
P
o
S
(
C
F
R
N
C
2
0
0
6
)
0
0
9

Review of analysis methods for correlations and
fluctuations

Thomas A. Trainor ∗ and Duncan J. Prindle
University of Washington
E-mail: trainor@hausdorf.npl.washington.edu,
prindle@npl.washington.edu

We review fluctuation and correlation analysis methods at the SPS and RHIC. We identify basic

issues of fluctuation measure design. We show that fluctuation scale dependence is related to

angular autocorrelations by an integral equation. We discuss the optimum projection of two-

particle momentum space to 2D subspaces with minimal distortion. We list mechanisms currently

known to produce number andpt correlations. We conclude with comments on several current

measure designs.

Correlations and Fluctuations in Relativistic Nuclear Collisions
July 7-9 2006
Florence, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
F
R
N
C
2
0
0
6
)
0
0
9

Review of analysis methods for correlations and fluctuations Thomas A. Trainor

1. Introduction

The terms fluctuations and correlations applied to nuclear collisions refer to significant event-
wise changes in the structure of particle distributions on single-particle and two-particle momen-
tum space. Fluctuation measurements at a single bin size orscale(e.g., detector acceptance) could
arise from many configurations of the multiparticle momentum distribution. In contrast, thescale
dependenceof fluctuations over a significant scale interval provides unique information about two-
particle correlation structure. Those aspects of distributions on (η ,φ) depending on anglediffer-
encesare retained in the form of angular autocorrelations [1]. Complementary to angular autocor-
relations are two-particle correlations on transverse momentumpt or rapidityyt .

Much experience has been gained from a sequence of fluctuation and correlation measure-
ments at the SPS and RHIC. Recent results have alerted us to several new physics issues not an-
ticipated in earlier measure design. We have learned that autocorrelations can be extracted from
fluctuation scale dependence with numerical inversion techniques [2]. We now have a better idea
of the general structure of momentum space for different collision systems. We’ve reached a stage
where a consolidation of measurement techniques and interpretations is possible and necessary.

In this paper we present elements of a unified system of fluctuation/correlation measurement
in a historical context. We first review existing analysis methods. We then describe two basic sta-
tistical elements: fluctuations on a binned momentum space and Pearson’s normalized covariance.
We define scale-dependent normalized variances and variance differences. We relate fluctuation
scale dependence to angular autocorrelations through an integral equation. Numerical solution of
the integral equation reduces fluctuation scale dependenceto angular correlations. We propose an
optimum projection of the 6D two-particle momentum space to2D subspaces and discuss two main
correlation types. We summarize the current physics ofn and pt correlations and conclude with
some case studies of measure design which illustrate the importance of proper design criteria.

2. A Multiplicity of Methods

Over the past decade a number of fluctuation measures has beenintroduced to the SPS and
RHIC heavy ion programs. Some of them share a few common features: 1) a global random
variable is defined based on a physics hypothesis (e.g., by analogy with a thermodynamic variable),
2) the variance of the global variable about its mean is defined, 3) the variance is compared to a
‘statistical’ reference to obtain a measure of excess or ‘nonstatistical’ fluctuations. Global variables
are defined as sums, differences and ratios of elementary random variables (e.g.,pt , n, n+, n−, nπ,
nK). Comparison of a variance with its reference is accomplishedvia differences and/or ratios.

Thept fluctuation measures deliberately designed to test a linearsuperposition hypothesis are

Φpt =

√

(pt−np̂t )2

n̄ −σp̂t [3, 4] and the closely-related∆σ2
pt :n = (pt−np̂t)2

n̄ −σ2
p̂t

[5]. They compare
a per-particlenormalizedvariance to its central-limit value. Some measures of〈pt〉 fluctuations

such asσ2
pt ,dynamical= σ2

〈pt 〉 −σ2
p̂t
/n̄ [6] and Fpt =

√

n̄σ2
〈pt 〉/σ2

p̂t
− 1 [7] are biased (the estimate

systematically deviates from the intended parent property) for small multiplicitiesn. The bias is
very large and arises from properties ofσ2

〈pt 〉, a variance of the ratio of two random variables (cf.

Sec. 11 for details).〈δpt ·δpt〉 ≡
{

∑i 6= j (pt i−p̂t )(pt j−p̂t )

n(n−1)

}

[8], with ∑n
i=1(pti − p̂t ) = pt −np̂t , is inter-
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mediate between a fluctuation (single-particle counting) and correlation (pair counting) measure.
The principal bias in that definition involves a cross-contamination (covariance) betweenpt andn
fluctuations (cf. Sec. 11).

Σpt ,STAR=
√

σ2
pt ,dynamical/p̂2

t [8] andΣpt ,CERES=
√

∆σ2
pt :n/n̄p̂2

t [9] are motivated by a specific

collision model which assumes that each A-A collision is fully thermalized. Excess〈pt〉 fluctua-
tions should then arise only because of event-wise variation of global temperatureT. In that model
σ2

pt ,dynamical is taken as the analog of temperature varianceσ2
T , the analog for ensemble-meanT0

is assumed to be ˆpt (ensemble-mean particlept ), andΣpt → δT/T0. If event-wise thermalization
is not achieved (there is plentiful evidence to that effect), those model-dependent measures are
difficult to interpret [10].

We encounter a similar assortment of measures for number fluctuations. For multiplicity fluc-
tuations there is the normalized varianceσ2

n/n̄ with σ2
n = (n− n̄)2. For net chargeQ ≡ n+ −n−

there isσ2
Q/n̄. Both have central-limit reference values 1, so suitable differential fluctuation mea-

sures which test a linear superposition hypothesis are∆σ2
n/ = σ2

n/n̄−1 for n and the equivalent for
Q. Those measures are directly related to two-particle number autocorrelations. Net-charge fluctu-
ation measureD [11] was defined in terms of ration+/n−, and is consequently strongly biased (that
measure first revealed the bias arising from ratios).νdynamical, defined in terms ofn+/n̄+−n−/n̄−,
is described as a ‘robust’ measure because it is said to cancel particle detection efficiencies in the
ratios [12]. That claim is questionable because relevant single-particle and pair efficiencies are
generally different. Thept andn fluctuation measures subscripted ‘dynamical’ include a trivial
factor 1/n which adds to interpretation difficulty.

Given the large array of fluctuation measures is there a smaller optimum set, are there clear
design criteria? The answer is yes, but resolution of designambiguities requires understanding the
basics of fluctuation measurement, the relation between fluctuations and correlations and the ulti-
mate goal of two-particle correlation analysis: projection of 6D two-particle momentum space to
viewable 2D subspaces with minimal information loss or distortion. The result should be accurate
and model-independent characterizations of correlation structure in nuclear collisions.

3. Fluctuation Basics

The data system for any fluctuation or correlation analysis is an ensemble of particle distri-
butions (events) on single-particle momentum space(pt,η ,φ) or (yt,η ,φ), wherept is transverse
momentum,mt is transverse mass,η is pseudorapidity,φ is azimuth andyt ≡ ln{(mt + pt)/m0} is
transverse rapidity, with the pion mass assigned tom0 for unidentified hadrons. Momentum space
is bounded by a detector acceptance. The space within the acceptance is binned according to a
range of bin sizes. Transverse momentumpt can be considered a continuous measure distributed
on subspace(η ,φ) and sampled by individual particles in each event.

An ensemble of distributions (events) onx is sketched in Fig. 1 (first panel). Each event is
compared with an ensemble-average reference distributionto determinerelativeinformation, mea-
sured by fluctuations of bin contents about their means. Event-wise pair distributions on space
(x1,x2) in the second panel are compared to a reference formed from mixed pairs or a 2D (Carte-
sian) product of single-particle ensemble-average distributions. The differences reveal correlations
in the two-particle distribution corresponding to fluctuations in the single-particle distribution [13].
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That relation is the basis for the integral equation relating fluctuations to correlations described in
Sec. 6.

x

a b

n

multiple events

bins a and b

single-particle space
x1

x2

a b

a

b

two-particle space

Figure 1: Event-wise distributions on a binned primary space, corresponding two-particle space and possi-
ble distributions of bin contents for selected binsa andb in the primary space.

The basic random variables are bin contentspt andn (or n+, n−, etc.) in pairs of binsa andb
combined as products:n2

a, n2
b or nanb. The ensemble averages of the products are compared to the

products of averages (the reference). Their linear combinations are the variancesσ2
a,b (diagonal bins

in the center panel) and covariancesσ2
ab (off-diagonal bins). We are especially interested in how

variances (fluctuations) change with bin size or scale, and therefore how they relate to covariances
(two-particle correlations).

Fig. 1 (third panel) sketches possible frequency distributions on(na,nb) from bin pair(a,b)

in the first panel. The ellipses represent half-maximum contours for gaussian-random fluctuations.
The three cases correspond to correlation (solid curve), anticorrelation (dash-dot curve) and no
correlation (dashed curve) between binsa andb, the last being expected for a mixed-pair reference.
The 2D frequency distribution is characterized statistically by two marginal (projection) variances
and a covariance. The marginal variances for binsa andb areσ2

a,b = (n− n̄)2
a,b = n2

a,b− n̄2
a,b, and

the covariance isσ2
ab = (n− n̄)a(n− n̄)b = nanb− n̄a n̄b. From those basic quantities we can define

a relative covariance, the basis for statistical measures which test a linear-superpositionhypothesis.

4. Pearson’s normalized covariance

Pearson’s correlation coefficient is a measure of relative or normalized covariance [14]. For
number fluctuations in bin pair(a,b), as sketched in Fig. 1 (right panel), the normalized covariance
is defined by

rab≡
σ2

ab
√

σ2
a σ2

b

∈ [−1,1] (4.1)

The numerator is the covariance for bin pair (a,b), and the denominator is the geometric mean of
a andb marginal variances. The distribution ofrab for histogram bin pairs in Fig. 1 (second panel)
fully represents two-particle correlations on spacex. Fig. 2 (first three panels) illustrates limiting
cases of Fig. 1, (third panel), with the corresponding values of rab.

Tests of linear superposition include the normalized covariance in the following way. Suppose
a fluctuating system (larger bin) is separated into two parts(equivalent smaller bins)a andb. We

4
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Figure 2: Examples of Pearson’s coefficient and F-B correlations.

want to determine statistically whether the total system isa linear superposition ofa andb. It is
easy to show that for number variances and covariance

σ2
a+b = σ2

a +σ2
b +2σ2

ab (4.2)

For n = na +nb we have

σ2
n

n̄
=

n̄a

n̄
σ2

a

n̄a
+

n̄b

n̄
σ2

b

n̄b
+

√
n̄an̄b

n̄
σ2

ab√
n̄an̄b

(4.3)

The normalized variance of the whole is a weighted mean of variances from the parts and a covari-
ance. Linear superposition means that covarianceσ2

ab between subsystemsa andb is zero (central
limit theorem). In that case a normalized variance is independent of composition (independent
of scale or bin size):σ2

n/n̄ = σ2
a/n̄a = σ2

b/b̄ [13]. Deviations from linear superposition (i.e., in-
teresting physics) are revealed by a nonzeroσ2

ab/
√

n̄an̄b distribution, or equivalently by the scale
dependence ofσ2

n/n̄ [13].
Given those results and other relations in the next section we adopt the following definitions

for then andpt normalized covariances

rab≡
σ2

ab
√

σ2
a σ2

b

→ (n− n̄)a(n− n̄)b√
n̄a n̄b

and
(pt −np̂t)a(pt −np̂t)b√

n̄a n̄b
(4.4)

used in our analysis. The quantities on the right are modifiedfrom the Pearson definition. They
include in the denominators not the marginal variances but the central-limit or Poisson values of
those variances. We also omit the central-limitσ2

p̂t
factor from the denominator of thept normalized

covariance for reasons discussed in Sec. 5.
The last panel of Fig. 2 illustrates so-calledforward-backward(FB) correlations [15], in which

correlations on pseudorapidityη are measured byFB = (n− n̄)F · (n− n̄)B/
√

σ2
n(F)

·σ2
n(B)

, an ex-

ample of Pearson’s normalized covariance. CovarianceFB is simply related to the 2D angular
autocorrelation projected onto difference axisη∆ = η1−η2. Fig. 2 (fourth panel) should be com-
pared to Fig. 1 (second panel) and Fig. 4 (third panel).

5. Scale-dependent differential fluctuation measures

In this section we combine several related elements to obtain a self-consistent fluctuation mea-
sure system. We combine the closely-related concepts of scale invariance of the total variance as a
manifestation of the central limit theorem (CLT) and Pearson’s normalized covariance as a test of
linear superposition.

5
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5.1 Total variance

In a detailed study ofΦpt and its relation to the central limit theorem and linear superposition
we introduced the concept of the totalpt varianceΣ2

pt :n and total variance difference∆Σ2
pt :n =

Σ2
pt :n−Σ2

pt ,re f [13]. The total variance difference is defined by

∆Σ2
pt :n ≡

n,n−1

∑
i 6= j=1

(pti − p̂t )(pt j − p̂t ) =
n

∑
i, j=1

(pti − p̂t)(pt j − p̂t)−
n

∑
i=1

(pti − p̂t)2 (5.1)

with ∑n
i=1(pti − p̂t) = pt −n p̂t summed over a bin. On the left is is an integral over two-particle

momentum space (sum of pairs). On the right is a differentialfluctuation measure based on single-
particle counting. Dividing through by the mean bin multiplicity we have

∆Σ2
pt :n

n̄
= ∆σ2

pt :n =
(pt −n p̂t)2

n̄
−σ2

p̂t
(5.2)

The total variance as an integral over a two-particle space is the basis for the integral equation
which relates fluctuation scale dependence to angular autocorrelations (cf. Sec. 6) [2].

5.2 Variance differences

If b → a in the normalized covariance (diagonal bins in Fig. 1, second panel) we obtain the
normalized variance for bina: raa = (n− n̄)2

a/n̄a. The average over all bins in an acceptance
is then the normalized number varianceσ2

n/ ≡ σ2
n/n̄ = (n− n̄)2/n̄, also referred to as a ‘scaled’

variance (we reserve ‘scale’ to mean bin size). We now define acompatible set of normalized
variances, covariances andvariance differenceswhich provide optimal measurement of fluctuation
scale dependence and two-particle correlations in nuclearcollisions. To establish exact connections
among all statistical measures forpt andn we first introduce a decomposition of the ordinarypt

variance by adding and subtractingnp̂t within the LHS quadratic

(pt − p̄t )2 = (pt −np̂t)2 +2p̂t(pt −np̂t) · (n− n̄)+ p̂2
t (n− n̄)2 (5.3)

Dividing through byn̄we obtain on the RHS two normalized variances and a normalized covariance

σ2
pt :n ≡

(pt −np̂t)2

n̄
σ2

pt :n−n ≡
(pt −np̂t) · (n− n̄)

n̄
σ2

n/ ≡
(n− n̄)2

n̄
(5.4)

The first item is the normalized conditionalpt variance. Subscriptpt : n reads ‘pt fluctuationsgiven
n.’ The second item is the normalized covariance betweenpt fluctuations givenn and number
fluctuations.1 The last term is the normalized number variance. The normalized variances are
scale-dependent (scale = bin sizeδx), and when expressed in terms of bin sumspt(δx) andn(δx)

are running integrals of normalized covariance densities.
To complete the correspondence between fluctuation scale dependence and correlations we

define a ‘zero-scale limit’ to the scale-dependent fluctuation measures. The limit coincides with
the central-limit reference for each quantity—independent samples from a fixed parent—since in

1That covariance was the initial motivation forΦpt [3].

6



P
o
S
(
C
F
R
N
C
2
0
0
6
)
0
0
9

Review of analysis methods for correlations and fluctuations Thomas A. Trainor

the zero-scale limit (δx → 0) eachoccupiedbin contains at most one particle (independent sam-
ples) and two-particle correlations play no role. The CLT references for the three Eqs. (5.4) are
respectivelyσ2

p̂t
, 0 and 1. We therefore define variance differences

∆σ2
n/ ≡

(n− n̄)2

n̄
−1 and ∆σ2

pt :n ≡
(pt −np̂t)2

n̄
−σ2

p̂t
=

∑n,n−1
i 6= j=1(pti − p̂t)(pt j − p̂t)

n̄
(5.5)

Those relations explain the omission ofσ2
p̂t

in the denominator of the normalizedpt : n variance;
we want to insure measure compatibility forpt andn fluctuations and correlations.pt fluctuation

measureΦpt =

√

(pt −np̂t )2/n̄−
√

σ2
p̂t

[3] is the r.m.s. version of∆σ2
pt :n. The variance differences

areper-particlefluctuation measures directly related to angular autocorrelations, as discussed in the
next section.

These definitions combine the merits of Pearson’s normalized covariance, tests of linear super-
position and the scale-invariance of the total variance as amanifestation of the central limit theorem
with a self-consistent treatment ofpt andn fluctuations and correlations.

6. Correlations, fluctuations and inversion

Fluctuations are directly connected to correlations by a simple relation, making the inter-
pretation of fluctuations straightfoward. A fluctuation measurement at a single scale (e.g., the
STAR TPC acceptance) is shown in the first panel of Fig. 3 [16].The frequency histogram on
(pt −n p̂t )/(

√
n̄σp̂t ) is compared to a central-limit reference (narrower, dashedpeak). σ2

p̂t
is the

single-particle variance. Variance difference∆σ2
pt :n(δx) defined above quantifies the variance ex-

cess. Questions then arise how to interpret the fluctuation measurement and how to compare it to
measurements made with other detectors.
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Figure 3: 〈pt〉 fluctuations measured at the STAR detector acceptance (histogram) compared to a central-
limit reference (dotted curve), the scale dependence of〈pt〉 fluctuations within the STAR acceptance and the
correspondingpt autocorrelation obtained by inversion.

Fluctuation measurements in different scale intervals explore different parts of acommondis-
tribution of fluctuation scale dependence [17], as shown in the second panel of Fig. 3. The variance
difference from the first panel corresponds to the single point at the apex of the surface in the second
panel. The surface is structured, but what does the structure mean? Fluctuation scale dependence is
the running integral of an autocorrelation. The corresponding integral equation is a linear relation
between a variance difference and an autocorrelation, including a kernel representing the binning
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scheme. We equate the per-particle variance difference on scales(δη,δφ) to a 2D running integral

∆σ2
pt :n(δη,δφ) = 4

∫ δη

0
dη∆

∫ δφ

0
dφ∆ K(δη,δφ;η∆,φ∆)

∆ρ
√ρre f

(η∆,φ∆). (6.1)

The discrete form is

∆σ2
pt :n(mεη ,nεφ) = 4

m,n

∑
k,l=1

εη εφKmn;kl
∆ρ(pt : n;kεη , l εφ)
√

ρre f(n;kεη , l εφ)
, (6.2)

with kernelKmn;kl ≡ (m−k+1/2)/m· (n− l +1/2)/n representing the 2D macrobin system (cf.
Fig. 5, right panels). The integral equation can be inverted(solved) by standard numerical meth-
ods to obtain normalized covariance density∆ρ/

√ρre f as an autocorrelation on difference axes
(η∆,φ∆) [2]. The third panel of Fig. 3 shows thept angular autocorrelation corresponding to the
fluctuation data in the second panel, with directly interpretable structure: elliptic flow and mini-
jets [5]. A similar analysis has been applied to the Hijing Monte Carlo [17]. The fourth panel
shows the result of subtracting the elliptic flow contribution ∝ cos(2φ∆) to reveal the details of
minijet correlations and illustrates how differential theautocorrelation method is. From Fig. 3 we
see that fluctuation inversion provides a Rosetta stone for fluctuation and correlation analysis

7. Comparing autocorrelations from pair counting and inversion

Autocorrelations in the formA(τ ) ≡ 1/T
∫ T/2
−T/2 f (t) f (t + τ )dt were first developed for time-

series analysis [1]. Time-series autocorrelations are most useful when functionf (t) is stationary:
its correlation structure does not depend on absolute time.The structure off (t) is then completely
represented statistically by the autocorrelation on thedifference axis(lag) τ . Autocorrelation anal-
ysis can also be applied to spatial correlations. If event-wise structures are randomly positioned
onx then the corresponding ensemble-average two-point distribution on(x1,x2) is stationary (does
not depend on absolute position).
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x1

x2 xD xS
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Figure 4: Two-particle correlations onη andφ for central Au-Au collisions at 130 GeV, schematic of a
binned two-particle space illustrating an autocorrelation average along thekth diagonal and a similar aver-
aging procedure performed directly on difference variablex∆.

Fig. 4 (left panels) shows distributionsof pair density ratiosρ(x1,x2)ob ject/ρ(x1,x2)re f erenceon
η andφ typical of Au-Au collisions at RHIC [18]. The distributionsare stationary—independent
of position on sum axisxΣ ≡ x1 +x2 (mean pair position). All structure appears on difference axis
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x∆ ≡ x1−x2. Stationarity onη andφ implies that the joint or 2D angular autocorrelation on(η∆,φ∆)

is a lossless compressionof the 4D two-particle angle space to the 2D difference-axisspace. We
averagethe two-particle density onxΣ [ρ(xΣ,x∆) → ρ(x∆)] and obtain the autocorrelation density
onx∆ (still a 2D density, not a projection).

Fig. 4 (right panels) illustrates two methods of autocorrelation construction. We can bin 1D
spacex with microbinsof sizeεx and average the resulting 2D bin contents on(x1,x2) along diago-
nals (third panel) or we can bin difference variablex∆ on space(x1,x2) and form the corresponding
autocorrelation average directly (fourth panel) [2]. If the second procedure is applied simultane-
ously to(η ,φ) we obtain 2D angular autocorrelations on(η∆,φ∆). Examples from data for number
n and pt angular autocorrelations are shown respectively in the left panels of Fig. 5. They are
qualitatively similar (minijet structure), but there are important quantitative and physics-related
differences.
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Figure 5: Left panels: Angular autocorrelations forn andpt respectively. Right panels: Macrobins of scale
δx on a two-particle space after binning a primary spacex, microbins of sizeεx relative to macrobins and
two microbin schemes, one onx, the other onx∆, showing the relationships underlying the integral equation.

Fig. 5 (right panels) shows the relation between fluctuationscale dependence and autocor-
relations, the origin of kernel K in Eq. (6.2). Autocorrelations can be obtained directly by pair
counting, as in Fig. 5 (left panels) or indirectly by inversion of fluctuation scale dependence. The
third panel shows amacrobinaverage at scaleδx over the detector acceptance∆x. The fourth panel
shows amicrobinaverage. The first is the integral of the second. The kernel K is determined by
the geometrical relationship between the two bin systems [2]. The agreement between pair count-
ing and fluctuation inversion is excellent for typical RHIC data (agreement at the percent level).
Pair counting provides direct access to autocorrelations,but is a computationally expensiveO(n2)

process. Fluctuation inversion is a computationally cheapO(n) process. Inversion of fluctuation
scaling typically provides immediate physical interpretation of fluctuations and saves a factor 10×
in computation time for minimum-bias Au-Au collisions at 200 GeV.

8. Undistorted projection of 6D two-particle momentum space to 2D subspaces

Given the correspondence between fluctuation measurementsand two-particle correlations one
can ask what is the overarching goal of correlation measurement, and what is the optimal measure-
ment system? All information in the final-state momentum space (yt ,η ,φ) is contained in the
set of multiparticle spaces, of which the single- and two-particle spaces are computationally ac-
cessible with reasonable cost. The two-particle space is 6D, so the correlation analysis problem
becomes how to project the 6D space to visualizable 2D subspaces with minimum information loss
or distortion and maximum interpretability.
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Figure 6: Efficient projection of two-particle space(yt1,η1,φ1;yt2,η2,φ2) to 2D subspaces:(yt1,yt2) for
all particles showing soft and hard components, joint angular autocorrelation on(η∆,φ∆) from hard com-
ponent in first panel showing same-side (φ∆ < π/2) and away-side (φ∆ > π/2) components, corresponding
distributions on(yt1,yt2) for same-side and away-side components respectively.

Fig. 6 [19, 20] illustrates an optimal projection strategy.The first panel shows subspace
(yt1,yt2) for all pairs in minimum-bias 200 GeV p-p collisions: all theinformation from number
correlations on transverse rapidityyt for pt ∈ [0.15,6] GeV/c. The second panel shows the comple-
mentary angular subspace, the angular number autocorrelation, with a cut in the first panel (yt > 2,
pt > 0.5 GeV/c) to isolate the hard component. That subspace reveals minimum-bias jet correla-
tions (transverse parton fragmentation—minijets). A second angular autocorrelation (not shown)
corresponds to the soft component in the first panel withyt < 2, revealing longitudinal fragmenta-
tion. Each angular autocorrelation has a same-side (SS,φ∆ < π/2) and away-side (AS,φ∆ > π/2)
region.

With a cut onφ∆ we can in turn decompose the(yt1,yt2) subspace (first panel) into SS and
AS parts, as shown in the right two panels. The hard components are intra-jet (third panel) and
inter-jet (fourth panel) number correlations (for unlike-sign or US pairs). To summarize, beyond
the projection onto rapidity and angle subspaces the different pair categories are hard and soft on
(yt1,yt2), SS and AS on(η∆,φ∆) and LS and US in either case. That decomposition distinguishes
all the details of soft hadronization and jet phenomenologyin p-p collisions, with no bias from a
trigger-particle condition as in conventional high-pt analysis [21].

9. Two correlation types

We identify two correlation types based on what physical mechanism produces ‘correlated’
pairs. As noted, correlations reflect event-wise variations in the single-particle momentum distri-
bution. Broadly speaking, such variations arise because oftransportof number orpt from place to
place in momentum space relative to a mean-value reference,or because additional particle number
or pt appears infrequently in some special events. Both correlation types may appear in the same
data.

Fig. 7 illustrates the two correlation types. In the first panel is the minimum-bias distribution
on (yt,yt) from 200 GeV p-p collisions, an example of correlations due to special events [19,
20]. In about 1% of non-single-diffractive (NSD) collisions (hard p-p collisions) detectable parton
scattering occurs producing additional particles localized onyt [22]. The two-particle distribution
for unexceptional (soft) collisions forms the reference. The second panel sketches contours on a 2D
event frequency distribution for a pair of bins(a,b) onyt . For ordinary events (the soft reference)
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Figure 7: pt autocorrelation with regions of positive and negative covariance, distributions of bin-pair
contents illustrating corresponding correlation (solid)and anticorrelation (dash-dot) trends, distribution on
(yt1,yt2) illustrating soft and hard components, and distributions of bin-pair elements illustrating the role of
rare hard events in producing positive-definite covariance.

bin pairs are uncorrelated (dashed contour). However, in some events certain pairs ofyt bins contain
additional particles (solid contour). The positive covariance relative to the reference appears, when
averaged over an event ensemble, as an elevated histogram bin in the first panel. In principle there
are no negative bins in such a distribution (except Poisson fluctuations).

The third panel shows apt angular autocorrelation for 200 GeV mid-central Au-Au collisions
obtained from〈pt〉 fluctuation inversion [5]. A flow sinusoid has been subtracted. In those col-
lisions each event contains many (10-20) minijets. There are no special events. The correlation
issue is number andpt transport on angle relative to an ensemble-mean distribution. The angu-
lar autocorrelation contains positive and negative regions. The fourth panel illustrates the bipolar
range of covariances between bin pairs. The same-side peak at the angular origin corresponds to
the solid ellipse and positive covariance. The negative regions adjacent to it onφ∆ correspond to
the dash-dot ellipse describing negative covariance or anticorrelation. The mixed-pair reference is
represented by the dashed circle.

10. The physics behind correlations and fluctuations

We summarize the physical mechanisms currently believed toproduce observed fluctuations
and correlations in RHIC p-p and Au-Au collisions. Different mechanisms are inferred by separat-
ing correlation data according toyt (soft, hard),φ∆ (SS, AS) and charge-pair type (LS, US). The
differential correlation structure is then typically suggestive of the underlying dynamics.

10.1 The physics ofn fluctuations

Each bin pair from the single-particle momentum space is characterized by a frequency distri-
bution as sketched in Fig. 8 (first panel), where particle charge is also a label. Fluctuations in the
yield of positive particles in one bin is compared with fluctuations of negative particles in another
bin. The difference between variances on the sumnch and differenceQ axes correspond to a+−
covariance. Covariance distributions for LS and US pair types are also combined as CI = LS+ US
and CD = LS− US to obtain isoscalar (CI) [23] and isovector (CD) [18] correlations respectively.
For binsa, b of sizeεx on variablex the normalized number covariance density is

∆ρ
√ρre f

≡ (n− n̄)a(n− n̄)b

εx
√

n̄a n̄b
(10.1)
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Figure 8: Illustration of physics processes revealed by multiplicity fluctuations. Replace third panel by one
with elliptic flow. Note that there is no flow in fourth panel.

In Fig. 8 (right panels) we show CI and CD number angular autocorrelations from 130 GeV
Au-Au collisions obtained by pair counting [18, 23]. The three principal physics mechanisms
for CI correlations are longitudinal (‘string’) fragmentation, elliptic flow and transverse (parton)
fragmentation (minijets). The second panel shows the CI number autocorrelation for mid-central
Au-Au collisions with the elliptic flow sinusoid subtracted. The same-side minijet peak is strongly
elongated onη [23]. There is no away-side jet ridge (previously established by trigger-particle
studies [21]) and no soft or longitudinal fragmentation correlation, (gaussian onη∆). The minijet
deformation and disappearance of the soft component [23] are new observations established with
minimum-bias angular autocorrelations [2].

The third panel shows the CD number autocorrelation for mid-peripheral Au-Au collisions.
There is no elliptic flow structure observed in CD correlations (another new observation [18]). We
observe a large-amplitude negative peak, symmetric about the angular origin with nearly expo-
nential shape. The form of the CD peak is very different from the CI minijet peak and from the
comparable CD structure in p-p collisions [19, 20]. Whereasthe CI minijet peak in mid-central
Au-Au is well-described by a 2D gaussian strongly elongatedon η , the CD peak is a symmetric
exponential. Its shape and other properties suggest that the CD structure arises from 2D surface
hadronization from the A-A medium. Subsequent hadronic rescattering attenuates the correlation
structure with increasing pair opening angle, producing the sharp exponential fall-off [18].

10.2 The physics ofpt fluctuations

Although there are underlying commonalities betweenpt andn fluctuations and correlations
(minijets and elliptic flow produce qualitatively similar structures in both) there are important dif-
ferences in detail. Number angular correlations can only reveal the particle flux in a given angular
region, whereaspt correlations can reveal the velocity and/or temperature ofthe local particle
source. The dominant theme ofpt angular correlations is particle emission from locally-moving
sources. The source velocity structure can be local (minijets) or extend over a broad angular region
(elliptic flow). For microbinsa, b of sizeεx on angular variablex the normalizedpt covariance
density is

∆ρ
√ρre f

=
(pt −np̂t)a(pt −np̂t )b

εx
√

n̄a n̄b
. (10.2)

In Fig. 9 (first panel) we illustrate the problem of distinguishing among 1)pt fluctuations rela-
tive to particle number fluctuations, 2) fluctuations of particle number relative to a fixed reference,
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Figure 9: Illustration of physics processes revealed bypt fluctuations.

and 3) the covariance between the two types of fluctuations. Decomposition of thept variance to
three terms was presented in Eq. (5.3) [13]. The first term on the RHS of that equation corresponds
to (pt − n p̂t) fluctuations on the x axis of the first panel. The third term corresponds to(n− n̄)
fluctuations on the y axis. The second term in Eq. (5.3) corresponds to a possible rotation of the
2D frequency distribution in the first panel illustrated by the dashed line and signaling a nonzero
pt ·n covariance. The central-limit reference is the dashed circle. pt fluctuations and correlations
are not trivially related to number fluctuations and correlations. Careful distinctions are required,
and failure to achieve those distinctions in statistical measure design results in biases, including
punchthrough of number correlations into inferredpt correlations.

In the right two panels we showpt angular autocorrelations from 200 GeV p-p (second panel)
and Au-Au (third panel) collisions. The second panel was obtained by pair counting, the third by
fluctuation inversion. The p-p data show a standard same-side jet cone and an away-side ridge.
The shape of the same-side peak is considerably different for pt correlations, approaching an ex-
ponential peak compared to a gaussian for number correlations from unbiased partons. The reason
is simple: larger-pt fragments tend to appear at smaller angles relative to the jet thrust axis, a con-
sequence of the parton fragmentation process. Those correlations were obtained with no trigger
particle. They are dominated by partons withQ∼ 4 GeV fragmenting to two hadrons (pions) with
US charge combination and most-probablept ∼ 1 GeV/c. They provide unique new information
on the most prolific manifestation of QCD processes in nuclear collisions at RHIC.

The Au-Au data in the third panel are dominated by elliptic flow (sinusoid) and a same-side
jet peak strongly elongated on pseudorapidity, as we saw fornumber correlations. However, a
new feature unique topt correlations is the pair of depressions on either side of thejet peak on
φ∆. Detailed analysis suggests that those depressions are part of a broad negative peak under the
positive same-side peak [5]. A possible interpretation of the new feature is medium recoil from
stopping the inward-going parton partner of the parton fragmenting to the positive same-side peak.
The recoil produces a red shift of the localpt spectrum. In essence, the positive and negative peaks
reflect local momentum conservation in the radial directionduring parton scattering.

11. Comments on measure design

One can illustrate good measure design by contrast with design misconceptions. We consider
some measures which do not provide an intuitive indication of the underlying physical mechanisms
for correlation trends on collision centrality and energy.
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11.1 σ2
〈pt 〉, σ2

pt ,dynamicaland measure bias

Measure bias results from placing random variables in denominators. As an example we
consider the bias inσ2

〈pt 〉 ≡ {(pt −n p̂t )2/n2}. We switch to ¯nσ2
〈pt 〉 to make a comparison below.

n̄σ2
〈pt 〉 ≡

{

(pt −n p̂t )2

n̄
· n̄2

n2

}

with
n̄2

n2 = 1−2
δn
n̄

+3
(δn)2

n̄2 + · · · (11.1)

We incorporate the Taylor expansion and form the differential fluctuation measure

n̄σ2
〈pt 〉−σ2

p̂t
= ∆σ2

pt :n

{

1+3
σ2

n

n̄2 + · · ·
}

−2

{

(pt −n p̂t)2

n̄
· δn

n̄

}

+3σ2
p̂t

σ2
n

n̄2 + · · · (11.2)

Recall thatσ2
n/n̄∼ 1-2 andσ2

p̂t
∼ 0.1 (GeV/c)2 for RHIC Au-Au collisions [16]. Referring to Fig. 3

(second panel), at a scale where ¯n ∼ 10 we find that∆σ2
pt :n ∼ 0.01, but the positive bias term on

the far right is 0.03 - 0.06. Thus, the third term is a catastrophic bias source for this fluctuation
measure. The second term is negative because thept ·n covariance in brackets is strongly positive:
minijets produce morept and more multiplicity together and localized on(η ,φ). Eq. (11.2) is
n̄σ2

pt ,dynamical−I [6], which is therefore a strongly biased fluctuation measure. One could argue,
reversing the equation, that∆σ2

pt :n is the biased measure, but that measure has been compared
to angular autocorrelations determined directly by pair counting and agrees precisely (∼ 1%) to
arbitrarily small scale [2].

11.2 〈δpt ·δpt〉, Σpt and the energy dependence ofpt fluctuations

〈δpt · δpt〉 ≡ ∑i 6= j(pti − p̂t )(pt j − p̂t )/n(n−1), also denotedσ2
pt ,dynamical [8], is another of

the 〈pt〉 fluctuation measures introduced in Sec. 2. By analogy with the previous subsection we
compare〈δpt · δpt〉 to ∆σ2

pt :n/n̄ ≡ ∑i 6= j(pti − p̂t )(pt j − p̂t )/n̄2. The differences are two-fold: 1)
there is an additional factorn in the denominator of〈δpt ·δpt〉, and 2)∆σ2

pt :n is a ratio of ensemble
averages while〈δpt ·δpt〉 an ensemble average of a ratio of random variables. The extraneous
factor n in the denominator of〈δpt · δpt〉 produces misleading centrality and energy trends, a
problem shared with net-charge fluctuation measureνdynamicalalso previously discussed. Ratios of
random variables produce bias terms by construction. A Taylor-expansion of the denominator of
〈δpt ·δpt〉 reveals that the large positive bias term in the originalσ2

pt ,dynamical is eliminated in the
newer version, leaving the negative covariance term as the main bias source.

The definitions and interpretation ofΣpt ≡
√

〈δpt ·δpt〉/p̂t [8, 9] are based on an assumption
of global event-wise thermalization. If true,〈pt〉 fluctuations are caused only byT fluctuations.
〈δpt · δpt〉 then estimates temperature varianceσ2

T , p̂t estimates mean temperatureT0, andΣpt

therefore estimates the r.m.s. relative variationδT/T0. Given those assumptions it is claimed that
δT/T0 (and therefore〈pt〉 fluctuations) has no significant collision energy dependence based on
measurements ofΣpt . However, when∆σ2

pt :n, p̂t and n̄, are examined independently they reveal
clear evidence that the thermalization assumption is wrong[10]. Events are highly structured.
∆σ2

pt :n is dominated by minijets, as revealed by model-independentfluctuation/correlation anal-
ysis [5]. The energy dependence is strong, and consistent with QCD systematics. Thea priori
imposition of a model on measure design in this example yields a misleading result.
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11.3 Forward-backward correlations

Forward-backward(FB) correlations describes an early form of correlation analysis on rapid-
ity or pseudorapidity applied to elementary collisions at lower energies [15]. The binning scheme

is shown in Fig. 2 (fourth panel). The measure isFB ≡ σ2
f b

σ2
f
→ σ2

f b
√

σ2
f ·σ2

b

(by symmetry about the

CM), exactly Pearson’s normalized covariance between two symmetric rapidity bins.FB is sim-

ply related to the CI normalized covariance density by∆ρ/
√ρre fab ≡

σ2
ab

εη
√

n̄a·n̄b
=

σ2
ab

εη
√

σ2
a ·σ2

b CLT
→

σ2
ab√

σ2
a ·σ2

b

= FB if (a,b)→ ( f ,b). FB is thus (within anO(1) factor) the autocorrelation onη∆ pro-

jected from the 2D number autocorrelation on(η∆,φ∆).

Recent applications ofFB invoke the historical context in attempting to identify SRCand LRC
components (short- and long-range correlations) in terms of string-fragmentation and the dual-
parton model [15]. There are several problems with that approach: 1) the historical measure is not
properly related to the modern analysis context; 2) the terms SRC, LRC are not defined in terms of
presently-understood physical processes; 3) the theory-inspired analysis procedures used to isolate
SRC and LRC components are poorly justified, especially in light of more recent progress.

11.4 The balance function

Like the FB, the original balance function (BF1) was appliedto elementary collisions at lower
energies to study local measure conservation (Q,S,B) at thebeginning and end of the e-e or p-p col-
lision process [24]. BF1 was a true conditional distribution: a projection from two-particle space
(y1,y2) onto one rapidity axis given a condition (bin) defined on the other. Significant correlation
structure deviated from a uniform background. BF1 was instrumental in the development of QCD
theory. The second version BF2 is fundamentally different,although the same name and similar
algebra are invoked [25]. BF2 is a projection onto diagonaldifferenceaxisy1−y2 or η1−η2. The
constant offset in the original version becomes an acceptance triangle, and true net-charge correla-
tions vary about that triangle. The reference triangle dominates the overall structure, presenting a
misleading picture.

The physics of BF2 relates to its width. BF2 theory [25] argues that charge diffusion during
hadronic rescattering should increase the net-charge correlation length on rapidity. The net-charge
correlation length is estimated (according to [25]) by the BF2 width. Thus, reduction of the BF2
width with centrality would indicate reduced diffusion of hadronic charge, or ‘late hadronization.’
However, the width of BF2 is dominated by the reference triangle. For typical nuclear collisions
the composite BF2 width is completely insensitive to the correlation length of local net-charge
correlations [18, 26]. The BF2 width variation is dominatedby changes in theamplitudeof net-
charge correlations, leading to incorrect inferences. BF2is simply related to the CD (net-charge)
angular autocorrelation, which has been measured for 130 GeV Au-Au collisions [18] and gives a
very different picture of local charge conservation than the theoretical hypothesis which motivated
BF2. A third variant,BF(∞) → BF3, has been defined with an approximation to the acceptance
factor removed [27].BF3 is therefore approximately a projection of the 2D net-charge angular
autocorrelation onto theη∆ axis. The confusion imposed byBF2 andBF3 has essentially halted
progress on the physics of net-charge correlations.
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12. Summary

We have reviewed the current status of fluctuation and correlation analysis methods at the SPS
and RHIC. We have identified some basic issues of measure design, and shown how they can be
used to define scale-dependent differential fluctuation measures for number andpt fluctuations.
We show that fluctuation scale dependence is related to angular autocorrelations by an integral
equation. Autocorrelations from fluctuation inversion andpair counting are comparable at the per-
cent level, and the former, being much faster, saves a great deal of computing time for heavy ion
collisions. Given the connection between fluctuations and correlations we discuss the optimum
projection of two-particle momentum space to 2D subspaces with minimal distortion. We con-
sider two general correlation types and describe their manifestations in collision data. We then list
the currently-known mechanisms which produce number andpt correlations. We conclude with
comments on several measure designs which illustrate the need for good design principles.

This work was supported in part by the Office of Science of the U.S. DoE under grant DE-
FG03-97ER41020.
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