
P
o
S
(
C
P
O
D
2
0
0
6
)
0
4
3

Multiplicity Fluctuations
in Relativistic Nucleus-Nucleus Collisions

Mark I. Gorenstein ∗

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

We discuss the event-by-event multiplicity fluctuations in relativistic nucleus-nucleus collisions.

Recent results of the transport and statistical approaches are presented and compared with existing

data.

Correlations and Fluctuations in Relativistic Nuclear Collisions
July 7-9 2006
Florence, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
P
O
D
2
0
0
6
)
0
4
3

Multiplicity Fluctuations Mark I. Gorenstein

1. Introduction

The fluctuations in high energy particle and nuclear collisions are studied on an event-by-event
basis: a given observable is measured in each collision event and the fluctuations are evaluated for
the selected set of these events (see, e.g., reviews [1]). The statistical model has been successfully
used to describe the data on hadron multiplicities in relativistic A+A collisions (see, e.g., Ref. [2,
3, 4]). The fluctuations can be closely related to phase transitions in QCD matter, with specific
signatures for 1-st and 2-nd order phase transitions as well as for the critical point [5, 6, 7].

2. HSD and UrQMD Transport Approaches

Only recently, due to a rapid development of experimental techniques, first measurements of
particle multiplicity fluctuations in A+A collisions were done [8]. We start our discussion with
the HSD [9] and UrQMD [10] transport approaches. More details are presented in Ref. [11]. The
Fig. 1 presents the HSD and UrQMD results and the NA49 data points for the scaled variances
of negatively, positively, and all charged particles in Pb+Pb collisions at 158 AGeV. The average
values〈Ni〉 (i = +,−,ch) and variancesVar(Ni) ≡ 〈N2

i 〉− 〈Ni〉2 are calculated for the samples
of collision events with fixed number of projectile participants. The scaled variances areωi ≡
Var(Ni)/〈Ni〉 . Note thatω = 1 for the Poisson multiplicity distribution.

The final particles in the HSD and UrQMD simulations are accepted at rapidities1.1< y< 2.6
(we use particle rapidities in the Pb+Pb c.m.s. frame) in accord to the NA49 transverse momentum
filter. The HSD and UrQMD simulations both show flatωi values,ω− ≈ ω+ ≈ 1.2, ωch ≈ 1.5,
and exhibit almost no dependence onNpro j

P . The NA49 data, in contrast, exhibit maximums,ω− ≈
ω+ ≈ 2 andωch≈ 3, for Npro j

P ≈ 50, and a rather strong dependence onNpro j
P .

The Fig. 1 also shows results of the HSD and UrQMD simulations for the full 4π acceptance
for final particles, and shows the NA49-like acceptance in the mirror rapidity interval,−2.6 <

y < −1.1 of the target hemisphere. HSD and UrQMD both result in large values ofωi , i.e. large
fluctuations in the backward hemisphere: in the backward rapidity interval−2.6< y<−1.1 (target
hemisphere) the fluctuations are much larger than those calculated in the forward rapidity interval
1.1< y< 2.6 (projectile hemisphere, where the NA49 measurements have been done). Even larger
fluctuations follow from the HSD and UrQMD simulations for the full acceptance of final particles.

The HSD and UrQMD results raise two questions: 1). What is the origin of strong fluctuations
(ωi is much larger than 1) within the HSD and UrQMD simulations both in the full acceptance
and in the target hemisphere? 2). Why are no large fluctuations observed in the HSD and UrQMD
simulations in the NA49 acceptance, i.e. within the projectile hemisphere?

In each A+A event only a fraction of all 2A nucleons (the participant nucleons) interact. We
denote the number of participant nucleons from the projectile and target nuclei asNpro j

P andNtarg
P ,

respectively. The trivial geometrical fluctuations due to impact parameter variations usually domi-
nate in high energy A+A collisions and mask the fluctuations of interest. It appears that even with
the rigid centrality trigger,Npro j

P = const, used by NA49 Collaboration, the number of nucleon par-
ticipants still fluctuates considerably. In each sample the number of target participants fluctuates
around its mean value,〈Ntarg

P 〉 ≈Npro j
P , with the varianceV(Ntarg

P )≡ 〈(Ntarg
P )2〉−〈Ntarg

P 〉2. The cru-
cial point is that by this event selection one introduces an asymmetry between projectile and target
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Figure 1: The results of the HSD (left) and UrQMD (right) simulations are shown forω−, ω+, andωch

in Pb+Pb collisions at 158 AGeV as functions ofNpro j
P . The black points are the NA49 data. The different

lines correspond to the model simulations with the original NA49 acceptance,1.1< y< 2.6, in the projectile
hemisphere (lower lines), the NA49-like acceptance in the mirror rapidity interval,−2.6 < y <−1.1, in the
target hemisphere (middle lines), and full4π acceptance (upper lines).

participants. The number of projectile participants is constant by construction, whereas the number
of target participants fluctuates. The consequences of this asymmetry depend on dynamics or prop-
erties of the model, respectively. The Fig. 2 presents the scaled varianceω targ

P = V(Ntarg
P )/〈Ntarg

P 〉
calculated within the HSD and UrQMD models as the function ofNpro j

P . The fluctuations ofNtarg
P

are quite strong: the largest value ofω targ
P = 3÷3.5 occurs atNpro j

P = 20÷30. The scaled variance
ωP for the total number of participants is easily found,ωP = ω targ

P /2, asNP = Ntarg
P + Npro j

P and
only a half of the total number,NP, of participants, i.e.,Ntarg

P , does fluctuate. The scaled variances,
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Figure 2: Left HSD and UrQMD simulations show similar scaled variancesω targ
P as a function ofNpro j

P .
Right. The circles, triangles, and boxes are the results of the HSD simulations forωi in full 4π acceptance
with Ntarg

P = Npro j
P . This condition yields,ω targ

P = 0, and Eq. (2.1) is reduced toωi = ω∗
i . The dashed lines

correspond to the HSD results forω∗
i per N+N collision at 158 GeV:ω∗

ch = 2.5 , ω∗− = 1.5 , ω∗
+ = 1.1 .

ωi , can be presented as:

ωi = ω∗
i +

1
2

ω targ
P ni , (2.1)

where the fluctuations from one source is,ω∗
i , and the contribution due to the fluctuations of the

number of sources,ωPni . The Fig. 2 (right) shows the HSD results with fixed target participant
number,Ntarg

P = Npro j
P . Theωi become much smaller. This is due to the fact that terms propor-

tional toω targ
P in Eq. (2.1) do not contribute, andωi become approximately equal toω∗

i . The particle
number fluctuations in the target hemispheres are much stronger (see Fig. 3, left) than those in the
projectile hemispheres. Different models of hadron production in relativistic A+A collisions can
be divided into three limiting groups: transparency, mixing, and reflection models (see Ref. [12]).
The first group assumes that the final longitudinal flows of the hadron production sources related to
projectile and target participants follow in the directions of the projectile and target, respectively.
We call this group of models transparency models. If the projectile and target flows of hadron
production sources are mixed, we call these models the mixing models. Finally, one may even
speculate that the initial flows are reflected in the collision process. The projectile related matter
then flows in the direction of the target and the target related matter flows in the direction of the
projectile. This class of models we call the reflection models. The rapidity distributions resulting
from the T-, M-, and R-models are sketched in Fig. 3 (right). An asymmetry between the projectile
and target participants introduced by the experimental selection procedure can be used to distin-
guish between projectile related and target related final state flows of hadron production sources as
suggested in Ref. [12].
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Figure 3: Left. The scaled variancesωi for the projectile (boxes) and target (circles) hemispheres in the HSD
and UrQMD simulations.Right. The rapidity distributions of the particle production sources in nucleus-
nucleus collisions resulting from transparent, mixing, and reflection models (see Ref. [12] for details).

3. Multiplicity Fluctuations in Statistical Models

The mean multiplicities of positively, negatively and all charged particles are:

〈N−〉 = ∑
i,qi<0

〈Ni〉 , 〈N+〉 = ∑
i,qi>0

〈Ni〉 , 〈Nch〉 = ∑
i,qi 6=0

〈Ni〉 , (3.1)

where the average final state (after resonance decays) multiplicities〈Ni〉 are equal to:

〈Ni〉 = 〈N∗
i 〉+∑

R

〈NR〉〈ni〉R . (3.2)

In Eq. (3.2), N∗
i denotes the number of stable primary hadrons of speciesi, the summation∑R runs

over all types of resonancesR, and〈ni〉R≡∑r bR
r nR

i,r is the average over resonance decay channels.
The parametersbR

r are the branching ratios of ther-th branches,nR
i,r is the number of particles

of speciesi produced in resonanceR decays via decay moder. The indexr runs over all decay
channels of resonanceR, with the requirement∑r bR

r = 1. Note that different branches are defined
in a way that final states with only stable hadrons are counted. To make a correspondence with
NA49 data, both strong and electromagnetic decays of resonances should be taken into account.
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In the GCE formulation of the hadron-resonance gas model the mean number of stable primary
particles,〈N∗

i 〉, and the mean number of resonances,〈NR〉, can be calculated as:

〈Nj〉 ≡ ∑
p
〈np, j〉 =

g jV

2π2

∫ ∞

0
p2dp〈np, j〉 , (3.3)

whereV is the system volume andg j is the degeneracy factor of particle of speciesj (number
of spin states). In the thermodynamic limit,V → ∞, the sum over momentum states can be
transformed into a momentum integral. The occupation numbers,np, j , of single quantum states
(with fixed projection of particle spin) are equal tonp, j = 0,1, . . . ,∞ for bosons andnp, j = 0,1 for
fermions. Their average values, fluctuations, and correlations are the following:

〈np, j〉=
1

exp[(εp j −µ j)/T] − γ j
, (3.4)

〈(∆np, j)
2〉 ≡ 〈(np, j −〈np, j〉)2〉= 〈np, j〉(1+ γ j〈np, j〉)≡ v2

p, j , (3.5)

〈∆np,i∆nk, j〉g.c.e. = υ2
p, j δi j δpk , (3.6)

whereT is the system temperature,mj is the mass of particles of speciesj, εp j =
√

p2 +m2
j is a

single particle energy andγ j referrs to quantum statistics (+1 and−1 for bosons and fermions, re-
spectively, whileγ j = 0 gives the Boltzmann approximation). The chemical potentialµ j of species
j equals to:µ j = q j µQ + b j µB + sj µS , whereq j , b j , sj are its electric charge, baryon number,
and strangeness, respectively, whileµQ, µB, µS are the corresponding chemical potentials which
regulate the average values of these global conserved charges in the GCE. There are no correlations
between different particle species,i 6= j, and/or between different momentum states,p 6= k. Only
Bose enhancement,v2

p, j > 〈np, j〉 for γ j = 1, and Fermi suppression,v2
p, j < 〈np, j〉 for γ j =−1, exist

for fluctuations of primary particles in the GCE.
The above equations correspond to the GCE. In the limitV →∞ , Eq. (3.3) for the average mul-

tiplicities is also valid for both the CE and MCE, if energy density and conserved charge densities
are the same in all three ensembles. This is usually referred to as the thermodynamical equivalence
of all statistical ensembles. However, the thermodynamical equivalence does not apply to fluctu-
ations [13, 14]. Multiplicity fluctuations can be quantified by the scaled variance. For negatively,
positively, and all charged particles the scaled variances read:

ω− = 〈(∆N−)2〉/〈N−〉 , ω+ = 〈(∆N+)2〉/〈N+〉 , ωch =
〈(∆Nch)

2〉
〈Nch〉 . (3.7)

The variances can be presented as a sum of the correlators:

〈(∆N−)2〉 = ∑
i, j; qi<0,q j<0

〈∆Ni∆Nj〉 , 〈(∆N+)2〉 = ∑
i, j; qi>0,q j>0

〈∆Ni∆Nj〉 ,

〈(∆Nch)
2〉 = ∑

i, j; qi 6=0,q j 6=0

〈∆Ni∆Nj〉 , (3.8)

where∆Ni ≡Ni−〈Ni〉. These correlators include both the correlations between primordial hadrons
and those of final state hadrons due to the resonance decays. In the GCE the final state correlators
can be calculated as [15]:

〈∆Ni∆Nj〉g.c.e. = 〈∆N∗
i ∆N∗

j 〉g.c.e. + ∑
R

[〈∆N2
R〉〈ni〉R〈n j〉R+ 〈NR〉〈∆ni∆n j〉R

]
, (3.9)
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where〈∆ni ∆n j〉R≡ ∑r bR
r nR

i,rn
R
j,r − 〈ni〉R〈n j〉R .

The correlators in Eq. (3.9) can be presented in terms of microscopic correlators (3.6):

〈∆N∗
i ∆N∗

j 〉g.c.e. = ∑
p,k
〈∆np,i ∆nk, j〉g.c.e. = δi j ∑

p
v2

p, j . (3.10)

In the case ofi = j the above equations give the primordial scaled variances in the GCE. For
chemical freeze-out conditions in heavy-ion collisions, the Bose effects for pions and resonance
decay correlations dominate and lead to (see Ref. [14]): ω−

g.c.e.
∼= 1.1, ω+

g.c.e.
∼= 1.2, andωch

g.c.e.
∼=

1.4÷1.6, at SPS energies.
In the MCE, the energy and conserved charges are fixed exactly for each microscopic state of

the system. This leads to two modifications in a comparison with the GCE. Firstly, the primordial
microscopic correlators in the MCE become more complicated. The additional terms reflect the
(anti)correlations between different particles,i 6= j, and different momentum levels,p 6= k. They
appear due to exact charge conservations in the CE, or both charge and energy conservations in the
MCE. (see also Ref. [14] for the CE),

〈∆np,i∆nk, j〉m.c.e. = υ2
p,i δi j δpk−υ2

p,iv
2
k, j |A|−1[qiq jMqq+bib jMbb+sisjMss

+(qisj +q jsi)Mqs− (qib j +q jbi)Mqb− (bisj +b jsi)Mbs+ εpiεk jMεε (3.11)

− (qiεp j +q jεki)Mqε +(biεp j +b jεki)Mbε − (siεp j +sjεki)Msε ] ,

where|A| is the determinant andMi j are the minors of the following matrix,

A =




∆(q2) ∆(bq) ∆(sq) ∆(εq)
∆(qb) ∆(b2) ∆(sb) ∆(εb)
∆(qs) ∆(bs) ∆(s2) ∆(εs)
∆(qε) ∆(bε) ∆(sε) ∆(ε2)


 , (3.12)

with the elements,∆(q2) ≡ ∑p, j q
2
j υ2

p, j , ∆(qb) ≡ ∑p, j q jb jυ2
p, j , ∆(qε) ≡ ∑p, j q jεp jυ2

p, j , etc.
The sum,∑p, j , means integration over momentump, and summation over all hadron-resonance
speciesj contained in the model. The first term in the r.h.s. of Eq. (3.11) corresponds to the
microscopic correlator (3.6) in the GCE. A nice feature of the microscopic correlator method is
that particle number fluctuations and correlations in the MCE or CE, although being different from
those in the GCE, are presented in terms of quantities calculated within the GCE. The microscopic
correlator (3.11) can be used to calculate the primordial particle correlators in the MCE (or in
the CE):〈∆Nh1∆Nh2〉m.c.e. = ∑p,k 〈∆np,h1∆nk,h2〉m.c.e. . An important point in the MCE (or CE), in
comparison with the GCE, is a modification of the resonance decay contribution to fluctuations,
Eq. (3.9). In the MCE it reads (see also Ref. [14] for the CE):

〈∆Ni∆Nj〉m.c.e. = 〈∆N∗
i ∆N∗

j 〉m.c.e. +∑
R

〈NR〉〈∆ni∆n j〉R+∑
R

〈∆N∗
i ∆NR〉m.c.e.〈n j〉R

+ ∑
R

〈∆N∗
j ∆NR〉m.c.e.〈ni〉R+ ∑

R,R′
〈∆NR∆NR′〉m.c.e.〈ni〉R〈n j〉R′ . (3.13)

Additional terms in Eq. (3.13) compared to Eq. (3.9) are due to the correlations induced by exact
energy and charge conservations in the MCE. The Eq. (3.13) has the same form in the CE, the

7
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difference between these two ensembles appears when one specifies the microscopic correlators
(3.11).

Mean hadron multiplicities in heavy ion collisions at high energies can be approximately fitted
by the hadron-resonance gas model in the GCE. The fit parameters are temperatureT, chemical
potentials (µB, µS, µQ), and strangeness suppression factorγS, which allows for non-equilibrium
strange hadron yields. There are several programs designed for the analysis of particle multiplicities
in relativistic heavy-ion collisions within the hadron-resonance gas model, see e.g., SHARE [16],
THERMUS [17] and THERMINATOR [18]. We use an extended version of the THERMUS model
[17].

The dependence ofµB on the c.m. energy will be parameterised as [3], µB
(√

sNN
)
= 1.308GeV·

(1+ 0.273
√

sNN)−1 , where the c.m. nucleon-nucleon collision energy,
√

sNN, is taken in GeV
units. Furtheron we assume the system to be net strangeness free,S= 0, and to have the charge
to baryon ratio of the initial colliding nuclei,Q/B = 0.4. For the chemical freeze-out condition
we chose the average energy per particle〈E〉/〈N〉 = 1 GeV [19]. Finally, in order to remove the
remaining free parameter,γS, we use the parametrisation [4], γS = 1−0.396 exp(− 1.23T/µB) .

This gives us five constraints for the five parameters of the model. The thermodynamical limit for
the calculations ofω± is assumed, thus volumeV is not a parameter of our model calculations.
TheT andµB parameters at different collision energies are shown in Fig.4.

The center of mass nucleon-nucleon energies,
√

sNN, marked in the figures below corre-
spond to the beam energies at SIS (2A GeV), AGS (11.6A GeV), SPS (20A, 30A, 40A, 80A, and
158A GeV), colliding energies at RHIC (

√
sNN = 62.4 GeV, 130 GeV and200 GeV) and LHC

(
√

sNN = 5500GeV).

[GeV]
B

µ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
[G

eV
]

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

SIS

AGS

SPS

RHIC

Figure 4: The chemical freeze-out line in central A+A collisions. See text for details.

The Fig.5 shows the scaled variances for negatively charged particles,ω−, and positively
charged particles,ω+, respectively, as a function of

√
sNN. Our predictions will be compared with
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Figure 5: Left. The scaled variances for negatively charged particles,ω−, both primordial and final, along
the chemical freeze-out line for central Pb+Pb (Au+Au) collisions. Different lines present the GCE, CE, and
MCE results. Symbols at the lines for final particles correspond to the specific collision energies. TheT and
µB values at these energies pointed out in Fig. 4. The arrows show the effect of resonance decays.Right.
The same, but forω+.

the preliminary NA49 data on Pb+Pb collisions at 20A-158A GeV [20] with an approximately fixed
number of projectile participants ranging from 190 to 200. This range corresponds to about 1% of
all events.

The Fig.5 corresponds to an ideal situation when all final hadrons are accepted by the detector.
To compare our statistical model results with experimentally obtained values ofω± the acceptance
and resolution need to be taken into account. We neglect these momentum correlations between
final hadrons. This is approximately valid forω+ andω−, as most decay channels only contain
one positively (or negatively) charged particle, but much worse forωch, due to decays of neutral
resonances into two charged particles. This leads to:

ω± = 1 − q + q ω±
4π , (3.14)

whereω±
4π is a scaled variance calculated for all hadrons (measured by an ideal detector with full

4π-acceptance) andω± is the scaled variance measured by a real detector with a limited accep-
tance),q is the ratio between mean multiplicities of accepted and all hadrons. The Fig.6 presents
the scaled variancesω− andω+ calculated with Eq. (3.14). The hadron-resonance gas calcula-
tions in the GCE, CE, and MCE shown in Fig.5 are used for theω±

4π . The NA49 acceptance
used for the fluctuation measurements quoted here was located at about one rapidity unit above
mid-rapidity (depending on collision energy). The Eq. (3.14) has the following property. Ifω±

4π is
smaller or larger than 1, the same inequality remains to be valid forω± at any value of0 < q≤ 1.
Due to this one finds a strong qualitative difference between the predictions of the statistical model
valid for any freeze-out conditions and experimental acceptances: the CE and MCE correspond to
ω±

m.c.e. < ω±
c.e. < 1, and the GCE toω±

g.c.e. > 1.
From Fig.6 it follows that the NA49 data forω± extracted from the most central Pb+Pb colli-

sions at all SPS energies are most close to the results of the hadron-resonance gas statistical model
within the MCE. The data reveal even stronger suppression of the particle number fluctuations. A

9



P
o
S
(
C
P
O
D
2
0
0
6
)
0
4
3

Multiplicity Fluctuations Mark I. Gorenstein

Figure 6: The scaled variances for negative (left) and positive (right) hadrons along the chemical freeze-out
line for central Pb+Pb collisions at the SPS energies. The correspondingT andµB values at different SPS
collision energies are presented in Fig. 4. Different lines show the GCE, CE, and MCE results calculated
with the NA49 experimental acceptance according to Eq. (3.14).

possible reason of this is a suppression of particle number fluctuations due to the excluded volume
effects in the hadron-resonance gas [21].

4. Summary and Outlook

It has been found that the fluctuations in the number of target participants strongly influences
the multiplicity fluctuations. The consequences of this fact depend on the dynamics of the initial
flows in A+A collisions. To study the genuine statistical fluctuations one needs to make the rigid
event selection of about 1% of most central events.

The energy dependence of hadron multiplicity fluctuations in relativistic nucleus-nucleus col-
lisions has been predicted in the statistical hadron-resonance gas model within the GCE, CE, and
MCE formulations. The scaled variances of negatively, positively, and all charged particles for
primordial and final state hadrons have been calculated at the chemical freeze-out in central Pb+Pb
(Au+Au) collisions for different collision energies from SIS to LHC. A comparison with the pre-
liminary NA49 data in Pb+Pb collisions at the SPS energies has been done for the samples of the
most central collisions selected by the number of projectile participants. This selection allows to
eliminate effect of fluctuations of the number of nucleon participants. The effect of the limited
experimental acceptance was taken into account by use of the approximation valid for uncorre-
lated particles. The MCE results are most close to the measured scaled variances for positively
and negatively charged particles. Even stronger suppression of the negative and positive particle
number fluctuations seen in the data may be probably attributed to the excluded volume effects in
the hadron-resonance gas [21]. Further study is needed to improve modelling of the effect of the
limited experimental acceptance.

10
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