δ 4(P− p′)(2J +1)
∫

dR DJ
λ λ (R−1)δ 3(Rp′−p)DS

σ σ ′([Rp′]−1
R[p′]) (4.17)

where S is the spin of the particle and [Rp′]−1R[p′] is a Wigner rotation.
The matrix element of PV in (4.15) can be evaluated on single particle states as well by in-

troducing creation and annihiltation operators and expressing them in terms of field operators by
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using the relations:

〈0|a(p,σ) = 〈0| 1
(2π)

3
2

∫
d3x e−ip·x√2εDS

στ([p]−1)Ψτ (x) (4.18)

a†(p,σ)|0〉 =
1

(2π)
3
2

∫
d3x eip·x√2ε Ψ̃†

τ (x)DS
τσ ([p]) |0〉

〈0|b(p,σ) = 〈0| 1
(2π)

3
2

∫
d3x e−ip·x√2εΨ̃†

τ(x)DS
τσ ([p]C)

b†(p,σ)|0〉 =
1

(2π)
3
2

∫
d3x eip·x√2ε DS

στ(C[p]−1)Ψτ(x) |0〉

which follow from the definition (4.12). By using (4.18) the matrix element of PV between two
one-particle free states can be worked out as:

〈p′,σ ′|PV |p,σ〉 = 〈0|a(p′,σ ′)PV a†(p,σ)|0〉 (4.19)

=
1

(2π)3

∫
d3xd3x′ e−ip′·x′ eip·x 2

√
εε ′DS

σ ′τ ′([p
′]−1)DS

τσ([p])〈0|Ψτ ′(x
′)PV Ψ̃†

τ(x)|0〉

and, using the definition (4.15), the vacuum expectation value on the right-hand side as:

〈0|Ψτ ′(x
′)PV Ψ̃†

τ(x)|0〉 =

∫

V
DψDψ̃ ψτ ′(x

′)|〈0|ψ , ψ̃〉|2ψ̃†
τ (x) . (4.20)

Notice that in the limit V → ∞, since PV → I, the expression in (4.20) reduces to a well known
expression in field theory, the two point correlation function:

〈0|Ψτ ′(x
′)Ψ̃†

τ(x)|0〉 =
∫

DψDψ̃ ψτ ′(x
′)|〈0|ψ , ψ̃〉|2ψ̃†

τ (x) . (4.21)

The factor |〈0|ψ , ψ̃〉|2 is the squared modulus of the vacuum functional and reads (up to a constant
factor) [22]:

|〈0|ψ , ψ̃〉|2 = exp
{
−1

2

∫
d3x1d3x2ψ̃†(x1)K(x1 −x2)ψ(x2)+ψ†(x2)K(x1 −x2)ψ̃(x1)

}
, (4.22)

where K is the kernel. Eq. (4.21) is thus a gaussian integral whose solution is:

〈0|Ψτ ′(x
′)Ψ̃†

τ(x)|0〉 = I0K−1(x′−x)τ ′τ (4.23)

where K−1 is the inverse kernel and I0 ≡ 〈0|0〉 a constant factor [22]. When the volume is finite, the
functional integral in (4.20) is still gaussian and can be solved by finding the inverse of the kernel
over the finite region V . Then, the Eq. (4.19) turns out to be:

〈p′,σ ′|PV |p,σ〉 =
1

(2π)3

∫

V
d3x eix·(p−p′)

√
ε
ε ′ D

S
σ ′σ ([p′]−1[p]) (4.24)

≡
√

ε
ε ′ FV (p−p′)DS

σ ′σ ([p′]−1[p])

10
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where FV in Eq. (4.24) is a Fourier integral over the system region V :

FV (p−p′) =
1

(2π)3

∫

V
d3x eix·(p−p′) . (4.25)

Eq. (4.24) is indeed the same result which has been obtained in ref. [11] in a non-relativistic
quantum mechanical (NRQM) framework. The NRQM result is also found when considering
states composed by many (identical) particles (or particle-antiparticle pairs) provided that divergent
additional terms which appear in some cases can be safely subtracted away. The appearance of
such divergences is tightly related to the field formalism (for a detailed discussion see ref. [19]).
Nevertheless, retaining the definition ((4.15)), it is possible to subtract “by hand” these divergencies
in a consistent way and then recover the NRQM result with no additional terms.

The state weight ρ f can be thus calculated for a generic final state, taking into account that,
when considering groups of identical particles, one can work on the multiparticle tensor space
including Bose or Fermi statistics. In the simple case of N distinct particles, if we let {pn} and
{λn} be the set of four-momenta and helicities (or polarizations) of particles, the state weight ρ f

reads:

ρ f = (2J +1)

∫
dR DJ

λλ (R−1)δ 4

(
P−

N

∑
n=1

pn

)[
N

∏
n=1

DSn
λnλn

([pn]
−1

R[pn])FV (pn −R
−1pn)

]
, (4.26)

whereas for a generic state with {N j} particles, if we let {N j} ≡ N1, . . . ,Nk be the set of multiplici-
ties of the hadron species 1, . . . ,k, the corresponding expression turns out to be:

ρ f = (2J +1) ∑
{ρ j}

[
k

∏
j=1

χ(ρ j)
b j

]∫
dR DJ

λλ (R−1)δ 4

(
P−

N

∑
n=1

pn

)
(4.27)

×
k

∏
j=1

[
N j

∏
n j=1

D
S j

λn j λρ(n j )
([pn j ]

−1
R[pρ(n j)])FV (pρ(n j) −R

−1pn j)

]

where the index n labels the whole set of N ≡ ∑k
j=1 N j particles in the channel and n j labels par-

ticles of species j. In Eq. (4.27) {ρ j} stands for the set of permutations ρ1, . . . ,ρk, where ρ j is a
permutation of the integers 1, . . . ,N j, χ(ρ j) its parity and b j = 0; 1 for bosons and fermions respec-
tively. Eq. (4.27) is the microcanonical state weight with four-momentum and angular momentum
conservation.

5. Probability of a single channel

Summing ρ f over all kinematical variables (momenta and helicities) of particles one can get
the microcanonical weight of a channel (or channel weight), thence its probability by normalizing
with 1/Ω. For a set of distinguishable particles the microcanonical weight ΩN can be calculated
from Eq. (4.26) by integrating ρ f over all particles momenta and summing over their polarizations:

ΩN = (2J +1)
∫

dR DJ
λλ (R−1)

[
N

∏
n=1

∫
d3pn

]
δ 4

(
P−

N

∑
n=1

pn

)
(5.1)

×
[

N

∏
n=1

tr
[
DSn(R)

]
FV (pn −R

−1pn)

]

11
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where we used the cyclicity property of the trace:

tr
[
DSn([pn]

−1
R[pn])

]
= tr

[
DSn(R)

]
. (5.2)

For a generic state with a set {N j} of particles, by recalling that any permutation ρ j of N j integers
can be uniquely decomposed into the product of cyclic permutations, that is ρ j = c1 . . .cH , one
similarly obtains, from (4.27):

Ω{N j} = (2J +1) ∑
{ρ j}

[
k

∏
j=1

χ(ρ j)
b j

N j!

]∫
dR DJ

λλ (R−1)

[
k

∏
j=1

N j

∏
n j=1

∫
d3pn j

]

×δ 4

(
P−

N

∑
n=1

pn

)
k

∏
j=1

[
N

∏
n j=1

tr
[
DS j(Rn j)

]hn j (ρ j) FV (pρ j(n j) −R
−1pn j)

]
(5.3)

where hn j(ρ j) is the number of cyclic permutations cn j with n j elements in ρ j such that ∑∞
n j=1 n jhn j =

N j
4.

As one can realize, in both Eq. (5.1) and (5.3), the Wigner rotations matrices resulting from
the matrix element of PPJλ in (4.17) and Lorentz transformation matrices resulting from the matrix
element of PV in (4.24), combine in such a way that one is left with a trace of simple SU(2)
rotations in the expression of the channel weight. This is indeed a crucial point which simplifies a
lot calculations.

Eq. (5.3) can be further developed by recalling that the trace of a rotation is the same for all
rotations belonging to the same conjugacy class which is, in SU(2), the set of all rotations of the
same angle ψ around an axis n̂, which labels the different members of the conjugacy class. It is
therefore convenient to use the axis-angle parametrization for the integration over the SU(2) group
and use the corresponding invariant integration measure, i.e.:

∫
dR =

1
16π2

∫ π

0
dθ
∫ 2π

0
dφ
∫ 4π

0
dψ 2sinθ sin2 ψ

2
=

1
16π2

∫
dΩn̂

∫ 4π

0
dψ 2sin2 ψ

2
(5.4)

where (θ ,φ) are the polar and azimuthal angles defining the axis n̂. With this parametrization, the
trace of a rotation Rn̂(ψ) reads:

tr
[
DS (Rn̂(ψ))

]
=

sin[
(
S+ 1

2
)

ψ ]

sin ψ
2

(5.5)

and the Eq. (5.3):

Ω{N j} = (2J +1) ∑
{ρ j}

[
k

∏
j=1

χ(ρ j)
b j

N j!

]
1

8π2

∫
dΩn̂

∫ 4π

0
dψ sin2 ψ

2
DJ

λλ (R−1
n̂ (ψ))

[
k

∏
j=1

N j

∏
n j=1

∫
d3pn j

]

×δ 4

(
P−

N

∑
n=1

pn

)
k

∏
j=1




N

∏
n j=1

[
sin[(S j +

1
2)n jψ ]

sin(
n jψ

2 )

]hn j (ρ j)

FV (pρ j(n j)−R
−1
n̂ (ψ)pn j)


 . (5.6)

4The set of integers h1, . . . ,hN j ≡ {hn j}, is usually defined as a partition of the integer N j in the multiplicity repre-
sentation.
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If we assume the cluster to be a sharp sphere in shape (actually it is sufficient to assume spherically
symmetric shape), the channel weight turns out to be independent on the polarization λ so that,
after summing over λ , the integrand in (5.6) is independent on the rotation axis n̂ [19] and one can
therefore integrate away the solid angle Ωn̂ and comfortably choose ẑ as a rotation axis:

Ω{N j} = (2J +1) ∑
{ρ j}

[
k

∏
j=1

χ(ρ j)
b j

N j!

]
1

2π

∫ 4π

0
dψ sin ψ

2
sin
[(

J +
1
2

)
ψ
][ k

∏
j=1

N j

∏
n j=1

∫
d3pn j

]

×δ 4

(
P−

N

∑
n=1

pn

)
k

∏
j=1




N

∏
n j=1

[
sin[(S j +

1
2)n jψ ]

sin(
n jψ

2 )

]hn j (ρ j)

F◦
V (pρ j(n j) −R

−1
3 (ψ)pn j )


 (5.7)

where F◦
V are now Fourier integrals over a sharp sphere whose solution is known:

F(◦)
V (pρ(n)−R

−1
3 (ψ)pn) =

1
(2π)3

∫

V
d3x ei(pρ(n)−R

−1
3 (ψ)pn)·x =

R2

2π2
j1(|pρ(n) −R

−1
3 (ψ)pn|R)

|pρ(n)−R
−1
3 (ψ)pn|

(5.8)

where R is the radius, j1 is the spherical Bessel function of the first kind and R3(ψ) is a rotation of
an angle ψ along the z axis.

The channel weight including parity, C-parity and isospin conservation, can be calculated
introducing projectors in (4.7), (4.8) and the full projector onto an irreducible state of IO(1,3)↑ in
(4.10). Abelian charges conservation can be easily implemented algorithmically just by imposing
that ∑k

j q jN j = Q, where q j stands for the set of charges of the hadron species j.

In order to write the final result, one needs to first introduce the concept of type and species
of particles: particles species differ by whatever quantum number whereas particles belong to
the same type if they are light-flavoured mesons belonging to the same isospin multiplet or if
they are particle-antiparticle pair. Thus, if N is the total number of particles in a channel {N j} =

(N1, . . . ,NK), we have:

N =
k

∑
j=1

N j =
K

∑
j=1

L j

N j being the multiplicity of species j and L j the multiplicity of the type j; k be the total number of
species and K be total number of types.

If Π f and χC denote the product of all intrinsic parities and C-parities5 of particles in the
channel, S j the spin of particles of type j and ρ j a permutation of the integers 1, . . . ,L j, χ(ρ j) its

5Indeed, this factor includes additional charge conjugation phase factors of light-flavoured mesons [19].
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parity and b j = 0,1 for bosons and fermions respectively, the microcanonical channel weight reads:

Ω{N j} = ∑
{ρ j}

[
K

∏
j=1

χ(ρ j)
b j

]
1

8π

∫ 4π

0
dψ

[
k

∏
j=1

1
N j!

N j

∏
n j=1

∫
d3pn j

]
(5.9)

×δ 4

(
P−

N

∑
n=1

pn

)
sin(ψ/2) sin[(J +1/2)ψ ]

K

∏
j=1




L j

∏
l j=1

[
sin[(S j +

1
2)l jψ ]

sin(
l jψ
2 )

]hl j (ρ j)



×
(

K

∏
j=1

L j

∏
l j=1

F◦
V (pρ j(l j) −R

−1
3 (ψ)pl j)+ΠΠ f

K

∏
j=1

L j

∏
l j=1

F◦
V (pρ j(l j) +R

−1
3 (ψ)pl j )

)

×
(

I
{N j}
ρ (I, I3)

K

∏
j=1

L j

∏
l j=1

δαρ j (l j )
αl j

+CχCI
{N j}
ρ (I, I3)

K

∏
j=1

L j

∏
l j=1

δ−αρ j(l j )
αl j

)

where hn j(ρ j) is the number of cyclic permutation with l j elements in ρ j so that ∑∞
l j=1 l jhl j (ρ j) =

N j and where α(l j) is a set of quantum numbers (baryonic number and strangeness) of the l j-th
particle. The factors:

I
{N j}
ρ (I, I3) ≡

[
K

∏
j=1

〈I j,{I
l j

3 }|
]
|I, I3〉〈I, I3|

[
K

∏
j=1

|{I j, I
ρ j(l j)
3 }〉

]
(5.10)

I
{N j}
ρ (I, I3) ≡

[
K

∏
j=1

〈I j,{I
l j

3 }|
]
|I, I3〉〈I, I3|

[
K

∏
j=1

|I j,{−I
ρ j(l j)
3 }〉

]

are isospin coefficient. They have been calculated by using a recursive algorithm based on a tree-
like coupling scheme [19].

6. Numerical evaluation

The channel weight in (5.9) cannot be evaluated analytically and is therefore necessary to
resort to a numerical method. Whereas the sum over permutations can be performed by using well
known algorithms and isospin coefficients can be evaluated by means of a recursive algorithm, the
most difficult task is momentum integration, which has been performed by using the importance
sampling method.

If we let f (x) be the function to integrate, the method consists in a random extraction6 of the
variables x, within the integration range, according to a certain probability density g(x). In order
to reduce the statistical error affecting the estimation, such distribution should meet the following
requirements:

1. it must be as similar as possible to f (x),

2. it must be fast to sample,

3. it must be non-zero over the whole integration domain, otherwise the estimator would be
biased.

6In numerical integrations based on this method one usually refers to pseudo-random numbers.
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The integral of f (x) thus becomes (assuming g normalized to 1):

I =

∫ b

a
dx f (x) =

∫ b

a
dx

f (x)
g(x)

g(x)
.
=

(b−a)

Ns

Ns

∑
i=1

f (xi)

g(xi)
(6.1)

where xi are random variables extracted according to the distribution g(x). The expression of the
variance σ 2

I on the estimator of I turns then out to be:

σ 2
I = 〈I2〉−〈I〉2 =

1
Ns

∫
g(x)dx

(
f (x)
g(x)

)2
− 1

Ns

(∫
g(x)dx

f (x)
g(x)

)2
(6.2)

and it is minimized by the choice of a g(x) as similar as possible to f (x). The advantages of this
method are evident: with the same number of extractions one can obtain a smaller variance with
respect to a flat distribution. Moreover if g(x) can be sampled sufficiently fast one can obtain a
smaller variance in a shorter time, thus a more efficient algorithm.

Turning to Eq. (5.9), we develop the δ 4 factor of energy-momentum conservation as (in the
cluster’s rest frame):

δ 4

(
P−

N

∑
n=1

pn

)
= δ

(
M−

N

∑
n=1

εn

)
δ 3

(
N

∑
n=1

pn

)
(6.3)

and set:

pN = −
N−1

∑
n=1

pn. (6.4)

After solving δ
(
M−∑N

n=1 εn
)

in terms of the modulus of the N − 1-th particle momentum pN−1
we are thus left with 3N − 3 variables: N − 2 moduli of particle momenta, N − 1 solid angles, 1
angle ψ .

We used a flat distributions for all angles, while particle kinetic energies (hence momenta)
have been extracted according to a suitable auxiliary distribution which was used alredy in [23].
Such a distribution is the so called β function and reads:

β (x) =
Γ(a+b)

Γ(a)Γ(b)
xa−1(1− x)b−1 (6.5)

where a and b are two positive parameter and 0 < x < 1. In our case the variable x is t/tmax, where
tmax is the difference between the total energy of the system and the sum of all particle masses in
the channel {N j}, i.e. the total kinetic energy available. The expression (6.5) therefore reads:

β
(

t
tmax

)
=

Γ(a+b)

Γ(a)Γ(b)

(
t

tmax

)a−1(
1− t

tmax

)tmax/T

(6.6)

where we identified b−1 = tmax/T and where T is the corresponding temperature in the canonical
ensemble which can be obtained through a saddle point expansion [11, 12]. As has been shown
in [23], a good choice for the parameter a is:

a−1 =
1
2

+
3
2

e−2m j (6.7)
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where we introduced an empirical dependence of a on the particle masses (m j are expressed in
GeV). This distribution is very close to the grand-canonical distribution of particle kinetic energies
and it is fast to sample. The algorithm used to randomly extract particle kinetic energies according
to the distribution β is the Cheng’s BB algorithm [24] which samples variables through a very
efficient rejection method.

As will be discussed in next section, we will account of interactions between strongly stable
hadrons according to the hadron-resonance gas model, i.e. handling resonances as free particles.
At this stage, the resonances mass broadening can be straightforwardly introduced by extracting
masses at each step according to the relativistic Breit-Wigner distribution:

Br(m) ≡ 1
2π

Γr

(m−mr)2 +Γ2
r/4 (6.8)

where mr is the average mass and Γr is the width.

7. Probability of exclusive channels

So far we have been dealing with the microcanonical partition function of the ideal hadron
gas. There exists a very convenient way of writing the microcanonical partition function as the
sum of the free microcanonical partition function plus an interaction term expressed in terms of
the scattering matrix. This formula was obtained by Dashen, Ma and Bernstein[25] (DMB) in the
late 60’s and it is the theoretical basis of the so-called hadron-resonance gas model. In this model,
stable hadrons with respect to strong interactions and resonances are treated on an equal footing as
free particles, what turns out to be a very good approximation of an interacting hadron gas.

According to this theorem, the microcanonical partition function in the infinite volume limit
is expressed as the sum of the free partition function plus a term involving the (reduced) scattering
matrix S:

Ω = ∑
hV

〈hV |Pi|hV 〉 V→∞−→ trPi = trP0i +
1

4πi
trP0iS

−1
↔
∂ S

∂E
(7.1)

where Pi and P0i are respectively projectors involving the interacting and the free hamiltonian and
where Ω is expressed as a trace since the set of states |hV 〉 is a full basis of the Hilbert space
when V → ∞. Unfortunately, if we retain a finite volume V , the DMB procedure does not produce
an expression as simple as (7.1). One should therefore keep in mind that all applications of the
hadron-resonance gas model stemming from (7.1) strictly hold in the limit of large volumes V &

10 fm3 [19].
In order to define a good probability for the interacting hadron gas, one could draw inspiration

from the DMB theorem and redefine the probability of observing a final state | f 〉 as:

ρ f ∝ 〈 f |P0iPVP0i| f 〉+
1

4πi
〈 f |P0iS

−1
↔
∂ S

∂E
PV P0i| f 〉 (7.2)

where the rightmost term account for interactions. Accordingly, the microcanonical weight of a
final channel with only strongly stable hadrons will be then obtained integrating Eq. (7.2) over
particle momenta and helicities.

16



P
o
S
(
C
P
O
D
2
0
0
6
)
0
4
1

A test of SHM with exclusive rates Lorenzo Ferroni

If we assume that the predominant contribution comes from resonating interactions, the in-
teraction term in (7.2) can be calculated expanding the S matrix in a cluster decomposition as a
sum of digrams like these shown in fig. 2. If only symmetric diagrams (see e.g. first two diagrams

Figure 2: Three examples of diagrams which contribute to the probability of the channel Kππ according
to the Dashen-Ma-Bernstein theorem prescription. First two diagrams from left are symmetric while the
rightmost one is non-symmetric.

from left in fig. 2) are retained in the DMB theorem expansion and interference of overlapping
resonances is neglected, this is given by a weighted sum of free microcanonical weights (5.9) of
channels including both hadrons and resonances (which can then be handled as free particles with
distributed mass) eventually decaying into the final hadrons of the channel. We have thus recovered
the usually known recipe of the hadron-resonance gas model.

Given a final channel {N j}, one should find all possibles parent channels whose hadrons and
resonances decay into it. The search for all parent channels is a multi-step recursive problem in that
many generations can be involved. If we denote by {N j}(1) a channel which can directly decay into
the channel {N j}, by {N j}(2) a channel which can directly decay in {N j}(1) and so on, one has to
find all possible decay trees like those shown in Fig. (3). In view of the large number of resonances,
this task is not a trivial one: a suitable algorithm has been devised for this purpose. The probability

Figure 3: Examples of possible decay trees for a four particles channel. Circles encompass decay products
of the particle at higher level.

ρ{N j} of observing a final channel {N j} can then be expressed as a finite sum:

ρ{N j} ∝ ω{N j} ≡ Ω{N j} +BR(1)Ω{N j}(1)
+BR(2)BR(1)Ω{N j}(2)

+ . . .

+ BR(1)′Ω{N j}(1)′ +BR(2)′BR(1)′Ω{N j}(2)′ + . . . (7.3)

17



P
o
S
(
C
P
O
D
2
0
0
6
)
0
4
1

A test of SHM with exclusive rates Lorenzo Ferroni

where BR(i) is the product of branching ratios of particles in the channel {N j}(i) decaying into
particles in the channel {N j}(i−1) and where ω{N j} is the channel weight where contributions of
parent channels are included.

It should be pointed out that there are more contributions to the microcanonical weight of a
final channel which have been neglected. These stem from the non-symmetric diagrams (see the
rightmost diagram in fig. 2) whose value depend on unknown parameters [19]. They have been
neglected in this work.

7.1 Strangeness suppression factor

We allow deviations from statistical equilibrium of channels involving particles with strange
valence quarks introducing a phenomenological parameter, the strangeness suppression factor γS.
This parameter has been widely used in inclusive hadron multiplicity analyses and it is likely to be
needed also in the analysis of exclusive rates at low energy. In order to have agreement with the
γS definition in the canonical and grand-canonical limit, one should multiply the microcanonical
weight of a channel by γ s j

S s j being the number of valence strange quarks of each particle:

Ω{N j} →
[

k

∏
j=1

(
γ s j

S

)N j

]
Ω{N j} . (7.4)

The γS factor also applies to neutral mesons with valence strange quarks like η , φ etc. Since the
wavefunction of such particles is in general a superposition like Cuuu +Cddd +Csss with |Cu|2 +

|Cd|2 + |Cs|2 = 1, only the component ss of the wavefunction is suppressed, i.e. we multiply by:

|Cs|2γ2
S +(1−|Cs|2) .

We have used mixing angles quoted by the Particle Data Book [26].

7.2 Single resonance contribution

According to DMB theorem, the microcanonical partition function of an interacting hadron
gas also gets non-vanishing contribution from diagrams with a single resonance r. This reads:

Ωr =
V

(2π)3 Br(M) (7.5)

where V is the volume and Br(M) is a normalized Breit-Wigner distribution:

Br(M) ≡ 1
2π

Γr

(M−Mr)2 +Γ2/4
. (7.6)

In terms of the diagrammatic description with the decay tree in fig. (3), this correspond to the
highest ancestor of the channel, with a single resonance having the same quantum numbers of the
cluster itself. The contribution (7.5) is globally suppressed by a factor ∼ 1/(M −Mr)

2 + Γ2
r/4 or

smaller, so that for cluster masses sufficiently larger than the difference Mr −Γr, this is expected
to become negligible. Small as it can be, though, the single- resonance term (including multiple
resonance interference) cannot be excluded in principle from the calculation of the microcanonical
partition function. However, in our formulation of the statistical model the starting point is an
assumed probability given by a DMB theorem-inspired formula (7.2) and the single resonance
contribution may be well excluded by hand.
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8. An analysis of e+e− collisions at low energy

There have been several attempts to reproduce hadron multiplicities and some multi-pion(kaon)
differential cross sections in low energy e+e− collisions [15] by using statistical-thermodinamical
or statistical-inspired models in the past. Yet, to simplify numerical calculations, none of them
properly took into account the full set of conservation laws, which is a clear drawback because
in few body decays all of them are indispensable. Now, we are in a position to make a thorough
test of the statistical ansatz in a more rigorous formulation, taking into account properly conserved
quantities and the finite volume of the hadron-emitting source.

According to the discussion in sec. (3), we will assume the formation of a single cluster at
rest whose mass coincide with

√
s and other quantum numbers will be given by the initial colliding

particles. In low energy e+e− collision, the hadron production is dominated by the diagram with
an intermediate virtual photon (see the pictorial sketch in fig. 4), so that the hadronizing cluster has
spin, parity and C-parity assignment JPC = 1−−. On the other hand, initial isospin is unknown;
in the Vector Dominance Model (VDM) this depends on the coupling of the photon to different
resonances, but we will be working in a mass region above 2 GeV quite far from resonance re-
gion. Therefore, we will assume an unknown statistical mixture of I = 0 and I = 1 initial state
disregarding interference terms and introducing a free parameter f1, the fraction of I = 1 state:

f1|1,0〉〈1,0|+(1− f1)|0,0〉〈0,0|.

where isospin states have been denoted has |I, I3〉. In order to completely define the cluster, besides
his mass, we must fix his volume. We thus introduce the energy density parameter ρ :

ρ ≡ M
V

=
3M

4πR3 (8.1)

where M is the mass.

Figure 4: Pictorial representation of a low energy e+e− collision with formation of a single cluster.

We want to compare the predictions of the SHM with measured production rates of several
exclusive channels. A relevant problem in this comparison is how to deal with the contribution of
single resonances. There are two main options in this regard:
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1. Exclude single-resonance contribution (7.5) from the model formulation.

2. Include single-resonance contribution in the model formulation.

The option 1 requires a subtraction of the contribution of single resonances to the measured cross
section of a given exclusive channel and the comparison with Ω(>1) microcanonical weight of the
channel, where (> 1) just indicates that single-resonance contribution is excluded. This is a clearly
difficult task because we have a poor knowledge of the widths, branching ratios and the widths in
e+e− of the whole set of JPC = 1−− resonances, which are needed for the subtraction. We also
ignore interference phases of these resonances. On the other hand, the option 2 does not require
any cross-section subtraction and, albeit resonance interference is still not taken into account and
many experimental resonance branching ratios are poorly known, we are not required to know the
Γ(r →e+e− ); we just compare the model outcome with the relative yields of measured channels.

In both cases, though, it is advantegeous to be sufficiently far from the resonance region to
minimize the impact of poor knowledge of hadronic resonance characteristics. Furthermore, we
do not want to get over the charm production threshold and this constrains our interval to the
energy range 2-3 GeV. Sufficiently many experimental measurements can be found in this range
in literature for

√
s = 2.1 GeV and

√
s = 2.4 GeV and this is what we have analyzed. Indeed,

we will see that at such energy points, known 1−− resonances contribute (in the incoherent sum
approximation) at most 10% to two-body channels.

To compare SHM predictions with measured cross sections, we have used branching ratios
quoted by the Particle Data Book [26] to calculate ω{N j} in (7.3). A dimensional factor A(

√
s) is

introduced:

σ{N j} −→ A(
√

s)ω{N j} . (8.2)

(where σ{N j} ≡ σ(e+e− →{N j})) which is is determined, at a given energy
√

s, through the mini-
mization of the χ2:

χ2 ≡ ∑
{N j}meas.

(
σ{N j}−Aω{N j}

)2

∆2
σ{Nj}

+A2∆2
ω{Nj}

. (8.3)

The above sum runs over measured channels; ∆σ{Nj}
and ∆ω{Nj}

are the uncertainties on measured
cross sections and on channel weight evaluated with the model respectively. The latter is essentially
the sum of the statistical error (owing to the finite number of sampling in Monte-Carlo integration)
and the systematic uncertainty in the branching ratios of resonances in Eq. (7.3). We have estimated
the systematic uncertainty by varying the branching ratios by their errors quoted by the Particle
Data Book or by making an educated guess of these errors.

The comparison with experimental data is shown in tab. (1) and (2) at
√

s = 2.1 GeV and√
s = 2.4 GeV respectively. We have performed a coarse scan in energy density, and the two

parameters f1 and γS of the branching ratios. In the table, the results obtained at four energy
density values (0.1, 0.5, 1.0, 1.5 GeV/fm3) and the best values of f1 and γS are shown.

As it can be seen, the dependence on energy density is not very strong and the best values (in
boldface on tables) vary from ρ = 0.1 GeV/fm3 in tab. (1) and ρ = 1.5 GeV/fm3 in tab. (2). For
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√
s = 2.4 GeV/fm3 the best value of γS is 1.4. This is quite unusual in statistical models where (at

least at high energies) γS ≤ 1.
In both cases the agreement is fair and for

√
s = 2.4 GeV model predictions are closer to data.

This is also due to the smaller number of listed exclusive channels which, in turn, implies a better
fitting of normalizing constant A.

At best values of parameters, single resonance channels are important for π +π− ∼ 12% and
π+π−π0 (∼ 3.5%) at

√
s = 2.1 GeV and for π+π−π0 (∼ 7%) for

√
s = 2.4 GeV. This value is

higher than at
√

s = 2.1 GeV because, even if tails of overlapping resonaces are lower (the main
contribution comes from ω(1650)), at higher energy densities few-particles channels have higher
statistical weight.

In tab. (1), the channel ηπ+π− is overstimated by the model for all energy density values and
in tab. (2) the same happens for ωπ+π−. This might owe to our assumption of a mixture of isospin
states (instead of a superposition) for the initial photon state and a too simple parametrization of
strangeness suppression. This could be also the reason for γS = 1.4 at

√
s = 2.4 GeV. Probably,

a better agreement might be achieved enforcing the full flavour symmetry group SU(3) and cor-
recting for the explicit flavour-breaking. It should also be reminded that we describe interactions
by using DMB theorem which strictly holds for large volumes so that deviations may well arise
at volumes 21 fm3 corresponding to the best density in tab. (1) and even more at the volume of
1.4 fm3 corresponding to ρ = 1.5 GeV/fm3 in tab. (2).

Other approximations which may affect results are the absence of resonance interference be-
tween overlapping resonances, the exclusion of further terms in the DMB diagrammatic expansion
and the very fact that we kept only the resonant part of the interaction. In inclusive quantities, these
effects probably wash out when summing over many final channels but this may not be the case for
some specific few-body exclusive channels.
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channel σ (nb) (model) σ (nb) (exp.) References
ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.0 GeV/fm3 ρ = 1.5 GeV/fm3

f1 = 0.9 γS = 1.0 f1 = 0.9 γS = 1.2 f1 = 0.9 γS = 1.2 f1 = 0.9 γS = 1.2
π+π− 0.25±0.004±0.02 0.49±0.004±0.06 0.6±0.004±0.1 0.7±0.004±0.1 0.35±0.17 [27]
π+π−π0 0.07±0.005±0.01 0.09±0.0005±0.02 0.1±0.0004±0.02 0.1±0.0003±0.02 0.398±0.099 [28, 29, 30, 31]
π+π−π0π0 6.6±0.1±0.5 3.8±0.02±0.4 3.4±0.01±0.4 3.2±0.01±0.3 15.8±3.4 [31]
π+π−π+π− 5.4±0.1±0.5 3.3±0.02±0.4 2.9±0.01±0.4 2.7±0.006±0.4 5.142±0.263 [32, 33, 34]
π+π−π+π−π0 1.46±0.02±0.07 0.92±0.004±0.07 0.81±0.003±0.06 0.73±0.002±0.05 2.5±2.4 [31]
pp 0.468±0.002±0 0.662±0.002±0 0.744±0.002±0 0.763±0.002±0 0.571±0.068 [35, 36, 37, 38]
nn 0.473±0.002±0 0.662±0.002±0 0.745±0.002±0 0.764±0.002±0 0.95±0.23 [35, 39]
K+K−π+π−π+π− 0.0381±0.0003±0.0002 0.00113(±0.7±1)10−5 0.000195(±1±3)10−6 6.810−5 (±0.7±2)10−6 0.015±0.015 [40]
K+K−π+π− 3.4±0.04±0.1 3.39±0.01±0.07 2.84±0.01±0.05 2.53±0.006±0.05 3.5±0.27 [34, 41]
ηπ+π− 1.2±0.03±0.2 1.5±0.01±0.2 1.5±0.01±0.2 1.4±0.01±0.1 0.22±0.16 [42]
ωπ+π− 0.285±0.004±0.001 0.234±0.001±0.002 0.225±0.001±0.004 0.216±0.0006±0.005 0.27±0.12 [29]

Table 1: Exclusive cross sections in e+e− collisions at
√

s = 2.1 GeV. The first error on model calculations is statistical and the second is the uncertainty due to
poorly known resonance branching ratios. The energy density value in best agreement with data is in boldface. Quoted experimental data are weighted averages
of measures in references.
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channel σ (nb) (model) σ (nb) (exp.) Referencies
ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.0 GeV/fm3 ρ = 1.5 GeV/fm3

f1 = 0.5 γS = 0.8 f1 = 0.3 γS = 1.4 f1 = 0.3 γS = 1.4 f1 = 0.3 γS = 1.4
π+π−π0 0.12±0.004±0.02 0.17±0.001±0.04 0.2±0.001±0.05 0.21±0.001±0.05 0.254±0.071 [30, 29]
π+π−π+π− 1.6±0.02±0.2 0.9±0.004±0.3 0.9±0.002±0.3 0.8±0.002±0.3 1.3±0.38 [43]
pp 0.101±0.001±0 0.165±0.001±0 0.215±0.001±0 0.233±0.001±0 0.31±0.12 [44, 45]
nn 0.102±0.001±0 0.165±0.001±0 0.213±0.001±0 0.234±0.001±0 0.69±0.29 [35]
K+K−π+π−π+π− 0.208±0.002±0.002 0.288±0.001±0.003 0.256±0.001±0.002 0.245±0.001±0.002 0.295±0.075 [40]
ηπ+π− 0.17±0.008±0.04 0.28±0.004±0.065 0.3±0.002±0.07 0.301±0.002±0.07 0.22±0.11 [42]
ωπ+π− 0.62±0.008±0.04 1.5±0.006±0.5 1.6±0.004±0.6 1.6±0.004±0.6 0.24±0.19 [29]

Table 2: Exclusive cross sections in e+e− collisions at
√

s = 2.4 GeV. The first error on model calculations is statistical and the second is the uncertainty due to
poorly known resonance branching ratios. The energy density value in best agreement with data is in boldface. Quoted experimental data are weighted averages
of measures in references.
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9. Resonances as hadronizing clusters

The identification of (heavy) resonances with extended clusters is a tempting conceptual step.
Hagedorn first put forward this idea in the ’60s [8] laying the foundations of the Statistical Boot-
strap Model. Also the MIT Bag model conceives resonances and hadrons as extended massive
objects from the very beginning, giving rise to many physical consequences. It is therefore a nat-
ural step to make the same identification in the framework of the statistical hadronization model
and check, on the basis of existing measurements, whether at least heavier resonances decay sta-
tistically into multi-hadronic channels. If this turned out to be the case, we would achieve a major
confirmation of the old Hagedorn idea that resonances are in turn made of resonances and hadrons.

We compared the branching ratios of heavy resonances with statistical model predictions.
Theoretical branching ratios have been normalized by means of an external constant A:

BR(r →{N j}) −→ Aω (>1)
{N j} (9.1)

and not by calculating all possible decay channels. This is a drawback of present calculation which
should be fixed in the near future. In (9.1), ω (>1)

{N j} stands for the probability in (7.3) where only
channels whith at least two particles are included. As for e+e− collisions, branching ratios in
Eq. (7.3) have been introduced as external inputs from [26].

In tables: (3),(4),(5),(6),(7) and (8) model predictions are compared with branching ratios
of 6 heavy resonances (quoted by the Particle Data Book [46]): K∗

2 (1430); Λ(1520); π2(1670);
ρ3(1690); K∗

3 (1780); K∗
4 (2045).

K∗
2 (1430)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 0.6 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 1.0 γS = 1.0 γS = 1.0 γS = 1.0
Kπ 10.5±0.2±0 51.5±0.5±0 53.2±0.6±0 68.3±1.6±0 49.9±1.2
K∗(892)π 11.5±0.2±0 21.1±0.6±0 20.4±0.6±0 16±1.7±0 24.7±1.5
K∗(892)ππ 51±1±0 5.4±0.1±0 4.75±0.08±0 3.2±0.05±0 13.4±2.2
Kρ 12.3±0.2±0 12.3±0.6±0 12.1±0.7±0 7.2±1.6±0 8.7±0.8
Kω 14.3±0.2±0 9.4±0.7±0 9.1±0.8±0 4.8±1.7±0 2.9±0.8

Table 3: Branching ratios of K∗
2 (1430). The first error on model calculations is statistical and the second is

the uncertainty due to poorly known resonance branching ratios. The energy density value in best agreement
with data is in boldface. The reference for quoted experimental data is [46].

We found parameters ρ and γS in best agreement with data (in boldface on tables) by trial and
error and we also quote results for different values of the energy density, from 0.02 to 1.5 GeV/fm3.
For each value of ρ , γS has been chosen in order to get the best agreement with the data. Measured
branching ratios are those quoted by the Particle Data Book [46].

There is a fair agreement of model and data even though large discrepancies appear for some
channels like, for instance, π2 → ωρ . This channel has been excluded from the calculation of A
because overstimated by the model.

It is interesting to look at the dependence on the enegy density, especially comparing to the
others the point ρ = 0.02 GeV/fm3 in tables (3) and (4) of resonances K∗

2 (1430) and Λ(1520).
It is interesting to note that the ratio between channels Σππ and Σπ of Λ(1520) increases with
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Λ(1520)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 1.0 γS = 1.0 γS = 1.0 γS = 1.0
NK 42.3±0.4±0 40.1±1.1±0 20.2±5.7±0 5.5±12.1±0 45±1
Σπ 29.4±0.3±0 36.5±0.7±0 28.5±3.9±0 7.3±8.8±0 42±1
Λππ 23.7±0.4±0 19.3±0.1±0 43.4±0.2±0 74.9±0.3±0 10±1
Σππ 2.47±0.01±0 2.065±0.007±0 5.7±0.02±0 10.14±0.04±0 0.9±0.1

Table 4: Branching ratios of Λ(1520). The first error on model calculations is statistical and the second is
the uncertainty due to poorly known resonance branching ratios. The energy density value in best agreement
with data is in boldface. The reference for quoted experimental data is [46].

π2(1670)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 0.6 γS = 0.6 γS = 0.6 γS = 0.6
f2(1270)π 50±0.3±0 46.3±0.2±0 46.9±0.1±0 51±0.1±0 56.2±3.2
ρπ 35.6±0.4±0 39.7±0.3±0 40.1±0.2±0 37.2±0.2±0 31±4
KK∗

(892)+ cc 5.73±0.05±0 5.37±0.03±0 4.31±0.03±0 3.18±0.02±0 4.2±1.4
ωρ (Exclud.) 76.3±0.7±0 62.9±0.5±0 43.8±0.3±0 29.7±0.2±0 2.7±1.1

Table 5: Branching ratios of π2(1670). The normalization constant has been calculated excluding the
channel ωρ . The first error on model calculations is statistical and the second is the uncertainty due to poorly
known resonance branching ratios. The energy density value in best agreement with data is in boldface. The
reference for quoted experimental data is [46].

ρ3(1690)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.3 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 1.8 γS = 0.6 γS = 0.6 γS = 0.4
ππππ 59.7±2.4±0.02 70.9±1.2±0.1 60.5±1.1±0.1 46±2.1±0.02 71.1±1.9
ωπ 0.61±0.02±0 18.7±0.4±0 21±0.5±0 20.6±1.5±0 16±6
KKπ 48.8±12.2±0.0002 2.4±0.1±0.02 2±0.1±0.0005 0.9±0.2±0.1 3.8±1.2
KK 3.18±0.06±0 1.25±0.02±0 1.5±0.03±0 0.33±0.02±0 1.58±0.26
ππ 3.74±0.08±0 22.8±0.3±0 31±0.5±0 48.2±1.4±0 23.6±1.3

Table 6: Branching ratios of ρ3(1690). The first error on model calculations is statistical and the second is
the uncertainty due to poorly known resonance branching ratios. The energy density value in best agreement
with data is in boldface. The reference for quoted experimental data is [46].

the energy density contrarily to expectations. This is due to the fact that the channel Σ+π−π0 is
dominated by the parent channel Σ0(1385)π0 which is produced subtancially at rest and has a large
statistical weight. Also in this case, as for e+e− , channels with ω meson seem to be peculiar for
some resonances like π2(1670). For K∗

3 (1780) the best value of γS is slightly larger than 1.
Even though we have a fair agreement, it is still very difficult to draw a definite conclusion.

It is important, as a next step, to improve this comparison without introducing any external nor-
malization constant exploring all allowed final channels and studying more carefully the effect of
turning on and off each conservation law to understand the main driving forces of the obtained
values.
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K∗
3 (1780)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 1.2 γS = 1.4 γS = 1.6 γS = 1.8
Kρ 25.4±0.6±0 19.4±0.4±0 11.9±0.4±0 6.4±0.7±0 31±9
K∗(892)π 21.5±0.6±0 19.3±0.4±0 14±0.4±0 9.1±0.7±0 20±5
Kπ 19.9±0.5±0 18.8±0.3±0 19.8±0.3±0 20.5±0.6±0 18.8±1
Kη 32.9±0.7±0 42.3±0.6±0 54.1±0.9±0 63.7±2.5±0 30±13

Table 7: Branching ratios of K∗
3 (1780). The first error on model calculations is statistical and the second is

the uncertainty due to poorly known resonance branching ratios. The energy density value in best agreement
with data is in boldface. The reference for quoted experimental data is [46].

K∗
4 (2045)

channel B.R. (model) B.R (exp.)
ρ = 0.02 GeV/fm3 ρ = 0.1 GeV/fm3 ρ = 0.5 GeV/fm3 ρ = 1.5 GeV/fm3

γS = 1.2 γS = 1.0 γS = 1.0 γS = 0.8
Kπ 0.055±0.002±0 0.429±0.006±0 1.99±0.03±0 3.3±0.1±0 9.9±1.2
K∗(892)ππ 4.7±0.1±0.03 8.3±0.1±0.1 8.3±0.1±0.2 7.6±0.3±0.2 9±5
K∗(892)πππ 20.5±1.1±0.1 9.6±0.2±0.1 7±0.1±0.07 8.4±0.4±0.06 7±5
Kρπ 7.3±1.4±0.02 12±0.5±0.06 10.9±0.4±0.08 9.6±0.5±0.09 5.7±3.2
Kωπ 3.5±0.2±0.0002 6.6±0.2±0.001 7.7±0.1±0.001 9.6±0.4±0.0002 5±3
Kφπ 4.1±0.4±0 2.67±0.09±0 2.6±0.09±0 1.2±0.1±0 2.8±1.4
K∗(892)φ 0.635±0.008±0 1.18±0.01±0 2.25±0.05±0 1.1±0.1±0 1.4±0.7

Table 8: Branching ratios of K∗
4 (2045). The first error on model calculations is statistical and the second is

the uncertainty due to poorly known resonance branching ratios. The energy density value in best agreement
with data is in boldface. The reference for quoted experimental data is [46].

10. Conclusions and Outlook

This work is the starting point of a new series of analyses of the statistical hadronization
model (SHM) aiming to settle a long-standing debate [4, 5, 6, 7] on the interpretation of statistical-
thermodynamical behaviour exhibited by particle multiplicities and transverse momentum spectra
in high energy collisions. The comparison of the model with more observables, especially focusing
on those which are more sensitive to peculiar features of the SHM, should allow us to distinguish
between a genuine statistical equilibrium, i.e. hadrons are born at equilibrium within a finite vol-
ume (the SHM ansatz), and other non-statistical hypotheses which ascribe the “apparent” statistical
equilibrium to a special property of the quantum dynamics governing hadronization (phase space
dominance [6]). As was proposed in ref. [9], we started analyzing production rates of exclusive
channels, which were indicated therein, in this sense, as much more effective observables with re-
spect to inclusive quantities like average multiplicities. Unfortunately, for practical reasons, such
quantities can be measured only in low energy (some GeV) collisions, where none of the conser-
vation laws (including angular momentum, isospin, parity conservation) can be neglected.

We thus gave a formulation of the SHM in its fundamental microcanonical framework, enforc-
ing the maximal set of conservation laws relevant to strong interaction and space-time symmetries
by using the projector onto irreducible states of the orthochronous Poincaré group IO(1,3)↑ and
fixing isospin, abelian charges, and C-parity (when the initial state is neutral). We defined the
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probability to observe an asymptotic channel, i.e. a multihadronic state with fixed particle mul-
tiplicities, as a cluster’s decay product, without invoking any large volume approximation. The
microcanonical channel weight (proportional to the probability) has been calculated identifying
confined states within the hadron emitting source (the cluster) as free states of the quantum field
vanishing out of the cluster volume, thus achieving a microcanonical field theory; the correspond-
ing microcanonical partition function being the sum over all channel of the channel weight. We
took into account interactions among hadrons handling resonances as free particles, i.e. assuming
the hadron-resonance gas model, that is a derivation of the more general Dashen-Ma-Bernstein
theorem in the thermodinamical limit provided interference terms between nearby overlapping res-
onances and non-resonant interactions terms are neglected.

The channel weight has been calculated by using a purposely designed numerical method
based on a Monte-Carlo integration which is the state of the art of microcanonical calculations for
the hadron gas.

We made a preliminary test of the statistical hadronization model on production rates of exclu-
sive channels in e+e− collisions at low energy, at two different values of

√
s: 2.1 GeV and 2.4 GeV.

The calculation of required the inclusion of all conservation laws.
The obtained results are in fair agreement with the experimental data. However, the whole

pattern of predictions has to be understood in detail, especially the interplay between finite volume
and conservation laws and the variation of energy density and other parameters with energy. The
observed deviations are to be investigated in more detail to check whether they can be attributed
to the used approximation. Particularly, we have to assess the effect of using the larger flavour
symmetry group SU(3) and the inclusion of resonance interference terms.

Another test of the model has been made comparing measured branching ratios of various
heavy resonances (mr & 1.6 GeV) assuming the idea of an identification between extended clusters
and resonances (originally put forward by Hagedorn [8]). Also in this case results are encourag-
ing and an overall fair agreement with the data has been found. Still, a better understanding of
conservation laws and finite volume effects is needed.

Further tests should be made on other kinds of collision and on pp annihilation. Exclusive
channels have been abundantly measured in this reaction, but, unfortunately, the initial protonium
atomic state is a poorly known mix of angular momentum and isospin states and a comparison with
SHM is more problematic with respect to e+e− .

Another fundamental step is the definition of the channel probability assuming the phase space
dominance model enforcing the full set of conservation laws. The comparison between phase space
dominance and SHM is actually a crucial test to understand whether exclusive channels can really
serve to distinguish between them and to highlight effects of the finite spatial extension of clusters.
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