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1. Introduction

The terms fluctuations and correlations applied to nuclebisons refer to significant event-
wise changes in the structure of particle distributionsiogle-particle and two-particle momen-
tum space. Fluctuation measurements at a single bin seeate(e.g., detector acceptance) could
arise from many configurations of the multiparticle momemtlistribution. In contrast, thecale
dependencef fluctuations over a significant scale interval provideigue information about two-
particle correlation structure. Those aspects of distiGms on §, ¢) depending on angldiffer-
encesare retained in the form of angular autocorrelations [1]m@tementary to angular autocor-
relations are two-particle correlations on transverse extomp; or rapidityy;.

Much experience has been gained from a sequence of fluatuatid correlation measure-
ments at the SPS and RHIC. Recent results have alerted ugaimlseew physics issues not an-
ticipated in earlier measure design. We have learned ttiatawelations can be extracted from
fluctuation scale dependence with numerical inversionrtiegles [2]. We now have a better idea
of the general structure of momentum space for differerisioh systems. We've reached a stage
where a consolidation of measurement techniques and ietatjpns is possible and necessary.

In this paper we present elements of a unified system of fltion/aorrelation measurement
in a historical context. We first review existing analysistihoels. We then describe two basic sta-
tistical elements: fluctuations on a binned momentum spaddaarson’s normalized covariance.
We define scale-dependent normalized variances and variifierences. We relate fluctuation
scale dependence to angular autocorrelations throughtegrah equation. Numerical solution of
the integral equation reduces fluctuation scale dependerarggular correlations. We propose an
optimum projection of the 6D two-particle momentum spac2Rsubspaces and discuss two main
correlation types. We summarize the current physics ahd p; correlations and conclude with
some case studies of measure design which illustrate therieme of proper design criteria.

2. A Multiplicity of Methods

Over the past decade a number of fluctuation measures hasrtemiuced to the SPS and
RHIC heavy ion programs. Some of them share a few commonrésatu) a global random
variable is defined based on a physics hypothesis (e.g.,ddg@nwith a thermodynamic variable),
2) the variance of the global variable about its mean is défiBgthe variance is compared to a
‘statistical’ reference to obtain a measure of excess arstetistical’ fluctuations. Global variables
are defined as sums, differences and ratios of elementagdpmamariables (e.gp:, n, Ny, n_, Ny,
ng). Comparison of a variance with its reference is accomptiste differences and/or ratios.

The p; fluctuation measures deliberately designed to test a Imgagrposition hypothesis are

Py = erw — 0p, [3, 4] and the closely-relatefiaj ., = (p“r?mz — 03 [5]. They compare

a per-particlenormalizedvariance to its central-limit value. Some measuregmf fluctuations

such aso} gynamica= Op) — 94 /N [6] and Fp, = | /N07, . /0Z — 1 [7] are biased (the estimate
systematically deviates from the intended parent propéotysmall multiplicitiesn. The bias is

very large and arises from propertiesaﬁw a variance of the ratio of two random variables (

Sec. 11 for details),dp; - 5pt) = {Zi#l'(pﬁ;szl()p”*m} [8], with S™, (P — ) = Py — Ny, is inter-
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mediate between a fluctuation (single-particle countimg) eorrelation (pair counting) measure.
The principal bias in that definition involves a cross-caonitaation (covariance) betwegmn andn
fluctuations ¢f. Sec. 11).

Zp.STAR= \/ Op dynamical P [8] andZp ceres= |/A0Z.,/NPf [9] are motivated by a specific
collision model which assumes that each A-A collision idyfthermalized. Excesép;) fluctua-
tions should then arise only because of event-wise vanatiglobal temperatur@. In that model
Oﬁt.dynamicalis taken as the analog of temperature variangethe analog for ensemble-medg
is assumed to bp; {ensemble-mean particig), and>, — &T /To. If event-wise thermalization
is not achieved (there is plentiful evidence to that effettipse model-dependent measures are
difficult to interpret [10].

We encounter a similar assortment of measures for numbeundtions. For multiplicity fluc-
tuations there is the normalized variang®/n with g2 = (n—n)2. For net charg® =n, —n_
there isaé/ﬁ Both have central-limit reference values 1, so suitabfedintial fluctuation mea-
sures which test a linear superposition hypothesi&aﬁg = g2/n— 1 for nand the equivalent for
Q. Those measures are directly related to two-particle numlcorrelations. Net-charge fluctu-
ation measur® [11] was defined in terms of ratio. /n_, and is consequently strongly biased (that
measure first revealed the bias arising from ratiog)aamicai defined in terms of; /n,. —n_/n_,
is described as a ‘robust’ measure because it is said to lcpautiele detection efficiencies in the
ratios [12]. That claim is questionable because relevarglsiparticle and pair efficiencies are
generally different. They andn fluctuation measures subscripted ‘dynamical’ include \&dti
factor 1/n which adds to interpretation difficulty.

Given the large array of fluctuation measures is there a esmaitimum set, are there clear
design criteria? The answer is yes, but resolution of demigiiguities requires understanding the
basics of fluctuation measurement, the relation betweetufitions and correlations and the ulti-
mate goal of two-particle correlation analysis: projeatad 6D two-particle momentum space to
viewable 2D subspaces with minimal information loss oratisbn. The result should be accurate
and model-independent characterizations of correlatimecire in nuclear collisions.

3. Fluctuation Basics

The data system for any fluctuation or correlation analysizn ensemble of particle distri-
butions (events) on single-particle momentum spaee, @) or (i, n, @), wherep is transverse
momentumpm is transverse masag, is pseudorapidityp is azimuth and; = In{(m + pt)/Mp} is
transverse rapidity, with the pion mass assigneaddor unidentified hadrons. Momentum space
is bounded by a detector acceptance. The space within tleptacce is binned according to a
range of bin sizes. Transverse momentpntan be considered a continuous measure distributed
on subspacén, ¢) and sampled by individual particles in each event.

An ensemble of distributions (events) s sketched in Fig. 1 (first panel). Each event is
compared with an ensemble-average reference distribitidetermineelativeinformation, mea-
sured by fluctuations of bin contents about their means. tEwere pair distributions on space
(x1,%2) in the second panel are compared to a reference formed froedmiirs or a 2D (Carte-
sian) product of single-particle ensemble-average 8igtibns. The differences reveal correlations
in the two-particle distribution corresponding to flucioas in the single-particle distribution [13].
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That relation is the basis for the integral equation retafinctuations to correlations described in
Sec. 6.
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Figure 1: Event-wise distributions on a binned primary space, cpording two-particle space and possi-
ble distributions of bin contents for selected baandb in the primary space.

The basic random variables are bin contgitandn (or n,, n_, etc.) in pairs of bing andb
combined as products2, nﬁ or nanp. The ensemble averages of the products are compared to the
products of averages (the reference). Their linear contibinsare the variancceéb (diagonal bins
in the center panel) and covarianamg“b (off-diagonal bins). We are especially interested in how
variances (fluctuations) change with bin size or scale, hadkfore how they relate to covariances
(two-particle correlations).

Fig. 1 (third panel) sketches possible frequency distiiimst on(ny, ny) from bin pair(a,b)
in the first panel. The ellipses represent half-maximumaorstfor gaussian-random fluctuations.
The three cases correspond to correlation (solid curveicarelation (dash-dot curve) and no
correlation (dashed curve) between bdrendb, the last being expected for a mixed-pair reference.
The 2D frequency distribution is characterized stati#iiiday two marginal (projection) variances
and a covariance. The marginal variances for bimedb arec?, = (n—n)2, =n2, —nZ,, and
the covariance isgb = (Nn—n)a(n—nN)p = MaNp — Ny N,. From those basic quantities we can define
a relative covariance, the basis for statistical measuheshiest a linear-superposition hypothesis.

4. Pearson’s normalized covariance

Pearson’s correlation coefficient is a measure of relativeoomalized covariance [14]. For
number fluctuations in bin pafg, b), as sketched in Fig. 1 (right panel), the normalized conaga
is defined by

0-2
b= —22— ¢ [-1,1] (4.1)
0z 0}

The numerator is the covariance for bin pairkf), and the denominator is the geometric mean of
a andb marginal variances. The distributionigf, for histogram bin pairs in Fig. 1 (second panel)
fully represents two-particle correlations on spacéig. 2 (first three panels) illustrates limiting
cases of Fig. 1, (third panel), with the corresponding vafe .

Tests of linear superposition include the normalized davae in the following way. Suppose
a fluctuating system (larger bin) is separated into two gadgivalent smaller bing andb. We
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correlated uncorrelated anticorrelated
rp,=1 a 0 -1 0 FM

Figure 2: Examples of Pearson’s coefficient and F-B correlations.

want to determine statistically whether the total system limear superposition & andb. It is
easy to show that for number variances and covariance

OZ.p = 04 + Of +20%, (4.2)
Forn = ny+ny we have
2 =2 = 2 2
Na 02 NpOf /Nap O
—h__8-a _|__b_b_|_ a’lb “ab (4.3)

n Nhy NN n  /nNanp

The normalized variance of the whole is a weighted mean édnees from the parts and a covari-
ance. Linear superposition means that covariangdetween subsystenasandb is zero (central
limit theorem). In that case a normalized variance is indepat of composition (independent
of scale or bin size)o?/n = 02/ny = 0@/5[13]. Deviations from linear superposition (i.e., in-
teresting physics) are revealed by a nonzmjg\/m distribution, or equivalently by the scale
dependence af?/n[13].

Given those results and other relations in the next sectmmadopt the following definitions
for then andp; normalized covariances

03 (N—n)a(n—n)p (Pt —nPt)alpt —NP)b
Fap= ——22 — a and a 4.4
w \/ 02 o? Na b Na b @4

used in our analysis. The quantities on the right are modffmth the Pearson definition. They
include in the denominators not the marginal variances Hreicentral-limit or Poisson values of
those variances. We also omit the central-liuﬁtfactor from the denominator of th® normalized
covariance for reasons discussed in Sec. 5.

The last panel of Fig. 2 illustrates so-calfedward-backwardFB) correlations [15], in which
correlations on pseudorapidityare measured byB = (n—n)g- (N—n)g/ /aﬁ(F) : oﬁ(B), an ex-
ample of Pearson’s normalized covariance. CovaridaBds simply related to the 2D angular
autocorrelation projected onto difference afjs= n1 — n». Fig. 2 (fourth panel) should be com-
pared to Fig. 1 (second panel) and Fig. 4 (third panel).

5. Scale-dependent differential fluctuation measures

In this section we combine several related elements tomwmhtsélf-consistent fluctuation mea-
sure system. We combine the closely-related concepts l&f snariance of the total variance as a
manifestation of the central limit theorem (CLT) and Penismormalized covariance as a test of
linear superposition.
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5.1 Total variance

In a detailed study o®p, and its relation to the central limit theorem and linear sppsition
we introduced the concept of the total varianceX3 ., and total variance differencas3 ., =
28— Z5 rer [13]. The total variance difference is defined by

n,n—1 n n
TS = PECRLUCTELIED SLRLIULTELIEDACT
i£]=1 i,]=1 i=
with 4 (pti — Pr) = pt — npr summed over a bin. On the left is is an integral over two-pkati
momentum space (sum of pairs). On the right is a differefitiatuation measure based on single-
particle counting. Dividing through by the mean bin muligfty we have

AS2 . (pt— )2
pn _ A 2 _ (B—NH) 2
= =A0p ., = = — 0}, (5.2)
The total variance as an integral over a two-particle spadbe basis for the integral equation
which relates fluctuation scale dependence to angular autdations €f. Sec. 6) [2].

5.2 Variance differences

If b — ain the normalized covariance (diagonal bins in Fig. 1, sdquenel) we obtain the
normalized variance for bia: raa = (n—n)2/n,. The average over all bins in an acceptance
is then the normalized number variancré/ = 0?/n= (n—n)2/n, also referred to as a ‘scaled’
variance (we reserve ‘scale’ to mean bin size). We now definenapatible set of normalized
variances, covariances amdriance differenceghich provide optimal measurement of fluctuation
scale dependence and two-patrticle correlations in nuct@bsions. To establish exact connections
among all statistical measures farandn we first introduce a decomposition of the ordingxy

variance by adding and subtracting; within the LHS quadratic

(Pt —p)?= (P —np)2+ 20 (p —nfy) - (N— ) + P (n— )2 (5.3)

Dividing through bynwe obtain on the RHS two normalized variances and a norntbdiaeariance

ast:nz(pt—nﬁt)Z Ué:nfn (pt—nﬁt%-(n—ﬁ) aﬁ/ (n—ﬁﬁ)Z (5.4)

The firstitem is the normalized conditionalvariance. Subscrigg : nreads py fluctuationsgiven
n.’ The second item is the normalized covariance betwgeftuctuations givem and number
fluctuationst The last term is the normalized number variance. The nomewlvariances are
scale-dependent (scale = bin s, and when expressed in terms of bin sup®x) andn(dx)
are running integrals of normalized covariance densities.

To complete the correspondence between fluctuation scalendence and correlations we
define a ‘zero-scale limit’ to the scale-dependent flucamatheasures. The limit coincides with
the central-limit reference for each quantity—independamples from a fixed parent—since in

1That covariance was the initial motivation fon, [3].
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the zero-scale limitdx — 0) eachoccupiedbin contains at most one particle (independent sam-
ples) and two-patrticle correlations play no role. The CLferences for the three Egs. (5.4) are
respectivelyagt, 0 and 1. We therefore define variance differences

(n—_n)2 (—np)? S (P — PPy — B
n

Aol = ———-1and ACh o= 0 (5.5)

Those relations explain the omissionaﬁ in the denominator of the normalizew : n variance;
we want to insure measure compatibility farandn fluctuations and correlationg; fluctuation

measureb, = \/(pt —nf)2/n— \/a|§t [3]is the r.m.s. version cmagt:n. The variance differences
areper-particlefluctuation measures directly related to angular autotaiioms, as discussed in the
next section.

These definitions combine the merits of Pearson’s nornthlipeariance, tests of linear super-
position and the scale-invariance of the total varianceraarfestation of the central limit theorem
with a self-consistent treatment pf andn fluctuations and correlations.

6. Correlations, fluctuations and inversion

Fluctuations are directly connected to correlations byrap# relation, making the inter-
pretation of fluctuations straightfoward. A fluctuation regg@ement at a single scale (e.g., the
STAR TPC acceptance) is shown in the first panel of Fig. 3 [THje frequency histogram on
(pr —npr)/(v/noy) is compared to a central-limit reference (narrower, dagresk). agt is the
single-particle variance. Variance differermegt:n(c‘ix) defined above quantifies the variance ex-
cess. Questions then arise how to interpret the fluctuatmasnrement and how to compare it to
measurements made with other detectors.
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Figure 3: (p) fluctuations measured at the STAR detector acceptanceg@hésh) compared to a central-
limit reference (dotted curve), the scale dependencedfluctuations within the STAR acceptance and the
correspondingy, autocorrelation obtained by inversion.

Fluctuation measurements in different scale interval$oerifferent parts of @ommordis-
tribution of fluctuation scale dependence [17], as showhésecond panel of Fig. 3. The variance
difference from the first panel corresponds to the singlafadithe apex of the surface in the second
panel. The surface is structured, but what does the steiotaan? Fluctuation scale dependence is
the running integral of an autocorrelation. The corresfrmpthtegral equation is a linear relation
between a variance difference and an autocorrelationjdiirey a kernel representing the binning



Review of analysis methods for correlations and fluctuation Thomas A. Trainor

scheme. We equate the per-particle variance differenceaesdn, 4 ¢) to a 2D running integral

2 on o9 A
Aapt:n(5n,5<p)=4/0 dnA/O dgmK(3n, 8¢, na, ¢n)

o

The discrete form is

m,n

Ap(pr:nkey,l e
k=1

\/Pref(n; ke, €p) ’

with kernelKyni = (m—k+1/2)/m- (n—1+1/2)/n representing the 2D macrobin systech (
Fig. 5, right panels). The integral equation can be invefsedived) by standard numerical meth-
ods to obtain normalized covariance dendiy/,/prer as an autocorrelation on difference axes
(Na, @) [2]. The third panel of Fig. 3 shows th® angular autocorrelation corresponding to the
fluctuation data in the second panel, with directly intet@oée structure: elliptic flow and mini-
jets [5]. A similar analysis has been applied to the Hijingri#to Carlo [17]. The fourth panel
shows the result of subtracting the elliptic flow contriloutl] cog2¢n) to reveal the details of
minijet correlations and illustrates how differential #natocorrelation method is. From Fig. 3 we
see that fluctuation inversion provides a Rosetta stoneufotuhtion and correlation analysis

(6.2)

7. Comparing autocorrelations from pair counting and inversion

Autocorrelations in the forr\(1) = 1/T fjﬁz f(t)f(t+ 1) dt were first developed for time-
series analysis [1]. Time-series autocorrelations are oeeful when functiorf (t) is stationary

its correlation structure does not depend on absolute fithe.structure of (t) is then completely
represented statistically by the autocorrelation ordifference axiglag) r. Autocorrelation anal-
ysis can also be applied to spatial correlations. If eveisewstructures are randomly positioned
onx then the corresponding ensemble-average two-pointlligioin on(xy, ;) is stationary (does

not depend on absolute position).

4erage

atk x, —— kgx X,

Figure 4: Two-particle correlations on and ¢ for central Au-Au collisions at 130 GeV, schematic of a
binned two-particle space illustrating an autocorrelativerage along thié" diagonal and a similar aver-
aging procedure performed directly on difference variaiale

Fig. 4 (left panels) shows distributions of pair densityasp (X1, X2)object/ 2 (X1, X2)re ferencedN
n and e typical of Au-Au collisions at RHIC [18]. The distributiorsse stationary—independent
of position on sum axigs = X3 + X2 (mean pair position). All structure appears on differends a
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Xp = X1 —Xo. Stationarity om andg implies that the joint or 2D angular autocorrelation(gn, @)

is alossless compressiarf the 4D two-particle angle space to the 2D difference-apisce. We
averagethe two-particle density ors [p(Xs,Xa) — P(Xa)] and obtain the autocorrelation density
onXa (still a 2D density, not a projection).

Fig. 4 (right panels) illustrates two methods of autoc@tieh construction. We can bin 1D
spacex with microbinsof sizeg, and average the resulting 2D bin contentgxnx,) along diago-
nals (third panel) or we can bin difference variakdeon spacex,, x2) and form the corresponding
autocorrelation average directly (fourth panel) [2]. lethecond procedure is applied simultane-
ously to(n, @) we obtain 2D angular autocorrelations@y, ¢n). Examples from data for number
n and p; angular autocorrelations are shown respectively in theplafels of Fig. 5. They are
gualitatively similar (minijet structure), but there amportant quantitative and physics-related
differences.

A XZ’b / r.F
F
A Pe
X Xy Bx 0 X

Figure 5: Left panels: Angular autocorrelations foandp; respectively. Right panels: Macrobins of scale
dox on a two-particle space after binning a primary spgomicrobins of sizeg, relative to macrobins and
two microbin schemes, one anthe other orx,, showing the relationships underlying the integral ecurati

Fig. 5 (right panels) shows the relation between fluctuaticale dependence and autocor-
relations, the origin of kernel K in Eq. (6.2). Autocorrétats can be obtained directly by pair
counting, as in Fig. 5 (left panels) or indirectly by invensiof fluctuation scale dependence. The
third panel shows macrobinaverage at scal&x over the detector acceptantse The fourth panel
shows amicrobinaverage. The first is the integral of the second. The kernal dketermined by
the geometrical relationship between the two bin systesTl2e agreement between pair count-
ing and fluctuation inversion is excellent for typical RHI@td (agreement at the percent level).
Pair counting provides direct access to autocorrelatiomsis a computationally expensi@n?)
process. Fluctuation inversion is a computationally ch@ap) process. Inversion of fluctuation
scaling typically provides immediate physical interptieta of fluctuations and saves a factord0
in computation time for minimum-bias Au-Au collisions at®GeV.

8. Undistorted projection of 6D two-particle momentum spae to 2D subspaces

Given the correspondence between fluctuation measurearahts/o-particle correlations one
can ask what is the overarching goal of correlation measemgrand what is the optimal measure-
ment system? All information in the final-state momentumcsg®:,n, @) is contained in the
set of multiparticle spaces, of which the single- and twdiple spaces are computationally ac-
cessible with reasonable cost. The two-particle space jss6@he correlation analysis problem
becomes how to project the 6D space to visualizable 2D sghkspeith minimum information loss
or distortion and maximum interpretability.
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Figure 6: Efficient projection of two-particle spag:, N1, @1; Yi2, N2, @) to 2D subspacestyi1, yt2) for
all particles showing soft and hard components, joint amgaltocorrelation orina, g.) from hard com-
ponent in first panel showing same-sidg & 77/2) and away-sidegy > 11/2) components, corresponding
distributions on(yt1, yt2) for same-side and away-side components respectively.

Fig. 6 [19, 20] illustrates an optimal projection strategyhe first panel shows subspace
(Yi1,Yr2) for all pairs in minimum-bias 200 GeV p-p collisions: all thdormation from number
correlations on transverse rapidigyfor p; € [0.15,6] GeV/c. The second panel shows the comple-
mentary angular subspace, the angular number autocdorelatth a cut in the first panel( > 2,

p: > 0.5 GeV/c) to isolate the hard component. That subspace sewgaimum-bias jet correla-
tions (transverse parton fragmentation—minijets). A selcangular autocorrelation (not shown)
corresponds to the soft component in the first panel with 2, revealing longitudinal fragmenta-
tion. Each angular autocorrelation has a same-side¢S8,11/2) and away-side (ASp, > 11/2)
region.

With a cut ongn we can in turn decompose tlig1, yi2) subspace (first panel) into SS and
AS parts, as shown in the right two panels. The hard compseraetintra-jet (third panel) and
inter-jet (fourth panel) number correlations (for unlikign or US pairs). To summarize, beyond
the projection onto rapidity and angle subspaces the diftgpair categories are hard and soft on
(Yi1,¥t2), SS and AS orina, gn) and LS and US in either case. That decomposition distingsish
all the details of soft hadronization and jet phenomenoloagy-p collisions, with no bias from a
trigger-particle condition as in conventional highanalysis [21].

9. Two correlation types

We identify two correlation types based on what physicalmeism produces ‘correlated’
pairs. As noted, correlations reflect event-wise variaionthe single-particle momentum distri-
bution. Broadly speaking, such variations arise becauta$§portof number omp, from place to
place in momentum space relative to a mean-value referenbecause additional particle number
or p; appears infrequently in some special events. Both coiel&#gpes may appear in the same
data.

Fig. 7 illustrates the two correlation types. In the first @las the minimum-bias distribution
on (y;,y;) from 200 GeV p-p collisions, an example of correlations duespecial events [19,
20]. In about 1% of non-single-diffractive (NSD) collisisthard p-p collisions) detectable parton
scattering occurs producing additional particles loelipny; [22]. The two-particle distribution
for unexceptional (soft) collisions forms the referenche Fecond panel sketches contours on a 2D
event frequency distribution for a pair of bifa,b) ony;. For ordinary events (the soft reference)

10
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Figure 7: p; autocorrelation with regions of positive and negative carace, distributions of bin-pair
contents illustrating corresponding correlation (sodyl anticorrelation (dash-dot) trends, distribution on
(W1, Y2) illustrating soft and hard components, and distributioitsio-pair elements illustrating the role of
rare hard events in producing positive-definite covariance

bin pairs are uncorrelated (dashed contour). However nresvents certain pairs wfbins contain
additional particles (solid contour). The positive cogacge relative to the reference appears, when
averaged over an event ensemble, as an elevated histogramthbeé first panel. In principle there
are no negative bins in such a distribution (except Poissmtuitions).

The third panel shows g angular autocorrelation for 200 GeV mid-central Au-Au dins
obtained from(p) fluctuation inversion [5]. A flow sinusoid has been subtrdctn those col-
lisions each event contains many (10-20) minijets. Theeenar special events. The correlation
issue is number ang transport on angle relative to an ensemble-mean distabutihe angu-
lar autocorrelation contains positive and negative regidrhe fourth panel illustrates the bipolar
range of covariances between bin pairs. The same-side pélaé angular origin corresponds to
the solid ellipse and positive covariance. The negativeoregadjacent to it oy correspond to
the dash-dot ellipse describing negative covariance ac@nelation. The mixed-pair reference is
represented by the dashed circle.

10. The physics behind correlations and fluctuations

We summarize the physical mechanisms currently believguidduce observed fluctuations
and correlations in RHIC p-p and Au-Au collisions. Diffetenechanisms are inferred by separat-
ing correlation data according to (soft, hard),g (SS, AS) and charge-pair type (LS, US). The
differential correlation structure is then typically s@gtjive of the underlying dynamics.

10.1 The physics ofi fluctuations

Each bin pair from the single-particle momentum space isaclterized by a frequency distri-
bution as sketched in Fig. 8 (first panel), where particlaghas also a label. Fluctuations in the
yield of positive particles in one bin is compared with fluations of negative particles in another
bin. The difference between variances on the sygrand difference) axes correspond to-a—
covariance. Covariance distributions for LS and US paiesygre also combined as Cl = BSUS
and CD = LS— US to obtain isoscalar (Cl) [23] and isovector (CD) [18] e&bations respectively.
For binsa, b of sizeg, on variablex the normalized number covariance density is

pp _ (n—a(n—M
V/Pret Exy/NaNp (10.1)

11
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Figure 8: lllustration of physics processes revealed by multipfiflitctuations. Replace third panel by one
with elliptic flow. Note that there is no flow in fourth panel.

In Fig. 8 (right panels) we show Cl and CD number angular aartetations from 130 GeV
Au-Au collisions obtained by pair counting [18, 23]. Thed#rprincipal physics mechanisms
for CI correlations are longitudinal (‘string’) fragmetitan, elliptic flow and transverse (parton)
fragmentation (minijets). The second panel shows the Clbharrautocorrelation for mid-central
Au-Au collisions with the elliptic flow sinusoid subtractethe same-side minijet peak is strongly
elongated om [23]. There is no away-side jet ridge (previously estaldislby trigger-particle
studies [21]) and no soft or longitudinal fragmentationretation, (gaussian ona). The minijet
deformation and disappearance of the soft component [23hew observations established with
minimume-bias angular autocorrelations [2].

The third panel shows the CD number autocorrelation for padpheral Au-Au collisions.
There is no elliptic flow structure observed in CD correlatiganother new observation [18]). We
observe a large-amplitude negative peak, symmetric albheuangular origin with nearly expo-
nential shape. The form of the CD peak is very different fréna €I minijet peak and from the
comparable CD structure in p-p collisions [19, 20]. WhertéasCl minijet peak in mid-central
Au-Au is well-described by a 2D gaussian strongly elongatedy, the CD peak is a symmetric
exponential. Its shape and other properties suggest tealEhstructure arises from 2D surface
hadronization from the A-A medium. Subsequent hadronicatsring attenuates the correlation
structure with increasing pair opening angle, produciregsimarp exponential fall-off [18].

10.2 The physics of fluctuations

Although there are underlying commonalities betwgeandn fluctuations and correlations
(minijets and elliptic flow produce qualitatively similairgctures in both) there are important dif-
ferences in detail. Number angular correlations can onlgakthe particle flux in a given angular
region, whereag correlations can reveal the velocity and/or temperaturéheflocal particle
source. The dominant theme pf angular correlations is particle emission from locallywimg
sources. The source velocity structure can be local (ni#)ig@ extend over a broad angular region
(elliptic flow). For microbinsa, b of size & on angular variablex the normalizedp; covariance
density is

Ap _ (P —nPya(P—NP)o.

\/Pref &v/NaNp

In Fig. 9 (first panel) we illustrate the problem of distingjuing among 1) fluctuations rela-
tive to particle number fluctuations, 2) fluctuations of detnumber relative to a fixed reference,

(10.2)
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Figure 9: lllustration of physics processes revealeddyluctuations.

and 3) the covariance between the two types of fluctuatioesomposition of they, variance to
three terms was presented in Eq. (5.3) [13]. The first ternherRHS of that equation corresponds
to (pr — np) fluctuations on the x axis of the first panel. The third termresponds taqn — n)
fluctuations on the y axis. The second term in Eq. (5.3) cpoeds to a possible rotation of the
2D frequency distribution in the first panel illustrated Ime tdashed line and signaling a nonzero
p; - n covariance. The central-limit reference is the dashedecing fluctuations and correlations
are not trivially related to number fluctuations and cotietss. Careful distinctions are required,
and failure to achieve those distinctions in statisticahsge design results in biases, including
punchthrough of number correlations into inferfgdorrelations.

In the right two panels we shop angular autocorrelations from 200 GeV p-p (second panel)
and Au-Au (third panel) collisions. The second panel wasiolgd by pair counting, the third by
fluctuation inversion. The p-p data show a standard saneejsiccone and an away-side ridge.
The shape of the same-side peak is considerably differerng; foorrelations, approaching an ex-
ponential peak compared to a gaussian for number corretafiom unbiased partons. The reason
is simple: largerp; fragments tend to appear at smaller angles relative to thlerjgst axis, a con-
sequence of the parton fragmentation process. Those atiored were obtained with no trigger
particle. They are dominated by partons w@h- 4 GeV fragmenting to two hadrons (pions) with
US charge combination and most-probaple- 1 GeV/c. They provide unique new information
on the most prolific manifestation of QCD processes in nuaeHisions at RHIC.

The Au-Au data in the third panel are dominated by elliptievfiisinusoid) and a same-side
jet peak strongly elongated on pseudorapidity, as we sawdarber correlations. However, a
new feature unique t@; correlations is the pair of depressions on either side ofghpeak on
¢n. Detailed analysis suggests that those depressions dref@abroad negative peak under the
positive same-side peak [5]. A possible interpretationhef mew feature is medium recoil from
stopping the inward-going parton partner of the partonrfragting to the positive same-side peak.
The recoil produces a red shift of the logrispectrum. In essence, the positive and negative peaks
reflect local momentum conservation in the radial directlaring parton scattering.

11. Comments on measure design

One can illustrate good measure design by contrast witlydesisconceptions. We consider
some measures which do not provide an intuitive indicatfadh@underlying physical mechanisms
for correlation trends on collision centrality and energy.
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11.1 03, G5 gynamica@Nd measure bias

Measure bias results from placing random variables in démaiors. As an example we

consider the bias ir:r<2Iot> = {(p —npx)2/n?}. We switch tona< , to make a comparison below.

_nhA)2 n2 _2 2
o7 Z{W%} with —_1 2@ 3(5;) T (11.1)

We incorporate the Taylor expansion and form the diffeedffitictuation measure
~ 2 2 2 a3 (p.—np)? dn 2 OF

Recall thao? /n~ 1-2 andaf ~ 0.1 (GeV/c} for RHIC Au-Au collisions [16]. Referring to Fig. 3
(second panel), at a scale where- 10 we find thaﬂa&zn ~ 0.01, but the positive bias term on

the far right is 0.03 - 0.06. Thus, the third term is a catgtio bias source for this fluctuation
measure. The second term is negative becauspg tlnecovariance in brackets is strongly positive:
minijets produce morgy and more multiplicity together and localized dm, ¢). Eq. (11.2) is
ﬁo_&.dynamicakl [6], which is therefore a strongly biased fluctuation measu®ne could argue,
reversing the equation, thAtalgt:n is the biased measure, but that measure has been compared
to angular autocorrelations determined directly by paunting and agrees precisely (1%) to
arbitrarily small scale [2].

11.2 (dp: - Opy), Zp, and the energy dependence g fluctuations

(0pt-Opt) = Yizj(Pti— B)(ptj — Br)/n(n—1), also de”Oted’&dynamicm [8], is another of
the (p;) fluctuation measures introduced in Sec. 2. By analogy wighpitevious subsection we
compare(dp; - 5pr) to Ad.,/N=Ti.;(pi — Bt)(Pyj — B)/N? The differences are two-fold: 1)
there is an additional factamn the denominator ofdp; - dpt), and 2)Aa§t:n is a ratio of ensemble
averages whilédp; - dp;) an ensemble average of a ratio of random variables. Thenedues
factor n in the denominator ofdp; - dp;) produces misleading centrality and energy trends, a
problem shared with net-charge fluctuation measi{gamicaialso previously discussed. Ratios of
random variables produce bias terms by construction. Acfagstpansion of the denominator of
(Opt - Opy) reveals that the large positive bias term in the origbﬁhynamicalis eliminated in the
newer version, leaving the negative covariance term as #ie bias source.

The definitions and interpretation Bf, = /(0p- op) /B [8, 9] are based on an assumption
of global event-wise thermalization. If truép;) fluctuations are caused only By fluctuations.
(0pt - Opy) then estimates temperature variamse f; estimates mean temperatufg and 2
therefore estimates the r.m.s. relative variaddry To. Given those assumptions it is claimed that
O0T/Tp (and thereford p) fluctuations) has no significant collision energy dependdyased on
measurements df,. However, whem\g, pt »» Pr andn, are examined independently they reveal
clear evidence that the thermalization assumption is wif@fy Events are highly structured.
Ao, pt n IS dominated by minijets, as revealed by model-indepentieciiation/correlation anal-
ysis [5]. The energy dependence is strong, and consistéht@CD systematics. Tha priori
imposition of a model on measure design in this example yialthisleading result.
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11.3 Forward-backward correlations

Forward-backwardFB) correlations describes an early form of correlatioalgsis on rapid-
ity or pseudorapidity applied to elementary coIhsmnsdear energles [15]. The binning scheme

is shown in Fig. 2 (fourth panel). The measurd-B =

(by symmetry about the

f Uf Ub
CM), exactly Pearson’s normalized covariance between tmansatric rapldlty bins.FB is sim-

ply related to the Cl normalized covariance densityApy/, /pret,, = s\/n__ ﬁ —
Ve bCLT

if (a,b) — (f,b). FB is thus (within arO(1) factor) the autocorrelation amu pro-

jectaecf from the 2D number autocorrelation(@y, ¢n).

Recent applications ¢fB invoke the historical context in attempting to identify SR LRC
components (short- and long-range correlations) in terfrstring-fragmentation and the dual-
parton model [15]. There are several problems with that@gghr: 1) the historical measure is not
properly related to the modern analysis context; 2) theseé8RC, LRC are not defined in terms of
presently-understood physical processes; 3) the thempifed analysis procedures used to isolate
SRC and LRC components are poorly justified, especiallygintlof more recent progress.

11.4 The balance function

Like the FB, the original balance function (BF1) was applieélementary collisions at lower
energies to study local measure conservation (Q,S,B) dahiening and end of the e-e or p-p col-
lision process [24]. BF1 was a true conditional distribatia projection from two-particle space
(y1,Yy2) onto one rapidity axis given a condition (bin) defined on theea Significant correlation
structure deviated from a uniform background. BF1 was imséntal in the development of QCD
theory. The second version BF2 is fundamentally differatihough the same name and similar
algebra are invoked [25]. BF2 is a projection onto diagalifférenceaxisy; —y» or N1 —n». The
constant offset in the original version becomes an acceptiiangle, and true net-charge correla-
tions vary about that triangle. The reference triangle catds the overall structure, presenting a
misleading picture.

The physics of BF2 relates to its width. BF2 theory [25] agytleat charge diffusion during
hadronic rescattering should increase the net-chargelation length on rapidity. The net-charge
correlation length is estimated (according to [25]) by tHe2Bvidth. Thus, reduction of the BF2
width with centrality would indicate reduced diffusion cdidironic charge, or ‘late hadronization.’
However, the width of BF2 is dominated by the reference gianFor typical nuclear collisions
the composite BF2 width is completely insensitive to ther@ation length of local net-charge
correlations [18, 26]. The BF2 width variation is dominatgdchanges in thamplitudeof net-
charge correlations, leading to incorrect inferences. BF2mply related to the CD (net-charge)
angular autocorrelation, which has been measured for 130A&eAu collisions [18] and gives a
very different picture of local charge conservation thamttieoretical hypothesis which motivated
BF2. A third variantBF () — BF3, has been defined with an approximation to the acceptance
factor removed [27].BF3 is therefore approximately a projection of the 2D net-ghaangular
autocorrelation onto thga axis. The confusion imposed BF2 andBF3 has essentially halted
progress on the physics of net-charge correlations.
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12. Summary

We have reviewed the current status of fluctuation and atiosl analysis methods at the SPS
and RHIC. We have identified some basic issues of measurgrjesid shown how they can be
used to define scale-dependent differential fluctuationsomes for number ang; fluctuations.
We show that fluctuation scale dependence is related to angutocorrelations by an integral
equation. Autocorrelations from fluctuation inversion gdt counting are comparable at the per-
cent level, and the former, being much faster, saves a gesdtodl computing time for heavy ion
collisions. Given the connection between fluctuations aswletations we discuss the optimum
projection of two-particle momentum space to 2D subspadds minimal distortion. We con-
sider two general correlation types and describe their festaitions in collision data. We then list
the currently-known mechanisms which produce number@rabrrelations. We conclude with
comments on several measure designs which illustrate #ekfoe good design principles.

This work was supported in part by the Office of Science of th®.DoE under grant DE-
FG03-97ER41020.
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