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1. Introduction

Several aspects of spacetime physics in string theory hese imade accessible due to the de-
velopment of world-sheet methods. In particular, the $igant progress of algebraic technigues in
rational conformal field theory (RCFT) has been crucial maldvancement of knowledge in string
compactification and string phenomenology. Viceversajvatgd by the need to understand non-
trivial string backgrounds, many powerful results haverbeltained in RCFT, with applications
in other areas of physics as well, mainly to statisticalesyst at criticality.

Strings propagating in compact target spaces have disspetetra. This feature simplifies
the analysis of the underlying world-sheet models and alltmsolve the theory using algebraic
tools. More recent developments of string theory, such@&tds/CFT correspondence, little string
theory, cosmological and time dependent processes, howgiire to consider non-compact
backgrounds which lead to continuous spectra. In this ¢heeglgebraic methods of RCFT have
to be replaced by more intricate analytic techniques. Is bacture | will discuss some recent
advancements beyond the rational cases which allow a géeorof closed strings moving in non-
compact target spaces. Unlike compact backgrounds, whang model independent results have
been obtained, the studies of non-compact target spacessarieted so far mainly to two models:
Liouville theory and theSL(2, R) WZW model. They both have very important applications to
gravity and black hole physics in two and three dimensiom first one describes strings moving
in an exponential potential with a non-constant dilaton #resecond one represents strings in
three dimensionahdSspacetime AdS). These examples are the non-rational analogues of the
minimal andSU(2) WZW models, which have been crucial for the development oFRR@nd its
applications to string theory.

The first part of this short review is based on the completecamdprehensive lecture notes
by V. Schomerus [1] on general aspects of non-rational Ckilnam-compact string backgrounds,
and the second part summarizes results obtained in retsd@t— [6] for the SL(2,R) WZW
model.

2. String propagation in background fields

The world-sheet of strings propagating in any target spate lvackground metri& is de-
scribed by the following non-linear sigma model action
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whereXH(zz) areD—dimensional spacetime coordinatgsy =0,---,D — 1, X denotes the com-
pact topology of the world-sheet and the dots stand for atbartrivial background fields that can
appear, such as dilaton, antisymmetric tensor or gauge field

String interactions are described by correlation funaionthe theory (1) and they may be
computed, at least in principle, using Feynman path integrahe remarkable success of two
dimensional RCFT, however, was mainly based on a diffengptc@ach that systematically exploits
the representation theory of certain infinite dimensionahmetries, known as chiral algebras.
Strings moving in flat space already exhibit such symmetgelada. In this case, the equations
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of motion for the fieldsX# are the wave equation%gx“ = 0, which imply the existence of a
holomorphic curreng#(z) = dX* = 5, akz ™! — and similarly an antiholomorphid”(z). The
canonical commutation relations for the bosonic fiekt§ determine the simplest example of
infinite dimensional chiral algebra, namely

[ak, an] = MOman*” . (2.2)

When non-trivial background fields are turned on, more garedgebras appear, and the string
scattering amplitudes are built from their representatiweoretic data along with structure con-
stants of the various operator product expansions.

Constructing the representation theoretic data is esdlgnd mathematical problem, which
is the same for all models that possess the same chiral syynnidéte most important notions in
the representation theory of chiral algebras include thefsepresentations, modular transforma-
tions, fusion of representations and the fusing matrix. fiéglds in the theory can be considered as
operators on the state space of the mo#glwhich admits a decomposition into irreducible repre-
sentations of the two commuting chiral algebra&,= @, % © “//,t For non-compact backgrounds
the momenta are typically continuous and the sums have tefaced by integrals. Particularly
important are the fields associated with ground stateg’ofWe shall denote them b¥,;-and call
them primary fields. All other fields in the theory can be aftai multiplying the primary fields
with chiral fields and their derivatives.

The additional necessary data to characterize a stringgbawhd are encoded in the short
distance singularities of correlation functions

- hn—hi— h—lqn hI hi -
Pi(z1,21) Pi{2,22) = ZC”“z12 'z na(z, )+ (2.3)

where the number@n TJ describe the scattering amplitude for three closed stringen. These
triple couplings are determlned from associativity of theEdand crossing symmetry of the four
point functions. They encode the full information about thesed string background since all
higher scattering diagrams can be cut into such 3-poinicesst

Furthermore one can introduce the characters of the regetgms, and the full set of charac-
ters have the remarkable property to close under modulasfsemations.

RCFT have been systematically understood in the termsitledcabove. Many classification
problems have been solved (of which the classification ofrmahmodels andSU(2) modular in-
variant partition functions are simple examples) and thelafaic structure that underlies them has
been uncovered: their highest weight representationsacteas, fusion rules, structure constants,
etc., are known. For non-unitary RCFT our understandingauasnced less, but partial results
have been obtained. In particular, in all these theorieg & lbnown about the relation between
the modular data and the fusion of representations as eddodee OPE. An important relation is
given by the Verlinde formula, which encodes the fact thatrtftodular S-matrix diagonalizes the
fusion matrix.

The presence of singular vectors in the Verma modules of timapy states is a relevant
ingredient in the resolution of this program, since the neguent of null vector decoupling leads
to differential equations for correlation functions, whiallow to completely solve the theory in
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the simplest cases of the minimal [7] and ®ld(2) WZW models [8]. Alternatively, the Coulomb
gas construction developed by Feigin and Fuchs [9] and byddbéb and Fateev [10] gives a
more practical prescription to compute expectation vakmed, here again, the singular vectors
provide the formal mathematical basis for the backgrouradganformalism [11, 12]. This method
has successfully reproduced the fusion rules and expewctatilues of physical states in several
rational theories. It has also allowed to explicitly constrand analyze various compact string
backgrounds, such as the Gepner models.

Nowadays the possibility of extending the systematic ustdeding gained in RCFT to non-
RCFT in order to describe non-compact string backgrounds@er active investigation. In the
following sections | will discuss which of the algebraicwgttures discovered in RCFT can be ex-
tended to one particular non-rational example,3h&2, R) WZW model describing strings propa-
gating in a three dimension&ld Sbackground. Ultimately one would certainly like to undarst
strings moving inAdSs. But unfortunately, this goes far beyond the present tddgyp mainly
because consistency of thelS background requires to turn on a RR 5-form field. The situmatio
is somewhat better iIAdS, where consistency may be achieved by switching on a NS-Kkf#n3-
field strengthH.

3. SL(2,R) WZW model and string theory on AdS;

A specially interesting application of tH&L(2,R) WZW model is the description of strings
propagating in Adg& The AdS/CFT correspondence provided new insights ingitbi@ory, initially
considered in this context using worldsheet techniqueherfriee field approximation [13]. The
construction of the exact theory was started in [14] andicaed in a series of seminal papers
in [15] — [17]. However, despite the important progress achieve@demt years, the theory has
not been completely solved yet, mainly because QAid$ion-compact and the worldsheet CFT is
non-rational. In particular, unitarity has not been proyenin all the sectors of the theory.

Let us start by reviewing the non-linear sigma model actidwictv describes this theory. The
metric of EuclidearAd S, the hyperbolic spack;", can be written ifPoincarécoordinates as

ds® = 1%(d¢? 4 €%dydy) (3.1)

whereg € R, {y, y} are complex coordinates parametrizing the boundamtofwhich is located
at ¢ — oo, and the parametéris related to the scalar curvature #s= —2/I2. Consistent string
propagation in this background metric requires in addiiarantisymmetric rank two tensor back-
ground fieldB = 12e??dy A dy. The theory is described by the action

S= %/d22(6(p5¢+e2¢5yﬁﬂ , (3.2)

wherek = 12/12 and|s is the fundamental string length. This non-linear sigma ehdsl equiv-
alent to a WZW model orSL(2,R) (or actually its Euclidean versioBL(2,C)/SU(2)). The
SL(2,R)—currents can be expanded in Laurent sedf#g) = S5, J2 z "1 a= 4 3, and the
coefficients satisfy the following chiral symmetry algebra

. k
(33, 3R] = ig2aC,  — Enabnéﬁmo , (3.3)
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where the Cartan Killing metricig ™= = n~" =2, 133 = —1. And similarly for the antiholomor-
phic currents. The Sugawara stress-energy tensor is giwen b

_ Nab | 1a b .
T= - %23 (2): (3.4)

and it leads to a Virasoro algebra with central chargek%"z.

The classical solutions of this theory were presented if. [IBmelike geodesics oscilate
around the center g¥d S whereas spacelike geodesics representing tachyons firawebne side
of the boundary to the opposite. Solutions describing gtdropagation are obtained from the
dynamics of pointlike particles through the spectral flowmion. Timelike geodesics give rise to
short strings bound states trapped in the gravitational potentigdh@®. Converselyjong strings
arising from spacelike geodesics can reach the boundakgd&f The spectral flow parameteris
an integer namewinding number Different values ofiv correspond to distinct solutions, even at
the classical level (as exhibited, for instance, by theggnspectrum).

At the quantum level, the building blocks of the Hilbert spa¢” are unitary hermitic repre-
sentations oSL(2,R). The state$j, m > satisfy

Colj,m>=j(j-1[im> , Jljm>=mljm> Jg|j,m =(mFj)j,m=1), (3.5)

with {me R, j e R} v {meR,j € —3+iR} as required by hermiticity, angf|j,m) =0, n > 0.
The allowed representations are:
e Discrete lowest and highest weight representations

gf:{]j,m>; JER, m=+j,£j+1,+j+2,...} (3.6)
e Principal continuous representation
. .1
%ja:{“’m% JZE—H)\;)\ ER, m=a,a+la+2..; acR} (3.7)

For applications to string theory one considers the unatezsver of SL(2,R), where j is
not quantized. Notice that the vectors.i#f related byj «— 1— j represent the same physical
state and therefor¢ can be restricted t¢g > % The complete basis af#?(AdS) is given by
CL 1jppin X CL_1)p0y @A X 75 with | > 1/2.

The representation space can be enlarged by acting on thargrstates in these series with
J&, n< 0. The corresponding representations are denote@fbygj“. They are called posjtive
energy representations since thiajreigenvalues are bounded below. The weight diagran@fof
is shown in Figure 1.

Furthermore the full representation space contains thetrgpdlow images of these series,
which correspond to winding classical strings. Actuallg gpectral flow operation leads to the

following automorphism of th&L(2,R) currents and Virasoro generators
k ~ ~ k
PoF=3- SWho JF—-3=3, Li—L=L+wP- szamo , (3.8)

with w € Z.
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Figure 1: Weight diagram of the representatié?‘, whose the primary states form a discrete lowest weight
representatio;".
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Figure 2: The spectral flow of Figure 1 witv =1

Unlike the compacBU(2) case, the new operators generate inequivalent reprasestaif
SL(2,R) which are not bounded below. For instance, one unit spefbtralof the lowest weight
representation gives the weight diagrarn@ff""’:l shown in Figure 2.

The only case one gets a positive energy representatiorelspdctral flow |S/2
that the representatlorﬁi W=F1 and 9? "‘Ji‘ are equivalent. This has an important consequence
on the values allowed for Indeed,j is restrlcted as required by the no-ghost theorem [15] to

7E"=F1 Notice

1 k—1
§<J<T . (3.9)

Finally, the complete Hilbert space of string theoryAnS is obtained by applying creation
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operatorsJN,";‘, n < 0 on the primary states. The physical state conditions are

-1

anm,w,ﬂ,m:(En—wjﬁ)mm,w,ﬁ,m:o forn>0 (3.10)

whereN is the excitation level ant is the conformal weight of the state in the internal thebry
The primary states in the sectar= 0 can be represented by an operabg(x, x; w,w) which
satisfies the following OPE with the currents

a

WCD,-(X,)?;W,VV), (a=3,%),

PRI} (x Twi) ~

where the differential operatoB* = £, D® =xZ + j, D~ = x2£ + 2jx, give a representation
of the Lie algebra oSL(2). Herex,x keep track of theSL(2) weights of the fields and they are
interpreted as the coordinates of the boundary in the AdB/oRtext.

Alternatively one can write operators in thebasis through the following transformation from

thex basis

dx

|X|2xj’m>?j”ﬁ<bj(x,>6 , (3.11)

Pjimm =

wherem— mis an integer.
The spectral flowed states in the seotor= 1 are constructed by the fusion @f; with the
spectral flow operatoribg through the following operation [17]

q)}“j—l’j(x,%z,i) = lim Emgrﬁ/dzy Y~
g £,e—0
X ¢j(x+y,>?+>7;z+£,i+E)d);(x,f;z,i), (3.12)

whereJ = m+ %, J=m+ 'g, denote the left and right spins of tike= 1 field. In thex basis, the
winding numbernw turns out to be always positive, unlike in thebasis where the sign af is
correlated with the sign ah, thus distinguishing by convention incoming from outgosmgectral
flowed states in the correlation functions.

Vertex operators for string states in higher winding secttan be easily obtained in time
basis where they are expressed in termSlgR) parafermions and one free boson [15]. However,

as the winding number increases, they become more congaidathex basis.

4. Correlation functions in SL(2,R) WZW models

The correlation functions in WZW models obey linear diffgfal equations which follow
from the Sugawara construction of the energy-momentunotdn@). The Knizhnik-Zamolodchikov
(KZ) equation inSL(2,R), obtained from

(T@®j,(z1,%1) - Pjy (2, %)) — ((K—=2)Lg+32138)) (P, (z1,%1) -~ Py (z0,%n)) =0,
4.1)

1We have been considering string theoryAmhS;, but more generally we could take a backgrodmt x .4, with
¥ a compact internal manifold.
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determines the following equation féky = (Pj, (X1,21)Pj,(%2,22) - - - Pj, (Xn,2n)), an N point
function of primaryw = 0 fields,

AN N 1 , 02
k—2) —0— = —— (=X +
(k—2) 9z n:;#ia—zn (Xn — ;) % ox.
+ 2(%) — %) 2 -2 2l A (4.2)
Xn—X Jn(?Xi JI(?Xn Jiln| AN - .

In addition, if Ay involves a spectral flow operator, saaé (X2,22), then it must also obey the

following null vector equation
N
Xn — X2

n=1n#2 L~

0=

[(xn )+ 2jn} Av, (4.3)

sincedbg has a null descendant, namély; |j = k/2;m=k/2) = 0.
Furthermore, the glob&L(2) symmetry of the WZW model determines the Ward identities
to be satisfied by the correlation functions

N 9AN

0= —_ 4.4
N fd )

0= i—+ i | An, 4.5
iZl <X|‘9Xi JI) N (4.5)
N 0

_ 2 .
0= i; (x, % +21.x,> Ay . (4.6)

(and similarly forx; — z replacing alsg; — 4;).

Solving these equations, the following amplitudes havenkmmmputed so far. Correlation
functions of two, three and four unflowed string states hagenbobtained in [17] performing
analytic continuation on the results for the Euclideif2, C)/SU(2) WZW model obtained in
[18, 19]. Actually the Hilbert space of this coset model ésizsof irreducible representations of
SL(2,C) parametrized byj = 1 +is, s€ R>o. The construction of expectation values of these
primary fields in [18] is based on a generalization of the swap approach to this non-RCFT. The
structure constants are derived from four point functiomslving one degenerate field which sat-
isfy differential equations following from the null vectdecoupling condition. Assuming crossing
symmetry these four point functions lead to a unique satufiio the structure constants of generic
primary fields. Expressions for amplitudes of unflowed statw/e been also written in thebasis,
performing the integral transform (3.11) from tkbasis results [20, 21].

Scattering amplitudes of- unflowed states in string theory &S exhibit several subtleties
for n> 3. On the one hand, correlation functions of discrete sttesnly well defined if the sum
of the isospingj of the external operators satisfigsj; < k. Moreover the four point functions do
not factorize as expected into a sum of products of threet fiiictions with physical intermediate
states unless the quantum numbers of the external statBs per jo < %1 andjs+ja < % The
interpretation of these constraints presented in [17]ciatdis that correlation functions violating
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these bounds do not represent well defined computation® iduhl CFT description of the theory
on the boundary. This explanation is similar to the intetgtien of the upper bound on the spin
of the physical states.é., ] < 21) as the condition that only local operators be consideretién
boundary CFT. However in the later case one has a clear uaddisg of the constraint from the
representations @L(2,R) which define the theory in the bulk. Similarly one would likeltetter
understand this unusual feature of the correlation funstioom the worldsheet viewpoint.

As discussed in the previous section, spectral flowed statesiot simply related to states
in the coset model by analytic continuation. Consequentty dlternative procedures to compute
correlation functions involving states im= 0 sectors have been discussed in [17]. Starting from
Xx—basis correlators of states in tlhe= 0 sector which include also spectral flow operators, one
can either transform the result to the-basis and perform the spectral flow operation, or one can
spectral flow directly in the—basis using the definition (3.12) of one unit spectral flowtates.
The following correlation functions involving spectralted operators have been computed so far.
The two point function of states in arbitrary winding sesteras obtained in reference [17] (see
also [4] for a derivation in then basis using the free field approach) and it is the following

. 3 o
(¢X'J'—(x1,zl)¢ L (x0,25)) = xlzzjxlzzjz12 212

me(j) i+m T{—-m

S(j+i'-D+0(j—i)—>: . . 4.7
X[(J“ VU= ey Fa - rmra @0
whereAY = —10=1 (kjjzl) —mw- ¥w? and

k-2 vt (i) ro

R =) R (= T o

Recall that in thex basis the operators are labeled with positiveso this two point function
conserves winding number as expected. Indeed, physicditadgs ofn string states may violate
winding number conservation upte- 2 units. This fact is well understood from the representatio
theory of SL(2,R) [17].

The three point function including orve= 1 operator is the following [17]

<¢3\fj_l,il(x1,Zl)¢j2(X2,22)¢j3(X3723)> =
. k . . . 1
=B Cls— y 125 T n " "
U <2 )z J3> V(i1 + ja+ ja—Kk/2)
Mia+3-9%) M(2+Js—J)
FA+3—j2—Js) T(A—j1—J+%)

j3—i2—Jyjz—iz—dJ—j2—iz) [As—L2—DY!_Ap—Ag—AYT_AVTI-Ar—Ag
X (le X31 X32 ><221 Z3 Z3;
x (antiholomorphic pait, (4.9

2Actually_ this expression differs from the one in [17] by arelevant facto(—l)Hi as it can be verified using the
property] — J € Z together with the identity (X)[ (1 —x) = ==X

sin(7x)
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whereJ = m+k/2, AY=1 =47, - +§ andC(j1, j2, j3) is the coefficient corresponding to the
amplitude of threav = 0 fields, namely

G(l—j1—j2—J3)G(ia—j1— i2)G(i2— j3— j1)G(j1— j2— j3)

Cli1, j2, j3) = — L ,
aeJ209) = = ey 1y () G- D6(1— 21261 - 212)G(L— 2

(4.10)

where

ik=1-j

G(J) = (k—Z) 2k=2) r2(_J | 17k_2)r2(k_1+1 | 17k_2) ;

andl,(x|1, w) is the Barnes double Gamma function which reads

d oe] oe]
log(I2(x | 1,w)) = lim —— —_ ¢
Og( 2(X | ’ w)) lenO Jde n,;O(X_F " mw) nm=0; (nzm)yé(o O)(n ’ mw)

The winding non-conserving three point function (4.9) watmed in [17] by first computing
a four point function including one spectral flow opera@mg. Such calculation is performed by
explicitly solving the corresponding KZ and null vector etjons. The four point function gives
rise to (4.9) after spectral flowing as in the definition (3.aRalternatively, after transforming to
them basis, extracting the pole residuenat —'g and acting with the spectral flow operator on the
unflowed field®;;, .

The three point function involving twev = 1 fields was computed in [2]. The starting point is
the five point function with two spectral flow operators, name

As = (dbg(xl,zl)dbg(x2,22)¢jl(x3,23)d3j2(x4,z4)d3j3(x5,25)> . (4.11)

Thex; dependence of the solution to the null vector equations aasfin [22] (see also [17]). The
complete solution, including the dependence on the woeleisboordinateg, which is determined
from the Ward identities and the KZ equations, is the follogvj2]

. . k . . k . o Y i
As = B(j1)B(j3)C <——11,12,§—J3> 212/ 213] 2 |z14] 212|745 22

2
« ‘223’—211 ‘224‘—21'2 ’225‘—21'3 ‘234’2(A3—A1—A2) ’235’2(A2—A1—A3) ’245‘2(A1—A2—A3)
X|X12|2(Jl+12+13*k)|u1|2(11*12*13)|u2|2(12711*13)|IJ3|2(13*11*12) ’ (4.12)

with

_ X14X25  X15X24

1 pu—
214225 215204
_ X15X23  X13X25

2 f—
215223 213435
_ X13X24  X14X23

3 pr—
0324 214223

(4.13)

As an intermediate step before computing the three poirdtimm, one can spectral flow once
to obtain the following four point function

A\tllv::L = <¢\3\i]%jl (X17 Zl)q)lé (X27 Zz)q)jz (X47 24)q)13 (X5’ 25)>

10
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) = ) k . . k . ) . .
= 2im(—1)™"™B(j1)B(j3)C (E — 25— 13> y(ji2—j1—j3+1)

Mji—J+5r(s— jz+JI—i—<)
FMl—ji+h—§rz—ja—d+5+1)

o k k
xRt l= s ji—dit 52— ja—di b 5+ LU)

g—i-l;l]j

e ek K K
+/\u13“1‘12‘503“1"2‘52F1(11+Js—Jz,Jl+J1—§,Js+J1—Jz—§+1;u)

K _
X oFi(j1+j2— s j1—dh+2 ,Jz ja—dh+

. ) .. - k. — . k
X2F1(11+J3—12711-1-\]1—57]3-1'\]1—Jz—§+l;l])

j2t+is—h—5 do+is— - £ 4, J2— i3~ J+5 da—ja— 31+2
X X2 X12 X142 X15
H—%—jo— Js—JrrJz j3a_Ds—A7—Do— Ak/Z—AS DY —Do—Dygp_Do—DY—Da+Dy
X Xo5 X25 214 214 Zi5
Do— Al —D3+y 2 Ak/z+A1 —Az— Az—Ak/z+A1 —N3—Nr Kk
X 45 25 45 |25
« zh?l‘l_u‘z j1i—j2—Is) 11—2" 22 (4.14)

X12Xa5 - __ 212245 —X
Herex= 2% 7= 225, u= = and

it is— M (z—ja—h+ 5+ DM (j1+d—5)
Wit iz— i) (a+d— 2= 5+ DM (la+d—j2—5)
M- 5—jh+DM(j2—js—h+%)
Mji—d+5r(—ji—h+5+1)

This is not a physical correlator, since the spectral flowratoe is outside the unitarity bound.
However, this auxiliary result is useful for the computatiaf four point functions involving one
spectral flowed and three unflowed generic states that werpekielow.

Now, the three point function can be obtained either spkibtraing once more from this four
point function or fusing two physical fields in the five poininttion (4.12), saypj, (x3,z3) and
®j,(xa,24), with the spectral flow operators through the prescrip{@a2). The final result is

(4.15)

- . . k . k . .
<¢\91,J%Jl(x1721)¢ ’JZ(XZaZZ)(DJs()% 23)> B(j1)B(j2)C <§— 15— 127J3>

M(ja— i+ )M (ja+d—2)M(2—j1— j2—j3)?
Ml-ja—d+R)(1-jz+dh—I)

W(j1, 2, j3, 31,32, 31, 32)

ja—h—bods—di—h(—h—j3) FH—di—jz i—b—js -3
X X12 X12 X13 fis X23 X23
AS AW 1 AW l—A AW 1 AW 1 AW 1 AW 1 A3—AW 1 AW 1 AS
X 25 25 23 23
AW 1 AW 1 A3—AW 1 AW 1 A3
X 223 223 ) (4.16)

where

o+l —5i2—ji—js+ll-js+d—d

W(ji,d,3) = s(jo— j1—j3)G| 2" 0T

11
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ji—jo— s+l jith—%51-js+dh—%
2—jo—jath—5ji—jo+dh—dh+1

X {5(11— j2—j3)G [

2=dthi—ii—ist+Lll-js+di—-%

—s(1-2j)G | = LT
( I2) 2= jitd—B+12-j1—j3—J+5

}

ji—ie—jstLji—h+51-jz3—h+d

i e )G 2~ ] 211~
(1=J2—13) 2—jo—ja—d+51+j1i—jotk-%

i—je— s+l ii+h—51-js+d—%

x ¢ —8(1—-2j1)G A . =
{ ( 2 2—jo—jath—5i1—jo+h—J+1

2=dt5i2—j1i—jst+Ll-ja+di—-%

S i1 — )G . . oL 13T
(l2=J1= o) 12—11+J1—J2+1,2—Jl—13—32+§

b

(4.17)

with G = ﬂi"ﬁﬁ%ﬁgﬁ(a, b,c;e f;1) ands(a) = sin(r@).

r(e

a,b,c
e f
Let us analyze the properties of this result. The funciif;, J;, J;) is analytic in its arguments
for states belonging to the continuous representationar #ipectral flow images. Therefore the
three point function (4.16) is perfectly well behaved andtdifior normalizable operators with
j = % +is, as expected. If one of the original unflowed states,®ay belongs to a lowest weight
representationi.e.,m = j; +ny, M = j1 +ny with ng,n; = 0,1,2--, then it can be shown that

W(ji,J,J) greatly simplifies, and taking furthes,n; = 0 the hypergeometric functions become
unity. The analysis dV(j;,J, J) completely agrees with that of reference [21] (taking intoaunt
the change in notation). However notice that we are dealiitty awinding conserving three point
function which includes two one unit spectral flowed statbergas [21] considers unflowed states.
Moreover (4.16) is an basis correlator unlike the basis expression analyzed in [21].

The three point function (4.16) has various poles which cérmom the poles irCs, in the
I'—functions and in the unrenormalized hypergeometric famsti Cs has the same poles as the

unflowed three point function, namely at

j=n+mk-2), —(n+1)— (m+1)(k—2), nm=0,12-- |, (4.18)
with
j=1—j1—J2—j3 Ji—J2—13 J2—J3—J1, Jz—J2—]1. (4.19)
Thel —functions add the following poles

J1:J2+j3+n, J2:J1+j3—|—n R (420)

a,b.c

and similar ones fod;, J,. The poles o5 are ata,b,c,u= —n,withu=e+f—a—b—c,

gl

and thus they are all contained in the previous ones excefitégooles signaling the presence of
spectral flowed images of the discrete representategsm = j1 + Ny, M = j1 + Ny Therefore
the pole structure is as discussed in reference [17] in tHewed case with the addition of (4.20),
which are analogous to poles in tBenatrix of string theory in Minkowski space.

12
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The computation of more complicated correlation functiateng the lines discussed above
would require to start from higher point amplitudes. Aclydhe cases following in complexity,
namely the three point function including three one-unécifal flowed operators or the four point
function involving onew = 1 field require the knowledge of the six point function withreth
spectral flow operators and three physical states or the @irg function with one® K and four
generic unflowed fields respectively. Therefore, it seenmmoitant to find an alternative method
to compute such more complicated amplitudes. In the foligvdections we explore two possible
paths, namely general properties of correlation functammgainingw = 1 spectral flowed operators
in thex basis and we discuss the free field approximation, a corwewigy to compute correlation
functions which, so far, seems to reproduce the known exacits.

4.1 Ward identities, modified KZ and null vector equations

The form of the Ward identities for correlation functionsaiving one unit spectral flowed
fields was investigated in [2]. Using the definition (3.12)tteew = 1 field, it was shown that they
maintain the standard form (4.6) with the obvious replacmmﬁ)r the spin and conformal weight
of the fleIdGJW‘ 2 e ji—=J=m+3 KandAj — A —J+ X 2- The analysis can be generalized to
correlation functlons including an arbltrary numbenof= 1 states. From here, the general form
of the two and three point functions containiwg= 1 fields is completely determined, whereas the
four point functions depend, as usual, on the anharmornimsrat

The KZ and null vector equations for correlators including= 1 fields, instead, suffer an
important modification. They become iterative expressiaritke spin and conformal dimension of
the spectral flowed states. Indeed, the modified KZ equations tout to be

(k—2) aANz,( ) _ <J1—J+l§< 1> % [(Xz_xi)dixi_zji} AY(I+1)

[(Xz—m)za—2 +

Z—2 0% 0%

+ 20 -x%) (I3~ g ) ~ 20| ALO)
N+1 2
+n32n¢lz 7 [ %) axox.
+200-x) (Ingge ~ i ) ~2iin| AUD). (420)
0% O%n
for AW = (@=L (x5, ) Dy, (xa,23) - Dj, (Xn, 2n)). The notationA(J + 1) indicates that one

m+ X K
must replace] 2—> J+1inAy. Thus, Eq.(4.21) differs from the standard KZ equation forela-
tors of unflowed fields. In fact, it is aterativerelation in the spin of the spectral flowed field. This
feature is not surprising, since it is inherited from thddwaing primary state condition for states

in thew = 1 sector

—x)2 :
X, Z,) = 1J(X 2) = _(j_m—l)% qJﬁ“fi‘j X,2)

13
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+ {(x—x’) 5(4—2<m+ é) (x—x’)} P (%7, (422
whereJ(x,2) = —J7(2) + 2xJ3(2) — x2J* (2).
Following a similar procedure with the null vector equati@n3), one obtains an additional
iterative equation, namely

) k N-+1, _ J )
<11+J— 5—1) A@-1) = nzs);';_)z(: [(xn—Xz)R +21n} AN() (4.23)

which is understood as the modified null vector equation tedigsfied by correlators containing
onew = 1 field. It supplements (4.21), so that both equations musbbed in order to find the
explicit expression foAy]. These results extend to correlators including any numbere1 fields,
where the spins of all the spectral flowed fields turn out taémiive variables.

4.2 Four point function including one w = 1 field

The modified KZ and null vector equations were explicitlyvaal in [2] for the four point
function involving onew = 1 field, namely

;= <¢11(X1,Zl)q’jz(xz,22)¢§V5—1"'3(x3,23)¢j4(><4,24)> : (4.24)

From the arguments above, one expects Afahad the same functional form as an unflowed
four point function, but with the spin and conformal dimemsiof thew = 1 field given byJ =
m+ & AY=1= A3 J+ X, respectively. Thus, we consider the following expressarA)y

. L NS kL
A} = /dJB(Js)C(Jl,Jz,J)B(J) 1C<J,§—13,J4>
x D1(j1, 2, J3,9; ja, ) D2(i1, i2,J3,9; ias 1) F(2,X) F(ZX)
% (lellaﬂ'r14*JX;22]2XZIJ'2*J'4*jlxéz{jrjz*-])

A +Do—Da—DY1__on, AV Do —Da—D1_Ppa—Di—Do—AY T
X (243 Zyy 2y Z3
x (antiholomorphic pait, (4.25)

where the dependence in the coefficiddndC is inherited from the five point function involving
one spectral flow operatdR; andD, are the parts of the coefficient of the four point function de-
pending respectively on the right and left spins of the gtstates, whereag and.Z are functions
of the cross ratiog = Zﬁg, X = %.

Now plugging (4.25) into the modified KZ and null vector eqaas, one finds iterative expres-
sions which can be solved following a similar route to thathia unflowed case [17, 19]. Namely,

expand# in powers ofz as follows

F(zx) =B )7l § (02" (4.26)
n=0

14



String propagation in non-compact backgrounds Carmen A. Nufiez

and focus on the lowest order of this expansion. Considdiimsgthe KZ equation (4.21), the
following solution is founc®

fo=2F(j—j1+]J2, ] +I—ja,2];X), (4.27)

where,F; is the standard hypergeometric function. The modified nediter equation (4.23) in
turn, allows to find iterative relations fdy, in terms off,,_1 (for n > 1). However, the coefficients
D1,D, cannot be determined in this way since (4.23) gives thewatig iterative relation

(1a+3-5-1) 010-9 =0~ 190100, (4.29

and an analogous expression . This means that the modified KZ and null vector equations do
not completely specify the spin dependence of the four gaimttion. This is not surprising since
a similar situation is found in the unflowed case. Never®lave are still able to find a proper
expression for the coefficient by requiring the followingoteonditions:i) that it satisfies (4.28)
(and a similar expression f@,), andii) thatAy' in (4.25) correctly reduces to (4.9), the three point
function involving one spectral flowed field, when one of tilawed operators is the identity.

It can be shown that a solution ipandii) is given by

: M08 Fatid
V(ir+io+is+tia—%) TA+I—ja—]) T (1—jzs—J3+%)’

D1D5 ~ (4.29)
up to ak dependent coefficient. However this solution is not unigBach residual uncertainties
might be removed studying the factorization propertiedeffour point function (4.25), following
a similar path to that of section 4 in reference [17] for thdélawmed case. However here the
pole structure of the four point function presents adddidifficulties since there are poles in the
integral in the complex plane crossing the integration contour even before peifayiine analytic
continuation and thus this analysis has not been completed.

This summarizes the already known explicit expressionscéorelators including spectral
flowed fields. Note that, whereas the two point function isvikindor fields in unlimited wind-
ing sectors, the situation gets more complicated in the abf& three point function, where only
the case involving one = 1 and twow = 0 operators and that including two= 1 and onev =0
fields have been computed so far. Moreover, the four poindtfon is only known for unflowed
states. The increasing difficulties to compute correlafiorctions including additional spectral
flowed fields are due to the fact that one has to start from amoigls containing more spectral flow
operators.

Therefore it seems necessary to develop techniques thalifgithese computations and allow
to perform others that would clarify the full structure ottimodel. The free field description of
the theory appears as a powerful tool in this direction, thuke following section we discuss the
status of this approximation.

3Actually the solution is a linear combination of the funeteFy (j — j1 + j2, j +J — ja.2j;x) andxt2i,F (1 —
j—J1+1i2,1—j+3—ja,2—2j;x). However, analogously as in the unflowed case [17], we mayhesfact that, when
inserted in (4.25), the two solutions are related to eackrdtirough the symmetry — 1 — j which allows to keep
only the first solution provided that in (4.11) we now integraover the entire imaginary axis, i.é.+iR.
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5. Free field approximation

The free field approximation to string theory AdS was initially applied in [13, 14] to derive
the spacetime CFT and establish the conjecté@8CFT correspondence in the three dimensional
case. Even though this approach is expected to give a gotureiof the theory only near the
boundary ofAdS, the computation of two and three point amplitudes of ststajes using the
Coulomb gas formalism in [3, 4] has produced results in caetephgreement with the exact ones.
Moreover, the analysis of unitarity in this approximatioight give important information on the
consistency of the complete theory. For that reason, theofithis section is to discuss the current
status of this approach.

The assumption that conformal field theories in general lshadmit a representation in terms
of free field operators, with some reduction in the Fock spadfestates, governed by the BRST
structure [23], is very attactive. However the extensiorthef free field representation to non-
rational models presents several complications. Actuaklystressed in [23] there are different
levels in the free field realization of a CFT. In the caseSaf2,R), the well known Wakimoto
construction [24] successfully gives the current algebrhe representation for the primary and
screening operators was originally given in [25]. The nésgpsvould be to construct the conformal
blocks, as specified Fock-space expectation values, whstlits then in an integral representation
of particular analytic functions. Finally, the correlatiunctions are to be constructed out of the
conformal blocks, and the operator algebra of primary dpesas to be derived. The theory is
then fully solved. Minimal models an8U(2) WZW CFT are prototypical examples where this
program has been completed. Actually, in the com@a#?) case, the characters and fusion rules
were successfully reproduced in the free field approachlolesd by Griffin and Hernandez [26].
Expectation values dU(2) primary fields on the plane were computed in an alternatize field
realization in terms of minimal models in [8]. While this exlbhative strategy was successfully
applied toSL(2,R) by relating it to Liouville correlators [27], the standardi§in-Fuchs formalism
failed to reproduce the spectrum and fusion rules of unitepgresentations iSL(2,R) [28] 4.
Moreover, contrary to extended expectations [31], the éttllspace of physical states of string
theory on Ad$g constructed as the BRST cohomology on the Fock space of ks fin [32],
presents several differences with the spectrum proposédiaidacena and Ooguri in [15]. This is
not surprising since there are no singular vectors in thevagit representations associated to the
physical states of string theory on AgIB3].

Nevertheless, the explicit computation of the partitiondiion [34] seems to support the idea
that the spectrum can be cast in terms of free fields. Furtbrernfree field methods also seem
to reproduce the exact results for correlation functionstudlly, both the functional integration
used in reference [35] and the Coulomb gas formalism imptgatkin reference [36] for two and
three point functions of unflowed states, give results in giete agreement with the expresions
found in [18, 19] (see [21]). Moreover, the Coulomb gas catsion developed in [3] to deal with
correlation functions of spectral flowed states, was aggph€4] to compute two and three point
functions, both conserving and violating winding numbeu ¢he results also agree with the exact

4Correlation functions in thEL(2,R) WZW model have been computed in terms of free fields in retaef29, 30]
for the hamiltonian reduction and fractional levels of thgehra.
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computations in [17]. So the questions about how far and \wvbgd coincidences hold seem worth
being investigated further.

6. Conclusions

There are several reasons why it is important to understaimgj propagation in non-compact
backgrounds. In particular, strings movingAd S, one of the simplest examples beyond flat space-
time, are not well understood yet. Several consistencykshkave been performed to determine
consistency and unitarity of this theory, but the spectmd/ ffector needs to be studied further in
order to definitely settle these questions.

Furthermore, it seems to be of great significance to devetgptachniques to compute cor-
relation functions in this theory, since this would not onl{imately establish the consistency of
the model, but it could also enlighten more general questiegarding non-rational CFT. Actu-
ally, unlike RCFT, the naive free field representationSaf2,R) does not seem to reproduce the
spectrum obtained using algebraic methods. However, ihsgmssible to interprete the partition
function in terms of free field contributions and moreovenyrelation functions of two and three
string states computed in the Coulomb gas formalism seemgreeawith the exact results. The
resolution of this puzzle might give important clues on themtters.
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