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1. Introduction

It is valuable to start out this review of recent results orsdeer quantum field theory by quoting a
sentence from the well-known Wald’s monograph [37] on QF&urved space-time :

It is worth noting that most of the available treatments chwum field theory in curved spacetime
either are oriented strongly toward mathematical issuaml(deal, e.g., with Galgebras, KMS 'states,
etc.) or are oriented toward a concrete physical problemd(deal, e.g., with particular mode function
expansions of a quantum field in a certain spacetime).

De Sitter and Anti de Sitter space-times play a fundamemt& in cosmology, since they-are,
with Minkowski spacetime, the only maximally symmetric spdime solutions in general relativity.
Their respective invariance (in the relativity or kinengatisense) groups are the ten-parameters de Sit-
ter Sy(1,4) and anti de SitteBy(2,3) groups. Both may be viewed as deformations of the-proper
orthochronous Poincaré grolig-3 x S0 (1,3), the kinematical group of Minkowski spacetime.

The de Sitter [resp. anti-de Sitter] space-times are swistio the vacuum Einstein’s equations
with positive [resp. negative] cosmological constAnt This constant is linked to the (constant) Ricci
curvature 4 of these space-times. The corresponding fundamentahiémgiven bycH— := | /3/(A\)

Serious reasons back up any interest in studying Physiecsin@nstant curvature spacetimes with
maximal symmetry. The first one is the simplicity of their gesiry, which leads us to consider.them as
an excellent laboratory model in view of studying Physicsniore elaborate universes, more precisely
with the purpose to set up a quantum field theory as much niggoas possible [22, 2, 10, 37].

In the last years, higher dimensional Anti de Sitter spae&s become very popular because of their
regularizing geometries. For instance they play an imponale in some versions of string or branes
theories, and constitute presently the only cosmologixaigle of the holographic conjecture.

Recent calculations [25] suggested that the de Sitterienlmbay play an universal role as an “o0s-
culating” manifold for space-time.

Since the beginning of the eighties, the de Sitter space éas playing a much popular role in
inflationary cosmological scenarii [24], where it is assdntigat the cosmic dynamics was dominated
by a term acting like a cosmological constant. More recemthgervations on far high redshift super-
novae [29], on galaxy clusters [30], and on cosmic microwaaekground radiation [6] suggested an
accelerating universe. Again, this can be explained ontl gtich a term.

On a fundamental level, matter and energy are of quantunrenatiut the usual quantum field
theory is designed in Minkowski spacetime. Many theorétiwad observational arguments plead in
favour of setting up a rigorous quantum field theory in deegitand comparing it with our familiar
minkowskian quantum field theory. As a matter of fact, the sygtry properties of the dS solutions may
allow the construction of such a theory.

Also, the study of de Sitter space-time offers a specific@siebecause of the regularization oppor-
tunity afforded by the curvature parameter as a “naturadffdior infrared or other divergences.

On the other hand, as it will appear here, some of our mostitarebncepts like time, energy, mo-
mentum, etc, disappear. They really need a new conceptpebdagh in de Sitterian relativity. However,
it should be stressed that the current estimate on the coginal constant does not allow any palpable
experimental effect on the level of high energy physics grpents, unless, as is explained in [18], we
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deal with theories involving assumptions of infinitesimalssees like photon or graviton masses. We will
tell more about this throughout the paper.
To summarize, the interest of setting up a QFT in de Sittecedjrae stems from

e dS ismaximally symmetric
e Its symmetry is a one-parameter (curvature) deformatianiokowskian symmetry
e Itis so an excellent laboratory for both, mathematical ararete, approaches to QFT

e As soon as a constant curvature is present (like the cuyrebterved one!), we lose some of our
so familiar conservation laws like energy-momentum coregémn.

e What is then the physical meaning of a scattering experirtispace" in dS is like the sphef&#,
let alone the fact that time is ambiguous)?

e Which relevant “physical” quantities are going to be coesadl as (asymptotically?, contrac-
tively?) experimentally available?

The recent results on de Sitter Quantum Field Theory whickvaugld like to report here can beviewed
as a part of this program of understanding physics in the tler Siniverse. Of course, a huge amount of
work has been done on de Sitter both on a classical and a quéewtal since the Einstein’s cosmological
“mistake” and the first geometrical studies by de Sitter leilffng-or reasons that will become clear-below,
present results are divided into two categories. The fitsgoay concerns the “massive” fields, so called
for having Poincaré massive limits at null curvature. Thayehbeen developped in [4, 5, 3, 36, 21,1, 12],
and they are essentially characterised by analyticity gntegs of their Wightman two-point functions.
The other category, developped in [7, 20, 32, 13, 14], dedtsmassless fields and other relevant fields,
which require non standard quantization procedures. Batbgories have a strong group theoretical
flavor since they share, as a common obvious constraint,tt Sbvariance.

After describing the de Sitter geometry and kinematicsdsp@nd group) in Section 2, we give in
Section 3 the complete list of unitary irreducible repréatons of the de Sitter group and their possible
contractive relations with the Wigner Poincaré repredams. Then we review in Sections 4 and 5 the
main points of de Sitter QFT, pertaining to axiomatics ad a®to technicality and problematic. Section
4 is devoted to de Sitter QFT for principal series (or “mas3yifields based on the Wightman two-point
function. We explain in Section 5, through the example of‘thassless” minimally coupled quantum
field, how a new quantization, based on a Krein space of soisitof the de Sitter wave equation, allows
to successfully deal with other fields like those pertairtim¢he discrete series.

More details concerning this presentation will be foundnia tontribution from one of us (JPG) to
the proceedings of th¥lith Escola Brasileira de Cosmologia e Gravitag&eptember 2006.

2. De Sitter geometry and kinematics

2.1 The hyperboloid

The de Sitter metric is the unigue solution of the cosmolalgi@cuum Einstein’s equation with
positive cosmological constant= 3 H? (in unitsc = 1).

1
R=R,g"" =4A = 12H2.
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The corresponding de Sitter space is conveniently seen aseasheeted hyperboloid (Fig 1) em-
bedded in a five-dimensional Minkowski space (the bulk):

My = {X € IR% X = ngp X*x" = —H %}, a,8=0,1,2,3,4, (2.2)

wheren,g =diag1,-1,—-1,-1,-1).

de Sitter space-time

Space direction 4

Figure 1: de Sitter space-time as a hyperboloid embedded in a fiverdiimeal Minkowski space
We can, for instance, adopt the systémp, n) of global coordinates :

x:= (X2, %,x%)
X2 =H"1 sinh(H1)
%= (x},x%,x%) =H™! cosi{HT) sin(Hp) f
x*=H"1 cosiHT) cogHp) (2.3)

wherefi is a spatial direction, i.e., a spatial unit vector of.IR

There is a global causal ordering on the de Sitter manifolidivs induced from that of the ambient
spacetim&®: given two events,y € My, one says that> yiff x—yeV+, whereV+ = {xc R%: x-x>
0, sgnx’® = +} is the future cone in IR

The closed causal future (resp. past) cone of a given painX is therefore the sety € My 1y > x}
(resp.{y € My : y < x}). Two event,y € My are said in “acausal relation" or “spacelike separated" if
they belong to the intersection of the complements of suthise if (x—y)? = —2(H 2 +x-y) < 0.

2.2 The de Sitter group

The de Sitter relativity group i& = SQy(1,4), i.e. the component connected to the identity of the
ten-dimensional pseudo-orthogonal gré&@(1,4). A familiar realization of the Lie algebra is that one
generated by the ten Killing vectors

KaB :XadB _XB6a7 (2.4)
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acting on functions defined on the ambient space. It is wddmpotice that there is no globally time-like
Killing vector in de Sitter, the adjective time-like (resppace-like) referring to the Lorentzian four-
dimensional metric induced by that of the bulk.

The universal covering of the de Sitter group is the symme®f(2, 2) group, which is needed when
dealing with half-integer spins. It is suitably describedassubgroup of the group of22 matrices with
guaternionic coefficients:

Sp2,2) = {g: (i 3) cab,c,d € H, deti,ag=1, g'yPg = yo} (2:5)
We recall that the group of quaternioHs~ R, x SU(2). We write (1 = e4,,6 (~ (—1)'"1q;) in 2x.2-
matrix notations) the canonical basis fiir~ R*, with i = 1,2,3: any quaternion will be writtei.=
(q*,0) (resp.q? &4, a= 1,2,3,4) in scalar-vector notations (resp. in euclidean metriatian). We also
recall that the multiplication law igq = (o*o* —d- ¢, o/ *d+o*q’ +d x o ), the (quaternionic) conjugate
of g= (g*,d) is 9= (q*, —0d), the squared norm i&||?> = qq, and the inverse of a nonzero quaternion is
q-*=a/llall*.

We have writterg” = g for the quaternionic conjugate and transpose of the mgtrbhe matrix

- (é _01> (2:6)

is part of the Clifford algebrg®y? + y#y® = 2n 2P, the four other matrices having the following form
in this quaternionic representation:

»/‘:(_()1;),%:(;%‘)«:1,2,3. @7)

These matrices allow the following correspondence betwmmnts of the hyperboloidMy and 2x 2
guaternionic matrices of the form below:

My 9x—>XEx“ya:<§ :i), (2.8)
whereZ = (x* X) € H. Note that we have
x-x =Xy P, 0= %tryo X (2.9)
The de Sitter action oNly is then simply given by
Sp2,2)59: X—gxg ' =X, (2.10)

and this precisely realizes the isomorphiSi@y(1,4) — Sp(2,2)/Z, through

SQ(L4) 3 A(Q): x— Algx =X, A§ = Str(¥ayg ). (2.11)

Another way to understand this group action on de Sitter i®$ort to a specific (nonglobal) fac-
torization of the group one can call space-time factoriwatind which is based on the group involution

g— 9(g) = V°y'g"yoy:

L n 0\ ( cosh? sinh¥ Z0 cosh? Gsinh?
—il = e 2 2 - 2 2.12
=1 (0 n) <sinh% cosh§ |’ 0 ) \ —asinh coshg2 ’ (212)
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wherey,¢ € R, {,n,0 = —O_(“pure" vector quaternion SU(2). The factorl is element of the
(Lorentz) subgrouh = {l € Sp2,2); I3 (1) =1} ~ SL(2,C) and the parameters 0, ¢ have the meaning
of space rotation, boost velocity direction and rapiditypectively. The factoy is a kind of “space-time”
square root since we have

o ncoshy sinhy \ (X0 -2 01

190) = ( sinhy ?coshtp) - (? —x°> <—1 0) =X (2:13)
where the equivalence holds modulo a determinant factortiye see that the group action (2:20) is
directly issued from the left action of the group on the c&gt throughj — gj = j'I’. The Lorentz
subgroup_ is actually the stabilizer dfi ~1y°y*. The latter corresponds to the pody = (0,0,0,0,H=1)
chosen as origin of the de Sitter universe, gndaps this origin to the pointx?, #2) in the notations
(2.8). Note that the sdty, n?} in (2.13) provides, througk® = sinhy, & = n?coshy, the system of
global coordinates (2.3) fdvly.

De Sitterian classical mechanics is understood along &lditimnal phase space approach. By.phase
space for an elementary system in de Sitter universe, we meanbit of the coadjoint representation
of the group. We know that such an orbit is a symplectic méahifand, as a homogeneous space, is
homeomorphic to an even-dimensional group c&&®, 2) /Hs, whereHs is the stabilizer subgroup of
some orbit point. As a matter of fact, a scalar “massive” eetary system in de Sitter corresponds to
the coseSp(2,2)/Hs where the subgroupls is made up with “space” rotations and “time” translations
in agreement with the space-time factorization (2.123p®, 2):

Y <cinh¥
Hs = {g: (Z O) <C°Sh7 Sm?,,) , L eSsuU(2), weR}. (2.14)

0¢ sinh% coshz

3. De Sitter UIR and their physical interpretation

Specific quantization procedures [33, 23, 19] applied toatheve classical phase spaces leads to
their quantum counterparts, namely the quantum elemestamiems associated in a biunivocal way
to the the UIR’s of the de Sitter groupp(2,2). Let us give a complete classification of the latter,
following the works by Dixmier [9] and Takahashi [35]. We adic¢hat the ten Killing vectors (2.4) can
be represented as (essentially) self-adjoint operatdtslirert space of (spinor-)tensor valued functions
on My, square integrable with respect to some invariant innedysth more precisely of the Klein-
Gordon type. These operators take the form

Kap — Lap =Map + Sup; (3.1)

where the orbital part i,z = —i(Xadp — Xgdy) and the spinorial pa$, g acts on the indices of func-
tions in a certain permutational way. There are two Casiipéarators, the eigenvalues of which deter-

mine completely the UIR’s. They read:
1
QW = —ELO,BL“B, (3.2)
with eigenvalues-p(p+1) — (g+1)(g—2) and
QP = LW, Wy = 2

with eigenvalues-p(p+ 1)q(q— 1). Therefore, one must distinguish between

€aBysn LBVL&” (3.3)
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e The discrete seried1},,

defined byp and g having integer or half-integer valuep,> g. Note thatg may have a spin
meaning.

Here, we must again distinguish between

— The scalar cas€lpo, p=1,2,---; hereafter we refer to it d3sc

— The spinorial casé€l},, q>0,p=3,1,3,2---,q=p,p—1,---,1 0r :Dsp

e The principal and complementary seriesYyq,
wherep has a spin meaning. We pat= q (1— q) which givesq = % (li V1— 402) .

Like in the above, one distinguishes between

— The scalar cas&y s, where

¥ —2<0< %1 for the complementary serie€scm CscOfor g = 0;
x % < o for the principal seriesPscm

— The spinorial cas&’p s, p > 0, where

* 0<o< %, p=1,2,---, for the complementary serie€spm,
* %1 <aog,p=12---,forthe integer spin principal serieBspm,
x 2<0,p=3332., for the half-integer spin principal serieBspm

3.1 Contraction limits

An important question to be addressed concerns the intatjonre of these UIR’s (or quantum de
Sitter elementary systems) from a Minkowskian point of vigie mean by this the study of the contrac-
tion limit H — O of these representations, which is the quantum countesptre following geometrical
and group contractions

e limy_oMy = Mg, the Minkowski spacetime tangentkty at, say, the de Sitter origin poify,
e limpy_0SH2,2) = 2! (1,3) = Mg x SL(2,C), the Poincaré group.

As a matter of fact, the ten de Sitter Killing vectors (2.4hact to their Poincaré counterpaiigy, M,
pu =0,1,2,3, after rescaling the foufs, — My = HKyy,.

Now, we have to distinguish between the Poincaré massiverasdless cases. We shall denote by
ﬁz(m, s) the positive (resp. negative) energy Wigner UIR’s of thenaré group with mags and spin
s. For interesting discussion and precision on this contusiotion of mass in “desitterian Physics”, we
will give below details on the work by Garidi [16]. We shall ksause of similar notation@z(o, s) for
the Poincaré massless case whereads for helicity. In the latter case, conformal invareuheads us
to deal also with the discrete series representations {adibwer limits) of the (universal covering of
the) conformal group or its double coveri§)(2,4) or its fourth coveringSU(2,2). These UIR’s are

denoted in the sequel byz(Eo, j1,j2), where(j1, j2) € N/2x N/2 labels the UIR’s oBU(2) x SU(2)
andEg stems for the positive (resp. negative) conformal enerdpye de Sitter contraction limits can be
summarized in the following diagrams.
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Massive case Solely the principal series representati®tsemandPspmare involved here (from where
comes the name of de Sitter “massive representationsfpduating the parameter througho = v+
1/4, and the Poincaré mass= vH, we have [27, 15]

Ys0 —H—0y—w C>Z~(MS)dCc.P=(m,s), (3.4)

where one of the “coefficients” amomg, c.. can be fixed to 1 whilst the other one will vanishes.”Note
here the evidence of the energy ambiguity in de Sitter rafgtiexemplified by the possible breaking
of dS irreducibility into a direct sum of two Poincaré UIR'stvpositive and negative energy. respec-
tively. This phenomenon is linked to the existence in the itteryroup of a specific discrete symmetry,
preciselyy, € Sp2,2), which sends any poirttx’, 22) € My (with the notations of (2.7)) into its mir-
ror image(x°, — %) € My with respect to the®-axis. Under such a symmetry the four generatogs
a=1,2 3,4, (and particulariy49 which contracts to energy operator!) transform into thegpective
opposite—L g, whereas the sikyy's remain unchanged.

Note that the well-known ambiguity concerning the existeenta vacuum (&r-vacua”) in de Sitter
guantum field theory originates in the above contractioitramness.

Based on the contraction content exposed in the above, tlmaviiog “mass” formula has-been
proposed by Garidi [16] in terms of the dS RUI paramefeanddq:

Mg = (QW)as — (Qigdas = [(P— a) (p+a— 1)]PH?/c”. (3.5)

Since we have set the zero of the mass paranmajeiccording to the lowest value of the ‘Casimir
operator, i.e., fop = qwhich corresponds to the “conformal” massless case, waaunedd that every dS
UIR which are meaningful from a minkowskian viewpoint arbdied by, > 0. This parameter is a
true mass only whetQW)ys belongs to the principal or complementary series of unitapyesentation
or to the mentioned massless UIR’s. In these cases the pagoredso corresponds to the spin and can
therefore be replaced tsy As a matter of fact, the field equation for a massive field t#ger spirs (i.e.,
principal series of UIR) obeyed bysarank tensomp,

(Q¥ - (@)ss) ¢ =0, (3.6)

when written in terms of the Laplace-Beltrami operdit on the dS manifold, reads as (in unfts=
1=c):
(Or+R22—s(s—2)]+M§) ¢ =0. (3.7)

WheneverlQM)4s does not belong to a UIR with possible minkowskian inteigtien, it is still possible
to usem? but without referring to a minkowskian mass meaning.

The Garidi mass has the advantages to encompass all massdsiinmtroduced within a de-sitterian
context, often in a purely mimetic way in regard with theinkowskian counterparts.

Now, given a minkowskian mags and the “universal” lengtliR = »~1 =: \/3/|A] = cH™? (¢
is the corresponding “universal” curvature), nothing g us to consider the dS UIR parameter
(principal series), specific of a “physics” in constantv@aiure space-time, as meromorphic functions
of the dimensionless physical (in the minkowskian senseiintjty, expressed in terms of various dS
guantities and universal constants,

dgefh R hy|A]  hH

9= = T Rme Vame -~ m@ (3.8)
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Note that this quantity is also the ratio of the Compton langft the minkowskian object of masa
considered at the limit with the universal leng®h= - yielded by dS geometry. It reducesgmin
unitsh=1=c.

In Table?? are given the values assumed by the quatityhenmis taken as some known masses
and A (or Hp) is given its present day estimated value. We easily uraieistrom this table that the
currently estimated value of the cosmological constantrmapractical effect on our familiar massive
fermion or boson fields. Contrariwise, adopting the de Sjitént of view appears as inescapable when
we deal with infinitely small masses.

Massm Im ~
mn/+/3 ~ 0.293x 10~ %%kg 1
up. lim. photon masge), | 0.29x 10°1¢
up. lim. neutrino mase, | 0.165x 1032

electron masse 0.3x 1073/
proton massn, 0.17x 104
W* boson mass 0.2x 10743
Planck mas$/p 0.135x 100

Table 1: Estimated values of the dimensionless physical quafitity 3, = ﬁ\\f/r;‘ m:z ~0.293x 10 %8 x mkg

for some known masses and the present day estimated value of the Hubble lerygth ~ 1.2 x 107°m [26].

Now, we may consider the following Laurent expansions ofdSeJIR parametev < IR (principal

seriesfor which we putr = 1/4 -+ v?) in a certain neighborhood é&f = 0:
1 :
v=v(d) = 3 +e+ed+---ed"+---, 9 €(0,9;) convergence interval (3.9)

where the expansion coefficierggare pure numbers to be determined. We should be aware ttégot
is changed in the contraction formulas from the point of vifwa minkowskian observer, except that
we allow to consider positive as well as negative valueg of a (positive) neighborhood & = 0. By
multiplying Eq. (3.9) byd and going to the limit? — 0, we recover asymptotically the relation

IN

3
As a matter of fact, the Garidi mass yields a perfect exarrfpﬁeam an expansion since, in the case of the
principal seriesig, = (V2 + (s— 1/2)2)h2H2/c*, and so it can be rewritten as the following expansion
in the parametef € (0,1/|s—1/2|]:

m:|v|ﬁH/02:|v|% |v| (3.10)

v %_(5_1/2)2:%_(5_1/2)2 <%+0(32)>, (3.11)

Note the particular symmetric place occupied by the spthdase with regard to the scalar case0 and

the boson case= 1. Note also the value of the Garidi mass corresponding toibltRe complementary
series for which we put = 1/4— v?: m, = ((s— 1/2)? — v?)R?H?/c.

Massless (conformal) case Here we must distinguish between the scalar massless caieb, inwolves
the unique complementary series UYRg to be contractively Poincaré significant, and the spinaasie
where are involved all representatioﬁ%s, s> 0 lying at the lower limit of the discrete series. The
arrows— below designate unique extension.
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e Scalar massless cas€scQ

%>(1,0,0) %>(1,0,0) «— 2>(0,0)
Yoo — ® — ® ® (3.12)
(5<(—1’O7O) %<(—1’O7O) = ‘@<(070)7

e Spinorial massless cas®sp0

¢~ (s+1,s0) ¢~ (s+1,50) «— 27(0,s)
Mg — ® n= ® ® (3.13)

¢<(—s—1,s0) ¢<(—s—1,5,0) — 2<(0,9),

% (s+1,0,s) ¢~ (s+1,0,5) «— £7(0,—s)
Mo, — ® A=0 ® ® (3.14)

¢<(—s—1,0,s) ¢<(—s—1,0,s) «— 2<(0,—9),

Finally, all other representations have either non-ptajsitoincaré contraction limit or have no
contraction limit at all.

4. Quantum field theory in de Sitter space: the “massive” case

Let us first outline the main features of a quantum field thewryle Sitter based on the properties
of the Wightman functions. For free fields whose the oneigarsector is determined by a given de
Sitter UIR in the principal and the complementary serie® msorts to an axiomati la Wightman
[34], where precisely the so-called two-point Wightmandiion is required to satisfy the following four
criteria.

(i) Covariance with respect to the given UIR.

(i) Locality/(anti-)commutativity, wich respect to thagsal de Sitter structure.
(i) Positive definiteness (Hilbertian Fock structure).
(iv) Normal (maximal?) analyticity.

Then the field itself can be reobtained from the Wightman fioncvia a Gelfand-Naimark-Segal
(G.N.S.) type construction. Note that (i),(ii), and (iiileaanalogous to the Minkowskian QFT require-
ments. On the other hand, Condition (iv) will play the roleao§pectral condition in the absence of
a global energy-momentum interpretation in de Sitter. Thisdition implies a thermal Kubo-Martin-
Schwinger (K.M.S.) interpretation.

For “generalized” free fields, the theory is still encodetirety by a two-point function: all trun-
catedn-point functionsh > 2, vanish, as does the “1-point" function. The axiomaticasgs the 2-point
functions to obey the same conditions (i)-(iv), apart frdm fact that a certain, not necessarily irre-
ducible, unitary representation is now involved. Howewle Plancherel content of this involved UR
should be restricted to the principal series, and this deosition allows a Kéllen-Lehman type rep-
resentation of the 2-point function. Finally, for inteliagt fields in dS, the seatf n-point functions is
assumed to satisfy
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(i) Covariance with respect to a certain dS unitary reprisgem.
(ii) Locality/(anti-)commutativity.
(iii) Positive definiteness.
(iv) “Weak” spectral condition in connection with some aytglity requirements.

4.1 Plane waves

We refer to [4, 5, 3] for details.

We consider the eigenvector equations of the second-ordsin@ operator for the principal.and
complementary series. For any eigenvalue, they give a ¥&irdon-like or Dirac-like equation.. The
whole quantum field construction rests upon those elemepiaces which are the so-called dS plane
wave solutions. Let us here recall those equations :

e Principal seriesEscmandPspm): Yp:S.a:\,er%:

QY — (v —sis+1))] ¥(x) = 0. @)

wherev > 0fors=0,1,2,---,andv > 0fors= 3,3 ...
e Complementary serie€écmandCspm): Yp_sq:
QY — (o+2—s(s+1))] Y(x) =0, 4.2)
where—2< o < ;fors=0,and0< o < 2 fors=1,2,--.
The de Sitter plane waves have the general form
W(x) = 2(&,2)(z- &) |2=x, (4.3)
where

— 9(&,z) is a vector-valued differential operator such tijek) is a relevant tensor-spinor solution
of the wave equation.

— The vectoré = (£9,&,&4) belongs taC* = {& € R5: &.& =0, sgn(é°) = +}, the “future” null
cone in the ambient spa@. This vectoré plays the role of a four-momentum. Note tijaté )
is alds-harmonic function in the complexified14 Minkowski and is to be also considered as a
generating function for pseudo-spheri€3-harmonic functions.

— The complex five-vectoz belongs to the tubular domaing*: 7+ = (R°+iV+)n M,(f), where

M,(f) is the complexification of the dS hyperbolditl; andR®+iV * are the forward and backward
tubes inC>.

— The complex powep is such thatp is solution to the wave equation.

The occurrence of complex variables in these expressiongt ifrtuitous. It is actually at the heart of
the analyticity requirements (iv), as will appear throulgé tollowing explicit examples.
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4.2 The example of the scalar case= 0 (Pscm and Pspm)

The complex plane waves are given by

Y(z) = (Hz- &), Whereu:—ngiv, VER, (4.4)

for the principal series (p-5¥0.02v2+% and

—3<u:—§i\/1—20<0 (4.5)

for the complementary series (c.¥9,¢.

The termwave planen the case of the principal series is consistent with thé cuivature-limit
(3.4).

We use the parametrization (2.3) of the hyperboloid. AtRhe o limit, X — (7,p A, ), that-we
consider as the point := (X° = 1,X = p A) € M3, To take the limit for the plane wave, we Write
m=Hv, leading to

lim (Hx(X) - &) 2HMH _ expik - X, (4.6)
where, in Minkowskian-like coordinate§,= (% %, -1)eC*, and
X(X) = (H tsinhHX? % = H‘ll‘%ﬂ coshHXOsinH||X||,x* = H 1coshHX%cosH || X]|).

The two-point function is analytic in the tuboi@@ ~ x .7 and reads (for the principal series)

W, (z1,22) =Cst, /V(Zl : 5)_g+iv(f : 22)_g_iv duy(§)

HIr 3 +iv)F(3—iv)
= P>,

i ®s 0 (H?21 22). (4.7)

The integration is performed on an “orbital basig’= C*. The symbolP} stems for a generalized
Legendre function, and the coefficient factor is fixed by iedamard condition We recall that the
Hadamard condition imposes that the short-distance behafihe two-point function of the field should
be the same for Klein-Gordon fields on curved space-time rasoiwesponding Minkowskian free field.
In case of dS (and many other curved space-times) it selagtggae vacuum state. In case of dS, this
selected vacuum coincides with theclideanor Bunch-Daviesacuum state structure.

The corresponding Wightman functiofy, (x1,X2) = (Q, @(x1)@(x2)Q), whereQ is the Fock vac-
uum andg is the field operator seen as an operator-valued distribwgioMy, is the boundary value
bvs+52, ., Wy (21,22). Its integral representation is given by:

2 2

Halaarg) =esty [ (0a-£), 5+ e MW 00 ) E ) (€ )
y
. . 3
e M3V (8 ) 2y dpy (). (4.8)
This function satisfies all QFT requirements:
(i) Covariance:#, (A"1xy, A"1x2) = #;, (X1, %), for all A € SQy(1,4).

(i) Local commutativity: #;, (x1,%2) = #, (X2, X1), for every space-like separated p@if, xz).
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(i) Positive definiteness: & [y, .m,, T (X0) 70 (X1, %2) f(%2) dit(x1) dp(xz) for any test functionf, and
wheredpu(x) is theO(1,4) invariant measure ol .

(iv) Maximal analyticity: W, (z;,22) can be analytically continued in the cut-domadin= (M,(f) X
M{?)\ =(© where the cut is defined B = {(z1,25) € MY x M¥; (22— 22)2 = p, p > O}..

4.3 The example of the spinorial case= 3

The involved UIR is her(:‘:(%ﬂ:vzhl1 [1]. For simplicity we shall puH = 1 in the sequel. We now

have four independent plane wave solutions:

Wy = (Hz- &) 2VuD (&), 9% = (Hz- &) 2d?(£), r=1,2, £ eC™, 4.9)

where the four 4—spinora§1), u§2> are independent solutions fu(é) = 0. The resulting 4« 4 two-point

function is analytic in the tuboidZ ~ x .7 and is given by:
. 1
$(2) = ay [ (1€ (E2) (G Y duy(©)
1 . .
= éA\, [(2—iV)P o iy (z1-2) A— (2+1V)P 50 (21- ) 2], (4:10)

where A, = (iv(1+ v?))/8msinhnv is imposed by the Hadamard condition. The Wightman. func-
tion S (xg, %) = (Q,W(x1) ® W(x2)Q), where the spinor field® = (W¥;), i = 1,2,3,4, and its adjoint

W = wh0A are operator-valued distributions My, is the boundary valubvz s, .y, S’ (21,2). This
function meets all axiomatic requirements: °

(i) Covariance:gS (A~1(g)x1, A"1(g)x2)i(g71) = §’(x1,%2), for all g € Sp2,2). The group involu-
tioni(g) is defined byi(g) = —y*gy*.

(i) Local antcommutativity: §j(x1,Xz) = S”.{xl,xz) = —(Q,WPi{x2)Wi(x1)Q), for every space-like
separated paiixy, x2).

(i) Positive definiteness: & [y, ., N(X1)S’ (X1, X2)(x2) di(x1) du(xz) for every 4-spinor valued
test functionh.

(iv) Maximal analyticity: S (z;, z2) can be analytically continued in the cut-domaie: (M{& x M{®)\
2,

Higher-spin QF cases, for the principal or the complemgrgaries, are similar to the ones presented in
the above, and we refer to [21, 12] for detalils.

5. “Massless” minimally coupled quantum field

The so-called “massless” minimally coupled quantum fielti¢lv is not“massless” in our sense,
even though the corresponding Garidi mass exceptionallyskas!) occupies under many aspects a
central position in de Sitter theories (see [20, 32] andresfees therein). On the mathematical side, it is
associated to the lowest limit, namély o, of the discrete series, and we shall see below some integest
features of this representation, like its place within aagtable indecomposable representation. On the
physical side, it has been playing a crucial role in inflatibeories [24], it is part of the Gupta-Bleuler
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structure (again an indecomposable UR is involved hera!'}hi® massless spin 1 field (de Sitter QED,
[13]), and it is the elementary brick for the constructiomudssless spin 2 fields (de Sitter linear gravity
[14]).

The wave equation fdrl 1 g is

QWy(x) =0 < Oy(x) =0, (5:1)

wherel] is the dS Laplace-Beltrami operator. “Mode” solutiops, to (5.1) are expressed in terms of
the following bounded global coordinates (suitable for¢benpactified dS- Lie sphereS® x Sb):

)= (p,u), —7—T<p<7—T, ue S (5:2)

0 —py-1 _
x= (X =H"ttanp, (X, x*) = 5 >

H cosp

The coordinate is timelike and plays the role of a conformal time, whereasordinatizes the compact
spacelike manifold. The “strictly positive” modes are givzy

@im(X) = AL(Le" 2P (L4 2)e ™) im(u), L=1,2,---, 0<1 <L, 0<|m <Il,  (5.3)

where the?{ |, are the spherical harmonics 84 These modes form an orthonormal system with respect
to the Klein-Gordon inner product,

@0) =1z [ @1 5o wipv)du 54

The normalisation constast = 4 [2(L+ 2)(L+1)L]~Y/? breaks down at = O: this is called the “zero-
mode” problem, and this problem is related to the fact thatgjpace generated by the strictly positive
modes (5.3) is nadlS invariant. It is onlyO(4) invariant. If one wishes to restore full dS invariance, it is
necessary to deal with the= 0 solutions to (5.1). There are two of them, namely the consgauge”
solution gy and the “scalar” solutionys:
H iH 1.

Yg= > Ys = —E_[(IH'ES”“ZP)' (5.5)
Both are null norm states, and the constants are chosenentortiave(yyy, s) = 1. Then we define the
“true ” normalized zero mode:

1
Poo =Yg+ 5 s = P, (@, @) =1 (5.6)

Now, applying de Sitter group actions on it produces negdtjy,,,) as well as positive modegi(m).
We thus see an indefinite inner product spateemerges under the form of a direct sum Hillggahti-
Hilbert. This is called a Krein space [28, 8]. More preciselye defines the Hilbert spac€, generated
by the positive modes (including the zero mode):

Hy = { Yo Yl < °°}- (5.7)
(LIm)=k>0

k>0

Similarly, one defines the anti-Hilbert spagé€  as that one generated by the “negative” moges
k > 0, or equivalently the conjugates of the positive ones. Nué(q, @) = o = — (@, ). Then
K = I @ . This Krein space is de Sitter invariant, but its direct stenaimposition is notlt has
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a Gupta-Bleuler triplet structure [17] which carries andodmposable representation of the de Sitter
group. The involved Gupta-Bleuler triplet is the chain chsgs

Cy=.4 C {%wg+zck@};xC%. (5.8)

k>0

Space /" is a null norm space whereag is a degenerate inner product space. The coset spgce” is
the space of physical states, and it is precisely this Hikgmace which carries the UIRy g. A contrario,
the coset space?’ /% is the space of unphysical states. It is however an (anthadilspace ‘which
carries alsd1yo. Noticeing that the coset by itself of the space of constam¢tions or gauge stateg”
carries the trivial representatiofy (on which both Casimir operators vanish), the whole indquosable
representation carried by the Krein space can be picturéti}y

Myo— Mo — Yo. (5.9)
Also note that this indecomposable structure is based oexthet sequence of carrier spaces [31]

0— N ' ¥ — »

l l

H N H|)H (5.10)
| |
0 0

Let us turn to the quantization of this field. If we adopt thaalgepresentation of the canonical commu-
tation rules, namely if the quantized figjdis given by

9= (A& +hc),  [AcAL] =28« (5.12)

k>0

we get a QFT which is notlS covariant: it isSSQ(4)-covariant only, and the so defined vacuum is
solely SO4)-invariant. In order to restore the full dS-covariance, bas to resort to the following new
representation of thecr

o= (@& +hc)— Y (k@) +hc), [acal] = dw = —[obl], (5.12)
k>0 >0

Py

and this defines a dS invariant vacuyi@):

a|Q)=0=Db|Q), k>0. (5.13)

The whole (Krein-Fock) spacgZ has a Gupta-Bleuler structure which parallels (5.8):
A C{@) ()™ ()" | Q)} =X C A, (5.14)

where /4 is the subspace of the physical spagewhich is orthogonal t@’ . It is actually the space
of gaug_e states since any physical stéte 7 is equal to its “gauge transform” expTHﬂ(ag —ag)¥
up to an element off”. We shall say that both are physically equivalent. Consilstean observablé
is a symmetric operator o’ such thatW | A| W) = (W' | A| W) for any pair of equivalent physical
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states. As a matter of fact, the fiefdis notan observable wherea@ ¢, wherep refers to the global
coordinates (5.2), isTherefore the stress tensor

1
Tyy = 0490y — éguvgpadp‘pdo‘p (5.15)

is an observable. Its most remarkable feature is that it sn@étreasonable requirements one should
expect from such a physical quantity, namely,

e No need of renormalizatior{ki® - - - k" | Ty | Ki* -+ K" )| < oo,

e Positiveness of the energy componeamdrgyhere should be understood in a QFT framework) on
the physical sectortky® - - k" | Too | Ki*---K" ) >0,

e The vacuum energy is zergQ | Too | Q) = 0.

The usual approaches to the quantization of the dS masslesmatly coupled field were precisely
plagued by divergences and renormalization problems. lo@e can become aware to what extent the
respect of full de Sitter covariance leads to satisfyinggutal statements, even though the price.-to pay
is to introduce into the formalism these (non positive noanjiliary states.

6. Conclusion

We now arrive at the conclusion of the paper. From its conteatcan claim the following.

¢ Inthe case of “massive” fields, associated with the pridgpaes of the de Sitter grol®(y(1,4),
the construction of fields is based on analyticity conditimposed to the Wightman two-point
function.

Wy (X1,%2) = (Q, 9(x1) 9(%2)Q),

whereQ is the Fock vacuum angl is the field operator.

¢ In the case of “massless” fields.§. minimally coupled massless field or conformally coupled
fields), associated to the discrete seriesS@h(1,4), the quantization scheme is of the Gupta-
Bleuler-Krein type.

e The next step logically consists in the construction of astsient “de Sitter QED”, since we
now have all elementary bricks (“massive” spif2lfield and “massless” vector field) to set up
gauge invariant Lagrangian. But then arises the fundarhgogstion of a measurement guide-
line/interpretation consistent with dS relativity. A firstep should consist in controlling the
“minkowskian” validity of such a theory through expansidnvarious quantitative issues of com-
putation in powers of the curvature.

In any fashion let us insist on the fact that relativity pipies based on the theory of groups and of
their representations is one the corner stones of Physieshdfe that the present review which deals
with de Sitter relativity offers another convincing illugtion of this well-known (but once too often
forgotten?) textbook statement.
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