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1. Introduction

Single-particlep; spectra from p-p collisions and two-particle correlatiémsn Au-Au col-
lisions at RHIC measured with novel techniques have redealsijet (low-Q? parton fragment)
structure [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Minijets arsated in nuclear collisions with
no jet hypothesis (no high{x trigger-particle condition), providing access to minirmiias parton
scattering (no analysis constraint on parton momentuminij&ticorrelations have been observed
in p-p collisions for hadromp; down to 0.35 GeV/c [12, 1]. Similar measurements in heavy ion
collisions have revealed complex correlation structuedsted to parton dissipation in the QCD
medium [2, 3] and medium response to parton stopping [6] whadl into question the extent of
equilibration.

Minijet correlations measured in p-p and heavy ion collisi@t RHIC represent QCD in a
non-perturbative regime: parton scattering and fragmemaaidowQ?. We want to connect those
measurements in nuclear collisions to perturbative QCDOPYVia fragmentation measurements
at largerQ?. The context for fragmentation in nuclear collisions mayeseablished by studying
single-particleragmentation functions (FFs) frome*-e~ collisions, which provide precise access
to the fragmentation process down to small parton and hagimmenta. Modification of parton
scattering and fragmentation in heavy ion collisions comgdo elementary collisions may then
reveal the formation mechanism and properties of the QCLumed

To establish the connection between the pQCD systematies-ef FFs and minijets in nu-
clear collisions we must extend the FF phenomenology to@w In this paper we present a
basis for extrapolating measuret-e~ FFs to small energy scale as preparation for extrapolation
in nuclear collisions. We describe a new phenomenologicalyais of FF data [13] which fa-
cilitates extrapolation to small parton energies where p@Ssumptions such as collinearity and
factorization are not valid.

2. Analysis Method

The fragmentation functioB (x,, Q?) is a single-particle densitydd/dx, of hadron fragments
on momentum fractioR, = Phadron/ Pparton Produced by gair of partons (dijet) with total energy
Q (Q? = —¢? is the negative invariant mass squared). At laxg¢he distribution reflects energy
conservation during parton splitting [14, 15]. At sma}l the shape is determined by quantum
coherence of gluon emission [16, 17]. The FF data in thisystmd hadron distributions reported
on momentum fractiox, or logarithmic variablef, = In(1/x,). Distributions onx, emphasize
pQCD aspects of parton fragmentation at lapye.g., scaling violations). For non-pQCD effects
¢p provides better access to the smgjllarge-<)) region.

This study focuses on lo? parton fragmentation dominated by fragments with small mo-
menta. We therefore introduce rapiditywell-behaved ap — 0) as an alternative logarithmic
momentum variable. In a frame whepes the only non-zero momentum compongp; mp) =
In[(E+ p)/mg], withy — In(2p/myg) for p > mg and— p/my for p < mg. mp may be a quark or
hadron mass or energy scdle For unidentified fragments we assign the pion mags- my to
all hadrons. Given the limiting cases fpwe note that If/s/mp) ~ y(1/S/2;mp) = Ymax, the par-
ton rapidity (defined as the kinematic limit for fragmentidipes). Similarly,Y (Q) = In(Q/A) ~
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y(Q/2;A) is a rapidity measure of the energy scale relative to a neferscale. We observe for FF
data a lower limity, which may depend on fragment species and collision system é&-e~ vs
p-p)-

From published data distributions ap or &, for parton energy scal@ or CM energy,/swe
extract fragment momentaand calculate equivalent rapiditiggfragments) andmax (partons).
Data distributions orx, or &, are thereby transformed to distributionsyunsing appropriate Ja-
cobians. Mose"-e~ FFs plotted on normalized rapidity= (Y — Ymin)/(Ymax — Ymin) = 1 —&p/Y
have a particularly simple form described by theta distribution [13]. The unit-normal beta dis-
tribution defined o € [0,1] is B(u; p,q) = uP~1 (1 —u)9-1/B(p, q), with parameterp, g > 0 and

beta functiorB(p,q) = %’%ﬂf

3. Fragment distributions on momentum

The fragmentation functions in Figs. 1 and 2 were obtaineahf"-e~ collisions at three en-
ergy scales (CM energy's=Q = 14, 44 and 91.2 GeV) measured at PETRA [18] and LEP [16] for
unidentified hadrons from unidentified partons. Those FEdiducial because of the exceptional
data quality and fragment momentum coverage. In Fig. 1 (fiastel) we plot FFs on momen-
tum fractionx,. Distributions onx, emphasize the larggs (small<,) region where pQCD best
describes the data, where the naive parton model predietisig’ or invariance of the parton dis-
tribution on energy scal®. Distribution details in the smakp region €.g., belowx, = 0.1), where
non-pQCD dominates and fragments ax@st abundant, are minimized in this format. The dashed
line illustrates the exponential model sometimes used avatherize FFs ORy,.
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Figure 1: First panel:et-e~ fragmentation functions on fractional momentum= Pragment/ Pparton fOr
three CM energies. The dashed line is an exponential refereBecond panel: The same fragmentation
functions on logarithmic variablg, = In(1/x,). The vertical dotted lines mark equivalent points on the two
variables. The solid curves are determined by the parainatien from this analysis. Third panel: Distri-
bution on I phadron) from [16]. Fourth panel: Self-similar variation with engrgf fragment distributions
ony.

The vertical dotted line in the first panel correspondgde= 1.5 in the second panel: only
a small fraction of fragments<(10%) fall above that point or,. FFs oné, are approximately
gaussian, with modé; and width predicted by pQCD. The fall-off at largg and maximum at
&, result from gluon coherence [16, 17]. FFs exhibit systecsatiling violations (Q dependence)
described by the DGLAP evolution equationt Sec. 6) [14, 15]. To study scaling violations FFs
on x, are parameterized by a model function suctDés, Q%) = Nx? (1—x)P (1+ y/x), where
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the four parameters depend on parton type, hadron type ardyescale [19, 20]. The solid
curves in the first two panels are beta distributifiis; p,q) determined by the systematic trends
of parametergp,q) plotted in Fig. 4 (third panel) and transformed from normedi rapidityu to
Xp, £p Or'y with appropriate Jacobians.

The third panel shows FFs plotted or({n [16]. The solid curves are MLLA pQCD pre-
dictions [22]. The general shape and evolution of FFs \@&ton 0N (Y, Ymax) is sketched in the
fourth panel. The trend corresponds to the DLA [21] with dagordering and gluon coherence
(modified leading log approximation or MLLA [22])

4. Precision model function

Fragmentation functions plotted gp coincide at the kinematic limi, = O corresponding to
the parton momentum. An approximation to ‘scaling’ or eyesgale independence is expected at
smallé, (largexp). Another form of scaling, at larg&,, can be explored by plotting distributions
on rapidityy. In Fig. 2 (first panel) we observe that the FFs for three easrglotted ory have
a common low-momentum limityin ~ 0.35 (vertical line). That alignment is possible becayse
has the well-defined limiting value 0 as momentpm» 0. Each data FF is terminated at the upper
end by its kinematic limitmax = y(1/S/2;mg) (vertical lines) corresponding t#, = 0 in Fig. 1.
The distribution maxima increase monotonically with cih (parton) energy. The FFs in the
first panel illustrate the self-similarity sketched in Fig(fourth panel) and confirm an expectation
for DLA scaling: fragmentation at smayl should be nearly independent of the leading-parton
momentum.
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Figure 2: Fragmentation functions on rapidipyfor e™-e~ collisions (left panel). Fragmentation functions
plotted on normalized rapidity in linear (left panel) and semi-log (right panel) formatsheTdata distri-
butions have been normalized by the corresponding di-jétipligity at each energy (lower solid curves in
determined by parametetp, q). The data for three energies are plotted, but the curvesnigrist and 91
GeV are plotted to provide visible separation.

In Fig. 2 (right panels) we plot the three fiducial FFs transfed to I/n(ymx) dn/du =
g(u,ymax). Expectations of approximate energy scaling at laggand a different form of scaling
(gluon coherence) at smad) seem to require conflicting plotting strategieségrandy. However,
both forms can be accommodated by introducing normalizeditst u = (Y — Yimin) / (Ymax— Yimin) €
[0,1]. FFs frome™-e~ collisions can be factored & U, Yimax) = 2N(Ymax) 9(U, Ymax), With dijet mul-
tiplicity 2n(ymax) (cf. Fig. 4) and unit-normal form factay(u, ymax). Multiplicity 2n(ymax) can be
obtained by integrating data FFs, but also from shape of g(u, ymax) (cf. Sec. 6.1). We observe
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that theg(u, ymax) are nearly invariant over a large energy scale interval,thadeta distribution
provides an excellent description over all fragment moment

5. ldentified fragments and partons

In Fig. 3 we show data(u, ymax) and best-fit modeB(u; p,q) for identified charged pions
= (first panel) and kaons K (second panel) at 10 GeV [23] and 91 GeV [24]. Parton rapidity
Vmax IS calculated with the identified hadron fragment mass. Tibe pFs have widths similar to
unidentified hadrons, but the peak modes are significantheidd0.38vs 0.41 at 91 GeV). The
kaon peak modes are comparable to unidentified hadrons éuygethk width at higher energy is
significantly larger. The kaon FF shape seems to convergeeypion distribution at lower energy.
The apparent merging of quark flavors at 10 GeV is consistéhtawnvergence of the gluon and
quark FFs at lower energy, indicated by the multiplicity &pdq) trends in Fig. 4.
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Figure 3: Fragmentation functions for two CM energies and for piofft fh@anel) and kaon (right panel)
fragments plotted on normalized rapidityDistributions oru for several quark/meson flavor combinations,
showing evolution of thg(u, ymax) shape with quark/meson mass. The>dD data are from [26], and the b
— B data are from [25]. The energies are dijet energies.

In Fig. 3 (third panel) we summarize FF data and models fagrsgfragment and parton types.
The pion, kaon and proton FFs are beta distribution fits to 8¥ @entified-fragment data (as in
the first two panels). The gluon FF is the beta distributidingel at 80 GeV by p, q) systematics
in Fig. 4 (third panel, consistent with fits to gluon data FFE)ie solid dots are b> B data [25]
compared to a best-fit beta distribution (dash-dot curve)taeory (solid curve). Low-statistics
¢ — D data [26] are summarized by a best-fit beta distributiostiedot curve) and theory (solid
curve).

The two solid curves on the right are from a theoretical tremit of heavy-quark fragmenta-
tion [27]. The agreement ddE (u) (right-most solid curve) with b-quark data (solid point2}p]
is good. The dash-dot curve is the best-fit beta distributith (p,q) = (23,3) which does not
describe thd — B data well. The solid curve for — D is D2 (u) from the heavy-quark theory
treatment, witteg = 0.57/mg = 0.29 andm, ~ 1.4 GeV/&. The associated dash-dot curve, a beta
distribution with(p,q) = (7.0,2.8), best describes the data from [26]. Both curves are comsiste
with the data, but errors are large below the FF peak mode.

To summarize the flavor dependence: the beta distributiscries the FF data for identified
light quarks and gluons fragmenting to light mesons or basyeery well. The FF modes for a
given parton energy increase monotonically with incregsii®son and parton mass. However, the
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proton FF mode for udsc (light quark) jets is lower than thatisive hadron mode for gluon jets,
and the FF is significantly broader. The hadron mass alonetia determining factor. The kaon
FF shows the effect of the heavier s-quark mass, consisigimtive trend for charm and bottom
guarks.

6. Energy systematics of fragmentation functions

We have combined fiducial FF data and dijet multiplicity detadetermine the energy de-
pendence of3 parametergp,q) for quark and gluon jets. Fits to dat{u,ymax) With model
B(u; p,q) determing(p,q) over a limited energy range which constrains the paranzei@curves
(P(Ymax), d(Ymax))- Fits to 21(ymax) data over a broader energy rande the (xg) integral (sum
rule) of B(u; p,q) also constrain the parameterizations, especially impbetlow energy where
there are no FF data. The resultifiy q) energy trends efficiently represent efl-e~ light-quark
and gluon FFs and provide a basis for extrapolating FFs taQéw

6.1 Dijet multiplicities from B(u; p,q) shapes

Dijet multiplicity 2n can be obtained directly by integrating published FF datawvéver, there
is a correspondence betweam¥mx) and theshape of data FFg(u; ymax) or fitted model function
B(u; p,q) determined by parametelis(Ymax), d(Ymax)]- FOr inclusivecharged fragments we obtain
the relation 2(ymax) = 1.18/ folduxE(u,ymax)B(u; p,q) (based on the energy sum rule [28]) which
we use to relate energy trends of FF shape paramgbegs to fragment multiplicities. Measured
multiplicities (vs parton energy) thus provide constraints on the energy dkgpee of FF parame-
ters(p,q), even in energy intervals where there are no FF data.

Fig. 4 (left panels) shows dijet multiplicitiesZor g-g and g- g parton pairs. Data for gluon
jets were obtained from CDF (closed triangles) [29], CLE@gtriangles) [30], OPAL ‘jet-boost’
algorithm (open circles) [31] and OPAL inclusive (star) [3PData for quark jets were obtained
from a compilation (Table 6 in [33]). The large points laliefeand K are multiplicities from fits
to identified fragment data [23, 24, 34] plotted with the gated multipliers. The hatched regions
represent the domain of lo@? partons which motivated this study.

The solid curves in Fig. 4 (left panels) are multiplicityrids derived from thép,q) parame-
ters in the third panel using the energy sum rule. Tjg|) energy parameterizations are adjusted
to fit the multiplicity data but are constrained by, q) values derived from fits to the fiducial FFs.
The resulting p, q) energy dependence is described in the next subsection.

6.2 Energy dependence gB(u; p,q) parameters

Fig. 4 (third panel) shows thig, q) energy dependence which produced the quark and gluon
jet multiplicities (solid curves) in Fig. 4 (left panels)athe solid curves compared to fiducial FFs
in Figs. 1 and 2. Thép.q) curves precisely summarize the energy dependence ofdiggatk and
gluon fragmentation to unidentified hadronsine collisions. The vertical dotted lines mark the
limits of multiplicity measurements, and the vertical dakt lines mark the limits of measured
FFs used in this analysis. The ten solid points represetidheial FFs (dominated by quark jets).
The open squares represent a fit to a single gluon FF whichreams( pg, qg).
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Figure 4: Left panels: Dijet charged-particle multiplicitys energy scale€ (dijet energy) plotted in a
conventional format (first panel) and parton rapidity assuming the pion mass (second panel). dliet s
curves are quark and gluon dijet multiplicities2and g obtained from thep, q) parameterizations in
third panel. The dash-dot curve in the first panel is from a @NIQCD expression. The udsc quark-jet
multiplicities for unidentified hadrons (solid dots) aré&kea from a survey in [33]. Third panel: Beta-
distribution parameter§yq, o) and(qy, pg) respectively for light-quark (solid) and gluon (dashed$ jnd
corresponding gluon-to-quark-jet multiplicity ratioss parton rapidityymax. Fourth panel: Joint fragment
distributionD(y, ymax) On fragment and parton rapidities for inclusive partonsifisc quarks) and inclusive
hadrons. Fragmentation functions are vertical slicesditmmal distributions) from the joint distribution.

Aboveynax = 4.5 (left dash-dot line) thép, g) vary slowly and linearly with increasing energy
scale. That energy dependence implies a slight reductidfFafnodes with increasing energy,
consistent with the fiducial FFs in this studyd(, Fig. 2, right panels). Belowm.x = 4.5 (Q ~ 10
GeV) the(p,q) change rapidly. The multiplicity data, especially the CLE&a, require a sharp
drop ing in that energy interval for both quarks and gluons. The cayerce of the quark and
gluon (p,q) at the energy scale defined by the left dotted line (5 GeV) @ragequired by the
CLEO data.

6.3 Fragmentation functions on(y, Yimax)

We use the parameterized beta distribution to construct mafnent distribution ofy, Yimax)
as follows. B(u; p,q) describes the shapes of FFs over a br@adnterval. The beta distribution
in turn determines multiplicity(ymax) Via the energy sum rule over the same range. We combine
the two factors to formD (Y, Ymax) = 2n(Ymax) B [U(Y, Ymin, Ymax); P(Ymax); d(Ymax)]- In Fig. 4 (fourth
panel) we ploD(y,ymax). The vertical dotted and dash-dot lines mark the same eriiengg, as
in the third panel. The dashed curve is a ‘locus of modes’ifjoms of maxima) of conditional
distributions ory for givenymax. The horizontal dotted line denotggn, andymax = 8 corresponds
to /s~ 400 GeV. That 2D fragment density provides the basis foa@diating FFs down tQ ~ 1
GeV Ymax ~ 2).

7. Comparisons with pQCD

The energy dependence of FF statistics predicted by pQC3BR&6, 37] can be compared
to peak statistics inferred from ogp, q) parameterization o8 (u; p,q). In Fig. 5 (first panel) we
compare beta distributions and data for two energies onalored rapidityu using the parameters
described above with corresponding MLLA gaussians (ndeedlto unit integral). The gaussian
tails do not describe the data. Our parameterized modelrisisient with pQCD predictions at



Fragmentationin e™-e~ Collisions David T. Kettler

largerQ?, and the beta distributions (solid curves) demonstratel geasitivity to small but mean-
ingful systematic variations with energy of the FF data.
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Figure 5: First panel: Comparison of fragmentation-function modegarton rapidity from quark and
gluon data (points) with ‘locus of modes’ trends (solid ardhied curves) derived frofp, q) energy sys-
tematics in (left panel) and from the MLLA (dash-dot and ddtturves). Second panel: Comparison at two
energies of FF data, beta distributions on u and MLLA gawnssguitably transformed to. Third panel:
Beta distribution (solid) and KKP FF (dashed) curves comagdo OPAL 91 GeV data points (open cir-
cles) on linear momentum variabg. Fourth panel: The same curves and data transformed to tipedha
rapidity u. The vertical dotted lines both correspondgo=0.1.

In Fig. 5 (second panel) we show measured mdglei® the formymax — §5 ~ Y* VS Ymax for
eight quark-jet and fourteen gluon-jet energies [16, 18, Bfie solid curvey* (ymax) for quark jets
from our (p,q) parameterization is the same as the dashed curve in Figugt{fpanel). The five
stars are obtained from our fits to the fiducial FFs (compape#&k modes in Fig. 2 first panel). The
MLLA prediction for inclusive jets is plotted as the dashtdorve in the second panel. The MLLA
curve diverges from thepq, qq) parameterization (solid curve) in the region of interesstoidy of
low-Q? partons (hatched area). We can also obtain a mode predfotigiuon jets [36, 37]. The
corresponding dotted curve in the second panel agreeg Y@t aboveymax = 4.5 (Q ~ 12 GeV)
with the gluony* trend (dashed curve) obtained from parametegsqg) in Fig. 4 (third panel).
Data from [37] for FF modes from gluon jets plotted as solidrtgles are well described by the
dashed curve obtained from o{p, ) energy systematics and by the MLLA prediction.

In Fig. 5 (right panels) we compare fiducial FF data to theHoks&ribution description from
our analysis and a pQCD model FF (KKP) obtained from a comveat scaling-violations analysis
using the DGLAP equations [20] (defined by 14 parametersdoh garton-hadron combination).
Fig. 5 (third panel) shows the OPAL 91 GeV FF data from Fig. thulie KKP FF (dashed curve)
and the FF from this analysis (solid curve). With the exaaptf a small deviation at large,
the agreement or, appears to be good. Fig. 5 (fourth panel) shows the samebdistms on
normalized rapidityy. The KKP FF deviates strongly from data below= 0.7 and accurately
represents less than 10% of the fragments at 91 GeV. Thealaditted line in each panel shows
the intended region of validitykf, > 0.1) of the KKP and similar FFs. The FF from our analysis
accurately describes the data mnover six orders of magnitude and extrapolates the full data
distribution down to zero momentum.

8. Scaling violations

Scaling violations [27]—uvariation of parton distributiimctions (PDFs) and FFs with energy
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scale—are described by the DGLAP equations [14, 15]. Sgaliolations of measured FFs can
be used to determinas [38] and to test the predicted values of QCD color fac@yandCr [37].
We use our FF parameterization to describe scaling vialatim conventional momentum/energy
fractions and on rapidity variables .

8.1 Scaling violations on(x, Q?)
The DGLAP equations [14, 15] are defined to leading order (hyD)

dDp(x,S) ldz
dblns = Z/ — Pap(2) Da(x/z,9). (8.1)

Pap(2) are the Altarelli-Parisi splitting functions [15], aadb denote parton combinations. Scaling
violations are determined from FFs parameterized at segaeagy scales (= Q%) with a model
function such a®(x,s) = Nx? (1—x)B (1+ y/x) [19, 20, 37, 39]. Such parameterizations can be
quite extensive. The KKP parameterization [20] employs adameters for each parton-hadron
combination, the energy dependence of eadtiNotr, 3, y) being described by several polynomial
coefficients. The parameters are determined by using theAR&quations to evolve the model
FFs across energy scales, vary{ihN a, 3, y) with energy to best fit the data and emphasizing the
regionx > 0.1 where pQCD is most applicablef(Fig. 5 — third panel).

To illustrate scaling violations we transform parametdipint fragment distributioB (Y, Ymax)
(Fig. 4 — fourth panel) t®(xg, Q%) = p/(Exe)D[y(xg, Q), Ymax(Q)]. In Fig. 6 (first panel) we plot
resulting conditional distribution@(xE,Qz) for xe = 0.02, 0.07, 0.15, 0.27, 0.41, 0.60, 0.1
Q= mycoshymax). The curves for both udsc jets (solid) and gluon jets (dastemipare well with
a data analysis shown in the second paxel/@lues are on the right) [40]. The general trends in the
first panel agree with the conventional description of scpliiolations but extend over a broader
energy range than is usually obtained from data. The shé#gif$aat smallerQ andxg occur at
kinematic limits Inkg ~ Ymin — Ymax defined by the dotted line in Fig. 4 (fourth panel).

The vertical dotted lines separate three regions. Regio@ A (L —5 GeV) is dominated by
non-perturbative effects but produces the majority ofgrafragments in nuclear collisions and
therefore requires a phenomenological characterizatoisistent with QCD theory. Extrapolat-
ing FF systematics into that region is the purpose of thidystiRegion B Q = 5— 20 GeV) is
the transition region in which parton color emerges andrfraigtation approaches a perturbative
description. In the energy range abdye= 20 GeV parametergp, q) vary weakly and linearly:
fragmentation is fully perturbative. We conclude that madhthe variation in the perturbative
third region of Fig. 6 (first panel) is determined by phasaegpacceptance variations with parton
energy. The small linear variations of thg q) parameters in that region may provide more differ-
ential access to the parton cascade process. We therefesielena modified form of the DGLAP
equations.

8.2 Scaling violations onY, Yimax)

In a different approach to scaling violations we introdues bgarithmic derivative[37] based
on the relation between Mellin transforms of FFs and splitfunctions. The DGLAP equations,
written in terms of Mellin transformé(w, s) (wis conjugate tx) [14], are represented by a simple
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Figure 6: First panel: Scaling violations in a conventional formack curve is a conditional slice at fixed
xe from the distribution &n/dxg (xg, Q%) suitably transformed from model functiom@meax) B(u(y); p,q)

in (second panel). Third panel: Scaling violationsin threefof logarithmic derivatives of the distributionsin
(left panel). Solid curves represent udsc quark jets, dhsheves represent gluon jets. The near uniformity
to the right of the dotted line = 20 GeV) for larger is notable. Fourth panel: Logarithmic derivatives
for quark and gluon jets atmax = 7.8 vs energy fractione = coshy)/ cosh(Ymax)-

matrix equation [15]. For theon-singlet caseDys = Dg — Dy the logarithmic derivative is

of Ans , s(S) 2
n cI?In(sw S) _ Crz(;') Pag(W) = Yeq(W,S), (8.2)

where I5qq(w) is the Mellin transform of splitting functiofPy(z) for the process g- q(z) +
g(1-z), with the respective momentum fractions, amsw,s) are theanomalous dimensions of
QCD [41, 42]. Sincallns ~ 2dymax We multiply through by 2+.x and use the results of the previ-
ous subsection to obtain

dInDnsW.¥max) _ 1 5 (8.3)

dinYmey  mA ®

Thus, for the non-singlet case the logarithmic derivatifzéhe Mellin transform of an FF is pro-
portional to the Mellin transform of a splitting functioimdependent of energy scale (in LO). That
result motivates a similar approach to the FFs themselves.

We multiply Eq. (8.1) byxIn(s/mg)/xD(x,s). What remains on the RHS is the convolution
integral, including splitting functiozP(z) = P({) with { =In(1/z) and fragmentation-function
ratioDa(€ — {,s)/Dp(&,s). We then use the following transformatios— Ymax — Y, { — Ymax —

Y D(&) — D(Ymax— &) ~ D(y) andD(& — ) — D(Ymax — & +) ~ D(y+ Ymax — ), to obtain

dlnDb(y,ymax) . 1 Ymax Da(y"i'ymax—)/,ymax)
Ty = ﬁg/y dy Pap(Ymex —Y') Doy, V) , (8.4)

an alternative form of the DGLAP equations 0nYymax)-

In Fig. 6 (third panel) we plotlInD(Y,Ymax)/dINYmax VS Ymax for quark (solid) and gluon
(dashed) FFs using the parameteriZ¥g, ymax) from Fig. 4 (fourth panel) for each parton type.
There are three main features of the distributions: 1) pdentizontal linear trends at larger energy
scales (to the right of the dotted line), 2) ‘singularitiat’smaller energy scales due to kinematic
boundaries and 3) minima at intermediate energies cornelpg to a transition from ‘small’ (1-2)
to ‘large’ (3 or more) fragment number, which may also relat¢he emergence of parton color
(quark-gluon distinction) af) ~ 8 GeV. This form of the DGLAP equations eliminates the scale

10



Fragmentationin e™-e~ Collisions David T. Kettler

dependence of factars and approximately cancels the scale dependence of the B iiatio. In
the perturbative region aboyeax = 5 (Q = 20 GeV) the RHS is then dominated by the splitting
function and nearly independent of energy scale, as witividlén transform version.

In Fig. 6 (fourth paneldInD(Y,Ymax)/dINYmax VS Xe = coshy)/ coshymax) is plotted for
guarks and gluons. In the limit — 1 (Y — Ymax) and largeymax We expect [37]

{dInD(y, ymax) /dINYmax}giuon  Ca _ 5 e (8:5)

{dInD(Y, Ymax)/dINYmax fquark ~ Cr

The dotted lines ara(xg + b) and 225 x a(xg + b), with a= —1.8 andb = 0.35 adjusted to best
match the quark points. The ratio trend is in reasonablesaggat with the QCD expectation above
Xg = 0.2.

9. Discussion

Our goal has been phenomenological extrapolaticeteé~ FFs to lowQ? where the pertur-
bative description of QCD is not applicable. Parton scitteand fragmentation at Io®? are in
turn important for understanding the role of minijets in psd A-A collisions at RHIC. The beta
distribution provides a simple but precise descriptionlbfreasured FFs and accomplishes the
desired extrapolation, but also reveals some interestimgaspects of parton fragmentation.

B(u; p,q) describes systems in which entropy is maximized.(by a parton cascade) on a
bounded intervaldg., bounded by the leading-parton momentum). The beta disimibumax-
imizes the Shannon entrofy= — [ dxp(x)In[p(x)] subject to constraints on geometric means
In(x) = [dxp(x) In(x) andIn(1—x) (parameters of the splitting functions) [43]. Fragmemtatf
light quarks and gluons can thus be viewed as an equilibratiocess controlled by two opposing
tendencies: parton splitting as a form of downscale enaagsport which increases entropy and
gluon coherence which constrains the splitting at a scakgugate to hadron size. The observed
fragment distribution is then a maximum-entropy configimrabalancing those two tendencies.

Conventional scaling-violation systematics are easity precisely reproduced by our param-
eterization over a broad energy range, as demonstrated ttokinematic limits in Fig. 6 (first
panel). Itis straightforward to explore the consequentganying (p,q) energy trends. For exam-
ple, Fig. 6 (fourth panel) demonstrates that@gCr limit for logarithmic derivatives previously
established by specific experimental measuremexds ([37, 40, 44, 45]) is consistent with the
(p,q) parameterization determined by the present study.

10. Conclusions

Low-Q? parton collisions play a dominant role in nuclear collis@ RHIC. Little was known
about lowQ? parton scattering and fragmentation prior to this work, tiredte exists little theoret-
ical support for our experimental results in nuclear calhs. We therefore sought a phenomeno-
logical description by extrapolating energy trendsofe~ fragmentation functions. We find that
FFs plotted on rapidity vary with energy in a nearly self-similar manner. FFs transied tou
are well described by a product of the dijet multiplicity aadinit-normal form factor modeled
by the beta distribution. The latter is determined by patans¢p, q) which exhibit modest linear

11
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variations within perturbative energy scale raiigge- 20 GeV. The beta distribution shape, when
combined with an energy-conservation sum rule, also détesy-F multiplicities. The factored
representation on thus provides a simple and compact representatiai &~ FFs over a broad
energy range and permits extrapolation to small energgscal

In this analysis we have described all measwged fragmentation functions with a precise
(few percent) model function. The model function (betarilisition) allows us to extrapolate frag-
mentation trends to lowQ?, to a kinematic region not accessed by conventional meth8dsh
low-Q? extrapolation provides a phenomenological context forijeiirelated two-particle corre-
lations in p-p and A-A collisions at RHIC, forming a basis fbeoretical treatments of in-medium
dissipation of low&? partons and the subsequent hadronization process in hemegpliisions.

This work was supported in part by the Office of Science of th®.DoE under grant DE-
FG03-97ER41020.
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