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1. Introduction

It is valuable to start out this review of recent results on deSitter quantum field theory by quoting a
sentence from the well-known Wald’s monograph [37] on QFT incurved space-time :

It is worth noting that most of the available treatments of quantum field theory in curved spacetime
either are oriented strongly toward mathematical issues (and deal, e.g., with C∗-algebras, KMS states,
etc.) or are oriented toward a concrete physical problem (and deal, e.g., with particular mode function
expansions of a quantum field in a certain spacetime).

De Sitter and Anti de Sitter space-times play a fundamental role in cosmology, since they are,
with Minkowski spacetime, the only maximally symmetric space-time solutions in general relativity.
Their respective invariance (in the relativity or kinematical sense) groups are the ten-parameters de Sit-
ter SO0(1,4) and anti de SitterSO0(2,3) groups. Both may be viewed as deformations of the proper
orthochronous Poincaré groupR

1,3
⋊ S00(1,3), the kinematical group of Minkowski spacetime.

The de Sitter [resp. anti-de Sitter] space-times are solutions to the vacuum Einstein’s equations
with positive [resp. negative] cosmological constantΛ. This constant is linked to the (constant) Ricci
curvature 4Λ of these space-times. The corresponding fundamental length is given bycH−1 :=

√

3/(Λ)

Serious reasons back up any interest in studying Physics in such constant curvature spacetimes with
maximal symmetry. The first one is the simplicity of their geometry, which leads us to consider them as
an excellent laboratory model in view of studying Physics inmore elaborate universes, more precisely
with the purpose to set up a quantum field theory as much rigorous as possible [22, 2, 10, 37].

In the last years, higher dimensional Anti de Sitter spaces have become very popular because of their
regularizing geometries. For instance they play an important role in some versions of string or branes
theories, and constitute presently the only cosmological example of the holographic conjecture.

Recent calculations [25] suggested that the de Sitter solution may play an universal role as an “os-
culating” manifold for space-time.

Since the beginning of the eighties, the de Sitter space has been playing a much popular role in
inflationary cosmological scenarii [24], where it is assumed that the cosmic dynamics was dominated
by a term acting like a cosmological constant. More recently, observations on far high redshift super-
novae [29], on galaxy clusters [30], and on cosmic microwavebackground radiation [6] suggested an
accelerating universe. Again, this can be explained only with such a term.

On a fundamental level, matter and energy are of quantum nature. But the usual quantum field
theory is designed in Minkowski spacetime. Many theoretical and observational arguments plead in
favour of setting up a rigorous quantum field theory in de Sitter, and comparing it with our familiar
minkowskian quantum field theory. As a matter of fact, the symmetry properties of the dS solutions may
allow the construction of such a theory.

Also, the study of de Sitter space-time offers a specific interest because of the regularization oppor-
tunity afforded by the curvature parameter as a “natural” cutoff for infrared or other divergences.

On the other hand, as it will appear here, some of our most familiar concepts like time, energy, mo-
mentum, etc, disappear. They really need a new conceptual approach in de Sitterian relativity. However,
it should be stressed that the current estimate on the cosmological constant does not allow any palpable
experimental effect on the level of high energy physics experiments, unless, as is explained in [18], we
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deal with theories involving assumptions of infinitesimal masses like photon or graviton masses. We will
tell more about this throughout the paper.

To summarize, the interest of setting up a QFT in de Sitter spacetime stems from

• dS ismaximally symmetric

• Its symmetry is a one-parameter (curvature) deformation ofminkowskian symmetry

• It is so an excellent laboratory for both, mathematical or concrete, approaches to QFT

• As soon as a constant curvature is present (like the currently observed one!), we lose some of our
so familiar conservation laws like energy-momentum conservation.

• What is then the physical meaning of a scattering experiment(“space" in dS is like the sphereS3,
let alone the fact that time is ambiguous)?

• Which relevant “physical” quantities are going to be considered as (asymptotically?, contrac-
tively?) experimentally available?

The recent results on de Sitter Quantum Field Theory which wewould like to report here can be viewed
as a part of this program of understanding physics in the de Sitter universe. Of course, a huge amount of
work has been done on de Sitter both on a classical and a quantum level since the Einstein’s cosmological
“mistake” and the first geometrical studies by de Sitter himself. For reasons that will become clear below,
present results are divided into two categories. The first category concerns the “massive” fields, so called
for having Poincaré massive limits at null curvature. They have been developped in [4, 5, 3, 36, 21, 1, 12],
and they are essentially characterised by analyticity properties of their Wightman two-point functions.
The other category, developped in [7, 20, 32, 13, 14], deals with massless fields and other relevant fields,
which require non standard quantization procedures. Both categories have a strong group theoretical
flavor since they share, as a common obvious constraint, de Sitter covariance.

After describing the de Sitter geometry and kinematics (space and group) in Section 2, we give in
Section 3 the complete list of unitary irreducible representations of the de Sitter group and their possible
contractive relations with the Wigner Poincaré representations. Then we review in Sections 4 and 5 the
main points of de Sitter QFT, pertaining to axiomatics as well as to technicality and problematic. Section
4 is devoted to de Sitter QFT for principal series (or “massive”) fields based on the Wightman two-point
function. We explain in Section 5, through the example of the“massless” minimally coupled quantum
field, how a new quantization, based on a Krein space of solutions of the de Sitter wave equation, allows
to successfully deal with other fields like those pertainingto the discrete series.

More details concerning this presentation will be found in the contribution from one of us (JPG) to
the proceedings of theXIIth Escola Brasileira de Cosmologia e Gravitação, September 2006.

2. De Sitter geometry and kinematics

2.1 The hyperboloid

The de Sitter metric is the unique solution of the cosmological vacuum Einstein’s equation with
positive cosmological constantΛ = 3 H2 (in unitsc = 1).

Rµν −
1
2

Rgµν + Λgµν = 0, (2.1)

R= Rµνgµν = 4Λ≡ 12H2.
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The corresponding de Sitter space is conveniently seen as anone-sheeted hyperboloid (Fig 1) em-
bedded in a five-dimensional Minkowski space (the bulk):

MH ≡ {x∈ IR5; x2 = ηαβ xαxβ =−H−2}, α ,β = 0,1,2,3,4, (2.2)

whereηαβ =diag(1,−1,−1,−1,−1).

Figure 1: de Sitter space-time as a hyperboloid embedded in a five-dimensional Minkowski space

We can, for instance, adopt the system(τ ,ρ ,n) of global coordinates :

x := (x0,~x,x4)

x0 = H−1 sinh(Hτ)

~x = (x1,x2,x3) = H−1 cosh(Hτ) sin(Hρ)~n

x4 = H−1 cosh(Hτ) cos(Hρ) (2.3)

where~n is a spatial direction, i.e., a spatial unit vector of IR3.
There is a global causal ordering on the de Sitter manifold which is induced from that of the ambient

spacetimeR5: given two eventsx,y∈MH , one says thatx≥ y iff x−y∈V+, whereV+ = {x∈R
5 : x·x≥

0, sgnx0 = +} is the future cone in IR5.
The closed causal future (resp. past) cone of a given pointx in X is therefore the set{y∈MH : y≥ x}

(resp.{y∈MH : y≤ x}). Two eventsx,y∈MH are said in “acausal relation" or “spacelike separated" if
they belong to the intersection of the complements of such sets, i.e. if (x−y)2 =−2(H−2+x·y) < 0.

2.2 The de Sitter group

The de Sitter relativity group isG = SO0(1,4), i.e. the component connected to the identity of the
ten-dimensional pseudo-orthogonal groupSO(1,4). A familiar realization of the Lie algebra is that one
generated by the ten Killing vectors

Kαβ = xα∂β −xβ ∂α , (2.4)
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acting on functions defined on the ambient space. It is worthyto notice that there is no globally time-like
Killing vector in de Sitter, the adjective time-like (resp.space-like) referring to the Lorentzian four-
dimensional metric induced by that of the bulk.

The universal covering of the de Sitter group is the symplectic Sp(2,2) group, which is needed when
dealing with half-integer spins. It is suitably described as a subgroup of the group of 2×2 matrices with
quaternionic coefficients:

Sp(2,2) =

{

g =

(

a b
c d

)

; a,b,c,d ∈H, det4×4g = 1, g†γ0g = γ0

}

. (2.5)

We recall that the group of quaternionsH≃ R+×SU(2). We write(1≡ e4, ,ei (≃ (−1)i+1σi) in 2×2-
matrix notations) the canonical basis forH ≃ R

4, with i = 1,2,3: any quaternion will be writtenq =

(q4,~q) (resp.qa ea, a = 1,2,3,4) in scalar-vector notations (resp. in euclidean metric notation). We also
recall that the multiplication law isqq′ = (q4q′4−~q·~q′,q′4~q+q4~q′+~q×~q′), the (quaternionic) conjugate
of q = (q4,~q) is q̄ = (q4,−~q), the squared norm is‖q‖2 = qq̄, and the inverse of a nonzero quaternion is
q−1 = q̄/‖q‖2.

We have writteng† = ḡt for the quaternionic conjugate and transpose of the matrixg. The matrix

γ0 =

(

1 0
0 −1

)

(2.6)

is part of the Clifford algebraγαγβ + γβ γα = 2ηαβ
I, the four other matrices having the following form

in this quaternionic representation:

γ4 =

(

0 1
−1 0

)

, γk =

(

0 ek

ek 0

)

, k = 1,2,3. (2.7)

These matrices allow the following correspondence betweenpoints of the hyperboloidMH and 2× 2
quaternionic matrices of the form below:

MH ∋ x−→6x≡ xα γα =

(

x0 −P

P −x0

)

, (2.8)

whereP ≡ (x4,~x) ∈H. Note that we have

x·x = 6x†γ0 6xγ0, x0 =
1
4

trγ0 6x. (2.9)

The de Sitter action onMH is then simply given by

Sp(2,2) ∋ g : 6x−→ g 6xg−1 = 6x′, (2.10)

and this precisely realizes the isomorphismSO0(1,4) −→ Sp(2,2)/Z2 through

SO0(1,4) ∋ Λ(g) : x−→ Λ(g)x = x′, Λα
β =

1
4

tr(γαgγβ g−1). (2.11)

Another way to understand this group action on de Sitter is toresort to a specific (nonglobal) fac-
torization of the group one can call space-time factorization and which is based on the group involution
g−→ ϑ(g) = γ0γ4g†γ0γ4:

g = jl , j =

(

η 0
0 η̄

)(

coshψ
2 sinhψ

2
sinhψ

2 coshψ
2

)

, l =

(

ζ 0
0 ζ

)(

coshϕ
2 ûsinhϕ

2
−ûsinhϕ

2 coshϕ
2

)

, (2.12)
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where ψ ,ϕ ∈ R, ζ ,η , û = − ¯̂u (“pure” vector quaternion)∈ SU(2). The factorl is element of the
(Lorentz) subgroupL = {l ∈Sp(2,2); lϑ(l) = I}≃SL(2,C) and the parametersζ , û,ϕ have the meaning
of space rotation, boost velocity direction and rapidity respectively. The factorj is a kind of “space-time”
square root since we have

jϑ( j) =

(

η2coshψ sinhψ
sinhψ η2coshψ

)

≡
(

x0 −P

P −x0

)(

0 1
−1 0

)

= 6xγ4, (2.13)

where the equivalence holds modulo a determinant factor. Wethus see that the group action (2.10) is
directly issued from the left action of the group on the cosetG/L through j −→ g j = j ′l ′. The Lorentz
subgroupL is actually the stabilizer ofH−1γ0γ4. The latter corresponds to the pointOH = (0,0,0,0,H−1)

chosen as origin of the de Sitter universe, andj maps this origin to the point(x0,P) in the notations
(2.8). Note that the set{ψ ,η2} in (2.13) provides, throughx0 = sinhψ ,P = η2coshψ , the system of
global coordinates (2.3) forMH .

De Sitterian classical mechanics is understood along the traditional phase space approach. By phase
space for an elementary system in de Sitter universe, we meanan orbit of the coadjoint representation
of the group. We know that such an orbit is a symplectic manifold, and, as a homogeneous space, is
homeomorphic to an even-dimensional group cosetSp(2,2)/HS, whereHS is the stabilizer subgroup of
some orbit point. As a matter of fact, a scalar “massive” elementary system in de Sitter corresponds to
the cosetSp(2,2)/HS where the subgroupHS is made up with “space” rotations and “time” translations
in agreement with the space-time factorization (2.12) ofSp(2,2):

HS =

{

g =

(

ζ 0
0 ζ

)(

coshψ
2 sinhψ

2

sinhψ
2 coshψ

2

)

, ζ ∈ SU(2), ψ ∈ R

}

. (2.14)

3. De Sitter UIR and their physical interpretation

Specific quantization procedures [33, 23, 19] applied to theabove classical phase spaces leads to
their quantum counterparts, namely the quantum elementarysystems associated in a biunivocal way
to the the UIR’s of the de Sitter groupSp(2,2). Let us give a complete classification of the latter,
following the works by Dixmier [9] and Takahashi [35]. We recall that the ten Killing vectors (2.4) can
be represented as (essentially) self-adjoint operators inHilbert space of (spinor-)tensor valued functions
on MH , square integrable with respect to some invariant inner product, more precisely of the Klein-
Gordon type. These operators take the form

Kαβ −→ Lαβ = Mαβ +Sαβ , (3.1)

where the orbital part isMαβ = −i(xα ∂β −xβ ∂α) and the spinorial partSαβ acts on the indices of func-
tions in a certain permutational way. There are two Casimir operators, the eigenvalues of which deter-
mine completely the UIR’s. They read:

Q(1) =−1
2

Lαβ Lαβ , (3.2)

with eigenvalues−p(p+1)− (q+1)(q−2) and

Q(2) =−WαWα , Wα =−1
8

εαβγδηLβγLδη , (3.3)

with eigenvalues−p(p+1)q(q−1). Therefore, one must distinguish between
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• The discrete seriesΠ±p,q,
defined byp and q having integer or half-integer values,p ≥ q. Note thatq may have a spin
meaning.

Here, we must again distinguish between

– The scalar caseΠp,0, p = 1,2, · · · ; hereafter we refer to it asDsc;

– The spinorial caseΠ±p,q, q > 0, p = 1
2,1, 3

2,2, · · · , q = p, p−1, · · · ,1 or 1
2:Dsp

• The principal and complementary seriesϒp,σ ,

wherep has a spin meaning. We putσ = q (1−q) which givesq = 1
2

(

1±
√

1−4σ2
)

.

Like in the above, one distinguishes between

– The scalar caseϒ0,σ , where

∗ −2 < σ < 1
4 for the complementary series:Cscm, Csc0for σ = 0;

∗ 1
4 ≤ σ for the principal series:Pscm.

– The spinorial caseϒp,σ , p > 0, where

∗ 0 < σ < 1
4, p = 1,2, · · · , for the complementary series:Cspm,

∗ 1
4 ≤ σ , p = 1,2, · · · , for the integer spin principal series:Pspm,

∗ 1
4 < σ , p = 1

2, 3
2, 5

2 · · · , for the half-integer spin principal series:Pspm.

3.1 Contraction limits

An important question to be addressed concerns the interpretation of these UIR’s (or quantum de
Sitter elementary systems) from a Minkowskian point of view. We mean by this the study of the contrac-
tion limit H→ 0 of these representations, which is the quantum counterpart of the following geometrical
and group contractions

• limH→0 MH = M0, the Minkowski spacetime tangent toMH at, say, the de Sitter origin pointOH ,

• limH→0 Sp(2,2) = P
↑
+(1,3) = M0 ⋊ SL(2,C), the Poincaré group.

As a matter of fact, the ten de Sitter Killing vectors (2.4) contract to their Poincaré counterpartsKµν , Πµ ,
µ = 0,1,2,3, after rescaling the fourK4µ −→ Πµ = HK4µ .

Now, we have to distinguish between the Poincaré massive andmassless cases. We shall denote by

P
>
<(m,s) the positive (resp. negative) energy Wigner UIR’s of the Poincaré group with massmand spin

s. For interesting discussion and precision on this confusing notion of mass in “desitterian Physics”, we

will give below details on the work by Garidi [16]. We shall make use of similar notationP
>
<(0,s) for

the Poincaré massless case wheres reads for helicity. In the latter case, conformal invariance leads us
to deal also with the discrete series representations (and their lower limits) of the (universal covering of
the) conformal group or its double coveringSO0(2,4) or its fourth coveringSU(2,2). These UIR’s are

denoted in the sequel byC
>
<(E0, j1, j2), where( j1, j2) ∈ N/2×N/2 labels the UIR’s ofSU(2)×SU(2)

andE0 stems for the positive (resp. negative) conformal energy. The de Sitter contraction limits can be
summarized in the following diagrams.
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Massive case Solely the principal series representationsPscmandPspmare involved here (from where
comes the name of de Sitter “massive representations”). Introducing the parameterν throughσ = ν2 +

1/4, and the Poincaré massm= νH, we have [27, 15]

ϒs,σ −→H→0,ν→∞ c>P
>(m,s)⊕c<P

<(m,s), (3.4)

where one of the “coefficients” amongc<,c> can be fixed to 1 whilst the other one will vanishes. Note
here the evidence of the energy ambiguity in de Sitter relativity, exemplified by the possible breaking
of dS irreducibility into a direct sum of two Poincaré UIR’s with positive and negative energy respec-
tively. This phenomenon is linked to the existence in the de Sitter group of a specific discrete symmetry,
preciselyγ0 ∈ Sp(2,2), which sends any point(x0,P) ∈MH (with the notations of (2.7)) into its mir-
ror image(x0,−P) ∈MH with respect to thex0-axis. Under such a symmetry the four generatorsLa0,
a = 1,2,3,4, (and particularlyL40 which contracts to energy operator!) transform into their respective
opposite−La0, whereas the sixLab’s remain unchanged.

Note that the well-known ambiguity concerning the existence of a vacuum (“α-vacua”) in de Sitter
quantum field theory originates in the above contraction arbitrariness.

Based on the contraction content exposed in the above, the following “mass” formula has been
proposed by Garidi [16] in terms of the dS RUI parametersp andq:

m2
H = 〈Q(1)〉dS−〈Q(1)

p=q〉dS = [(p−q)(p+q−1)]h̄2H2/c4. (3.5)

Since we have set the zero of the mass parametermH according to the lowest value of the Casimir
operator, i.e., forp= q which corresponds to the “conformal” massless case, we are insured that every dS
UIR which are meaningful from a minkowskian viewpoint are labelled bym2

H ≥ 0. This parameter is a
true mass only when〈Q(1)〉dS belongs to the principal or complementary series of unitaryrepresentation
or to the mentioned massless UIR’s. In these cases the parameter p also corresponds to the spin and can
therefore be replaced bys. As a matter of fact, the field equation for a massive field of integer spins (i.e.,
principal series of UIR) obeyed by as-rank tensorϕ ,

(

Q(1)−〈Q(1)〉dS

)

ϕ = 0, (3.6)

when written in terms of the Laplace-Beltrami operator�R on the dS manifold, reads as (in unitsh̄ =

1 = c):
(

�R+R−2[2−s(s−2)]+m2
H

)

ϕ = 0. (3.7)

Whenever〈Q(1)〉dS does not belong to a UIR with possible minkowskian interpretation, it is still possible
to usem2

H but without referring to a minkowskian mass meaning.
The Garidi mass has the advantages to encompass all mass formulas introduced within a de-sitterian

context, often in a purely mimetic way in regard with their minkowskian counterparts.
Now, given a minkowskian massm and the “universal” lengthR = κ

−1 =:
√

3/|Λ| = cH−1 (κ
is the corresponding “universal” curvature), nothing prevents us to consider the dS UIR parameterν
(principal series), specific of a “physics” in constant-curvature space-time, as meromorphic functions
of the dimensionless physical (in the minkowskian sense!) quantity, expressed in terms of various dS
quantities and universal constants,

ϑ ≡ ϑm
def
=

h̄κ

mc
=

h̄
Rmc

=
h̄
√

|Λ|√
3mc

=
h̄H
mc2 . (3.8)
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Note that this quantity is also the ratio of the Compton length of the minkowskian object of massm
considered at the limit with the universal lengthR= κ

−1 yielded by dS geometry. It reduces toκ/m in
units h̄ = 1 = c.

In Table?? are given the values assumed by the quantityϑ whenm is taken as some known masses
and Λ (or H0) is given its present day estimated value. We easily understand from this table that the
currently estimated value of the cosmological constant hasno practical effect on our familiar massive
fermion or boson fields. Contrariwise, adopting the de Sitter point of view appears as inescapable when
we deal with infinitely small masses.

Massm ϑm≈
mΛ/
√

3≈ 0.293×10−68kg 1

up. lim. photon massmγ 0.29×10−16

up. lim. neutrino massmν 0.165×10−32

electron massme 0.3×10−37

proton massmp 0.17×10−41

W± boson mass 0.2×10−43

Planck massMPl 0.135×10−60

Table 1: Estimated values of the dimensionless physical quantityϑ ≡ ϑm =:
h̄
√
|Λ|√

3mc
= h̄H

mc2
≈ 0.293×10−68×m−1

kg

for some known massesm and the present day estimated value of the Hubble lengthc/H0≈ 1.2×1026m [26].

Now, we may consider the following Laurent expansions of thedS UIR parameterν ∈ IR (principal
seriesfor which we putσ = 1/4+ ν2) in a certain neighborhood ofϑ = 0:

ν = ν(ϑ) =
1
ϑ

+e0 +e1ϑ + · · ·enϑn + · · · , ϑ ∈ (0,ϑ1) convergence interval, (3.9)

where the expansion coefficientsen are pure numbers to be determined. We should be aware that nothing
is changed in the contraction formulas from the point of viewof a minkowskian observer, except that
we allow to consider positive as well as negative values ofν in a (positive) neighborhood ofϑ = 0. By
multiplying Eq. (3.9) byϑ and going to the limitϑ → 0, we recover asymptotically the relation

m= |ν |h̄H/c2 = |ν |κ h̄
c

= |ν | h̄
c

√

|Λ|
3

. (3.10)

As a matter of fact, the Garidi mass yields a perfect example of such an expansion since, in the case of the
principal series,m2

H = (ν2 +(s−1/2)2)h̄2H2/c4, and so it can be rewritten as the following expansion
in the parameterϑ ∈ (0,1/|s−1/2|]:

ν =

√

1
ϑ2 − (s−1/2)2 =

1
ϑ
− (s−1/2)2

(

ϑ
2

+O(ϑ2)

)

, (3.11)

Note the particular symmetric place occupied by the spin 1/2 case with regard to the scalar cases= 0 and
the boson cases= 1. Note also the value of the Garidi mass corresponding to UIRin the complementary
series for which we putσ = 1/4−ν2 : m2

H = ((s−1/2)2−ν2)h̄2H2/c4.

Massless (conformal) case Here we must distinguish between the scalar massless case, which involves
the unique complementary series UIRϒ0,0 to be contractively Poincaré significant, and the spinorialcase
where are involved all representationsΠ±s,s, s > 0 lying at the lower limit of the discrete series. The
arrows→֒ below designate unique extension.
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• Scalar massless case :Csc0.

C >(1,0,0) C >(1,0,0) ←֓ P>(0,0)

ϒ0,0 →֒ ⊕ H=0−→ ⊕ ⊕
C <(−1,0,0) C <(−1,0,0) ←֓ P<(0,0),

(3.12)

• Spinorial massless case :Dsp0.

C >(s+1,s,0) C >(s+1,s,0) ←֓ P>(0,s)

Π+
s,s →֒ ⊕ H=0−→ ⊕ ⊕

C <(−s−1,s,0) C <(−s−1,s,0) ←֓ P<(0,s),

(3.13)

C (s+1,0,s) C >(s+1,0,s) ←֓ P>(0,−s)

Π−s,s →֒ ⊕ H=0−→ ⊕ ⊕
C <(−s−1,0,s) C <(−s−1,0,s) ←֓ P<(0,−s),

(3.14)

Finally, all other representations have either non-physical Poincaré contraction limit or have no
contraction limit at all.

4. Quantum field theory in de Sitter space: the “massive” case

Let us first outline the main features of a quantum field theoryon de Sitter based on the properties
of the Wightman functions. For free fields whose the one-particle sector is determined by a given de
Sitter UIR in the principal and the complementary series, one resorts to an axiomaticà la Wightman
[34], where precisely the so-called two-point Wightman function is required to satisfy the following four
criteria.

(i) Covariance with respect to the given UIR.

(ii) Locality/(anti-)commutativity, wich respect to the causal de Sitter structure.

(iii) Positive definiteness (Hilbertian Fock structure).

(iv) Normal (maximal?) analyticity.

Then the field itself can be reobtained from the Wightman function via a Gelfand-Naïmark-Segal
(G.N.S.) type construction. Note that (i),(ii), and (iii) are analogous to the Minkowskian QFT require-
ments. On the other hand, Condition (iv) will play the role ofa spectral condition in the absence of
a global energy-momentum interpretation in de Sitter. Thiscondition implies a thermal Kubo-Martin-
Schwinger (K.M.S.) interpretation.

For “generalized” free fields, the theory is still encoded entirely by a two-point function: all trun-
catedn-point functions,n> 2, vanish, as does the “1-point" function. The axiomatic imposes the 2-point
functions to obey the same conditions (i)-(iv), apart from the fact that a certain, not necessarily irre-
ducible, unitary representation is now involved. However,the Plancherel content of this involved UR
should be restricted to the principal series, and this decomposition allows a Källen-Lehman type rep-
resentation of the 2-point function. Finally, for interacting fields in dS, the setof n-point functions is
assumed to satisfy
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(i) Covariance with respect to a certain dS unitary representation.

(ii) Locality/(anti-)commutativity.

(iii) Positive definiteness.

(iv) “Weak” spectral condition in connection with some analyticity requirements.

4.1 Plane waves

We refer to [4, 5, 3] for details.
We consider the eigenvector equations of the second-order Casimir operator for the principal and

complementary series. For any eigenvalue, they give a Klein-Gordon-like or Dirac-like equation. The
whole quantum field construction rests upon those elementary pieces which are the so-called dS plane
wave solutions. Let us here recall those equations :

• Principal series (PscmandPspm): ϒp=s,σ=ν2+ 1
4
:

[Q(1)
s − (ν2+

9
4
−s(s+1))] ψ(x) = 0, (4.1)

whereν ≥ 0 for s= 0,1,2, · · · , andν > 0 for s= 1
2, 3

2, · · · .

• Complementary series (CscmandCspm): ϒp=s,σ :

[Q(1)
s − (σ +2−s(s+1))] ψ(x) = 0, (4.2)

where−2 < σ < 1
4 for s= 0, and 0< σ < 1

4 for s= 1,2, · · · .

The de Sitter plane waves have the general form

ψ(x) = D(ξ ,z)(z·ξ )µ |z=x, (4.3)

where

→ D(ξ ,z) is a vector-valued differential operator such thatψ(x) is a relevant tensor-spinor solution
of the wave equation.

→ The vectorξ = (ξ 0,~ξ ,ξ 4) belongs toC± = {ξ ∈ R
5 : ξ ·ξ = 0, sgn(ξ 0) =±}, the “future” null

cone in the ambient spaceR5. This vectorξ plays the role of a four-momentum. Note that(z·ξ )µ

is a�5-harmonic function in the complexified 1+ 4 Minkowski and is to be also considered as a
generating function for pseudo-spherical�5-harmonic functions.

→ The complex five-vectorz belongs to the tubular domainsT ±: T ± = (R5± iV+)∩M(c)
H , where

M(c)
H is the complexification of the dS hyperboloidMH andR

5± iV+ are the forward and backward
tubes inC

5.

→ The complex powerµ is such thatψ is solution to the wave equation.

The occurrence of complex variables in these expressions isnot fortuitous. It is actually at the heart of
the analyticity requirements (iv), as will appear through the following explicit examples.
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4.2 The example of the scalar cases= 0 (Pscm and Pspm)

The complex plane waves are given by

ψ(z) = (Hz·ξ )µ , whereµ =−3
2

+ iν , ν ∈ R , (4.4)

for the principal series (p.s.)ϒ0,σ=ν2+ 1
4

and

−3 < µ =−3
2
±
√

1−2σ < 0 (4.5)

for the complementary series (c.s.)ϒ0,σ .
The termwave planein the case of the principal series is consistent with the null curvature limit

(3.4).
We use the parametrization (2.3) of the hyperboloid. At theR→ ∞ limit, x→ (τ ,ρ ~n,∞), that we

consider as the pointX := (X0 = τ ,~X = ρ ~n) ∈ M1,3. To take the limit for the plane wave, we write
m= Hν , leading to

lim
H→0

(Hx(X) ·ξ )−
3
2+imH−1

= expik ·X, (4.6)

where, in Minkowskian-like coordinates,ξ = (k0

m ,
~k
m,−1) ∈C+, and

x(X) = (H−1sinhHX0,~x = H−1 ~X
‖~X‖ coshHX0sinH‖~X‖,x4 = H−1coshHX0cosH‖~X‖).

The two-point function is analytic in the tuboidT −×T + and reads (for the principal series)

Wν(z1,z2) =cstν

∫

γ
(z1 ·ξ )−

3
2+iν(ξ ·z2)

− 3
2−iν dµγ (ξ )

=
H2Γ(3

2 + iν)Γ(3
2− iν)

24π2 P5
− 3

2+iν(H2z1 ·z2). (4.7)

The integration is performed on an “orbital basis”γ ⊂ C+. The symbolPλ
α stems for a generalized

Legendre function, and the coefficient factor is fixed by theHadamard condition. We recall that the
Hadamard condition imposes that the short-distance behavior of the two-point function of the field should
be the same for Klein-Gordon fields on curved space-time as for corresponding Minkowskian free field.
In case of dS (and many other curved space-times) it selects aunique vacuum state. In case of dS, this
selected vacuum coincides with theeuclideanor Bunch-Daviesvacuum state structure.

The corresponding Wightman functionWν(x1,x2) = 〈Ω,φ(x1)φ(x2)Ω〉, whereΩ is the Fock vac-
uum andφ is the field operator seen as an operator-valued distribution on MH , is the boundary value
bvT ∓∋z1

2
→x1

2

Wν(z1,z2). Its integral representation is given by:

Wν(x1,x2) =cstν

∫

γ
((x1 ·ξ )

− 3
2+iν

+ +e−iπ(− 3
2+iν)(x1 ·ξ )

− 3
2+iν
− )((ξ ·x2)

− 3
2−iν

+

+e−iπ(− 3
2−iν)(ξ ·x2)

− 3
2−iν
− )dµγ (ξ ). (4.8)

This function satisfies all QFT requirements:

(i) Covariance:Wν(Λ−1x1,Λ−1x2) = Wν(x1,x2), for all Λ ∈ SO0(1,4).

(ii) Local commutativity:Wν(x1,x2) = Wν(x2,x1), for every space-like separated pair(x1,x2).
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(iii) Positive definiteness: 0≤ ∫MH×MH
f (x1)Wν(x1,x2) f (x2)dµ(x1)dµ(x2) for any test functionf , and

wheredµ(x) is theO(1,4) invariant measure onMH .

(iv) Maximal analyticity: Wν(z1,z2) can be analytically continued in the cut-domain∆ = (M(c)
H ×

M(c)
H )\Σ(c) where the cut is defined byΣ(c) = {(z1,z2) ∈M(c)

H ×M(c)
H ; (z1−z2)

2 = ρ , ρ ≥ 0}.

4.3 The example of the spinorial cases= 1
2

The involved UIR is hereϒ 1
2 ,σ=ν2+ 1

4
[1]. For simplicity we shall putH = 1 in the sequel. We now

have four independent plane wave solutions:

ψ(1)
r,ν = (Hz·ξ )−2+iνu(1)

r (ξ ), ψ(2)
r,ν = (Hz·ξ )−2−iν 6zu(2)

r (ξ ), r = 1,2, ξ ∈C+, (4.9)

where the four 4-spinorsu(1)
r , u(2)

r are independent solutions to6ξ u(ξ ) = 0. The resulting 4×4 two-point
function is analytic in the tuboidT −×T + and is given by:

Sν(z1,z2) = aν

∫

γ
(z1 ·ξ )−2+iν(ξ ·z2)

−2−iν(
1
2
6ξ γ4)dµγ (ξ )

=
1
8

Aν
[

(2− iν)P7
−2−iν(z1 ·z2) 6z1− (2+ iν)P7

−2+iν(z1 ·z2) 6z2
]

, (4.10)

whereAν = (iν(1+ ν2))/8π sinhπν is imposed by the Hadamard condition. The Wightman func-
tion Sν(x1,x2) = 〈Ω,Ψ(x1)⊗Ψ(x2)Ω〉, where the spinor fieldΨ = (Ψi), i = 1,2,3,4, and its adjoint
Ψ ≡Ψ†γ0γ4 are operator-valued distributions onMH , is the boundary valuebvT ∓∋z1

2
→x1

2

Sν(z1,z2). This

function meets all axiomatic requirements:

(i) Covariance:gSν(Λ−1(g)x1,Λ−1(g)x2)i(g−1) = Sν(x1,x2), for all g∈ Sp(2,2). The group involu-
tion i(g) is defined byi(g) =−γ4gγ4.

(ii) Local anticommutativity: Si j̄(x1,x2) = S′i j̄(x1,x2) ≡ −〈Ω,Ψ j̄(x2)Ψi(x1)Ω〉, for every space-like
separated pair(x1,x2).

(iii) Positive definiteness: 0≤ ∫MH×MH
h(x1)Sν(x1,x2)h(x2)dµ(x1)dµ(x2) for every 4-spinor valued

test functionh.

(iv) Maximal analyticity:Sν(z1,z2) can be analytically continued in the cut-domain∆ = (M(c)
H ×M(c)

H )\
Σ(c).

Higher-spin QF cases, for the principal or the complementary series, are similar to the ones presented in
the above, and we refer to [21, 12] for details.

5. “Massless” minimally coupled quantum field

The so-called “massless” minimally coupled quantum field (which is not“massless” in our sense,
even though the corresponding Garidi mass exceptionally vanishes!) occupies under many aspects a
central position in de Sitter theories (see [20, 32] and references therein). On the mathematical side, it is
associated to the lowest limit, namelyΠ1,0, of the discrete series, and we shall see below some interesting
features of this representation, like its place within a remarkable indecomposable representation. On the
physical side, it has been playing a crucial role in inflationtheories [24], it is part of the Gupta-Bleuler
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structure (again an indecomposable UR is involved here!) for the massless spin 1 field (de Sitter QED,
[13]), and it is the elementary brick for the construction ofmassless spin 2 fields (de Sitter linear gravity
[14]).

The wave equation forΠ1,0 is

Q(1)ψ(x) = 0 ⇔�ψ(x) = 0, (5.1)

where� is the dS Laplace-Beltrami operator. “Mode” solutionsφLlm to (5.1) are expressed in terms of
the following bounded global coordinates (suitable for thecompactified dS≃ Lie sphereS3×S1):

x = (x0 = H−1 tanρ ,(~x,x4) =
u

H cosρ
)≡ (ρ ,u), −π

2
< ρ <

π
2

, u∈ S3. (5.2)

The coordinateρ is timelike and plays the role of a conformal time, whereasu coordinatizes the compact
spacelike manifold. The “strictly positive” modes are given by

φLlm(x) = AL(Le−i(L+2)ρ +(L+2)e−iLρ)YLlm(u), L = 1,2, · · · , 0≤ l ≤ L, 0≤ |m| ≤ l , (5.3)

where theYLlm are the spherical harmonics onS3. These modes form an orthonormal system with respect
to the Klein-Gordon inner product,

〈φ ,ψ〉= i
π2

∫

ρ=0
φ̄ (ρ ,u)

↔
∂ ρ ψ(ρ ,u)du. (5.4)

The normalisation constantAL = H
2 [2(L+2)(L+1)L]−1/2 breaks down atL = 0: this is called the “zero-

mode” problem, and this problem is related to the fact that the space generated by the strictly positive
modes (5.3) is notdS invariant. It is onlyO(4) invariant. If one wishes to restore full dS invariance, it is
necessary to deal with theL = 0 solutions to (5.1). There are two of them, namely the constant “gauge”
solutionψg and the “scalar” solutionψs:

ψg =
H
2π

, ψs =− iH
2π

(ρ +
1
2

sin2ρ). (5.5)

Both are null norm states, and the constants are chosen in order to have〈ψg,ψs〉= 1. Then we define the
“true ” normalized zero mode:

φ000 = ψg +
1
2

ψs≡ φ0, 〈φ0,φ0〉= 1. (5.6)

Now, applying de Sitter group actions on it produces negative (φ Llm) as well as positive modes (φLlm).
We thus see an indefinite inner product spaceH emerges under the form of a direct sum Hilbert⊕anti-
Hilbert. This is called a Krein space [28, 8]. More precisely, one defines the Hilbert spaceH+ generated
by the positive modes (including the zero mode):

H+ =

{

∑
(Llm)≡k≥0

ckφk; ∑
k≥0

|ck|2 < ∞

}

. (5.7)

Similarly, one defines the anti-Hilbert spaceH− as that one generated by the “negative” modesφk,
k≥ 0, or equivalently the conjugates of the positive ones. Notethat 〈φk,φk′〉 = δkk′ = −〈φk,φ k′〉. Then
H = H+⊕H−. This Krein space is de Sitter invariant, but its direct sum decomposition is not. It has
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a Gupta-Bleuler triplet structure [17] which carries an indecomposable representation of the de Sitter
group. The involved Gupta-Bleuler triplet is the chain of spaces

Cψg≡N ⊂
{

cgψg + ∑
k>0

ckφk

}

≡K ⊂H . (5.8)

SpaceN is a null norm space whereasK is a degenerate inner product space. The coset spaceK /N is
the space of physical states, and it is precisely this Hilbert space which carries the UIRΠ1,0. A contrario,
the coset spaceH /K is the space of unphysical states. It is however an (anti) Hilbert space which
carries alsoΠ1,0. Noticeing that the coset by itself of the space of constant functions or gauge statesN
carries the trivial representationϒ0 (on which both Casimir operators vanish), the whole indecomposable
representation carried by the Krein space can be pictured by[17]

Π1,0−→Π1,0−→ ϒ0. (5.9)

Also note that this indecomposable structure is based on theexact sequence of carrier spaces [31]

0 −→ N
i−→ K −→ H

↓ ↓
K /N H /K

↓ ↓
0 0

(5.10)

Let us turn to the quantization of this field. If we adopt the usual representation of the canonical commu-
tation rules, namely if the quantized fieldϕ is given by

ϕ = ∑
k≥0

(Akφk(x)+h.c.), [Ak,A
†
k′ ] = 2δkk′ , (5.11)

we get a QFT which is notdS covariant: it isSO(4)-covariant only, and the so defined vacuum is
solelySO(4)-invariant. In order to restore the full dS-covariance, onehas to resort to the following new
representation of theccr

ϕ = ∑
k≥0

(akφk(x)+h.c.)−∑
k≥0

(bkφk(x)+h.c.), [ak,a
†
k′ ] = δkk′ =−[bk,b

†
k′ ], (5.12)

and this defines a dS invariant vacuum|Ω〉:

ak |Ω〉= 0 = bk |Ω〉, k≥ 0. (5.13)

The whole (Krein-Fock) spaceH has a Gupta-Bleuler structure which parallels (5.8):

N ⊂ {(a†
g)

n0(a†
k1

)n1 · · · (a†
kl
)nl |Ω〉} ≡K ⊂H , (5.14)

whereN is the subspace of the physical spaceK which is orthogonal toK . It is actually the space
of gauge states since any physical stateΨ ∈K is equal to its “gauge transform” exp−πλ

H (a†
g−ag)Ψ

up to an element ofN . We shall say that both are physically equivalent. Consistently, an observableA
is a symmetric operator onH such that〈Ψ | A | Ψ〉 = 〈Ψ′ | A | Ψ′ 〉 for any pair of equivalent physical
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states. As a matter of fact, the fieldϕ is not an observable whereas∂µϕ , whereµ refers to the global
coordinates (5.2), is. Therefore the stress tensor

Tµν = ∂µϕ∂νϕ− 1
2

gµνgρσ ∂ρϕ∂σ ϕ (5.15)

is an observable. Its most remarkable feature is that it meets all reasonable requirements one should
expect from such a physical quantity, namely,

• No need of renormalization:|〈kn1
1 · · ·k

nl
l | Tµν | kn1

1 · · ·k
nl
l 〉|< ∞,

• Positiveness of the energy component (energyhere should be understood in a QFT framework) on
the physical sector:〈kn1

1 · · ·k
nl
l | T00 | kn1

1 · · ·k
nl
l 〉 ≥ 0,

• The vacuum energy is zero:〈Ω | T00 |Ω〉= 0.

The usual approaches to the quantization of the dS massless minimally coupled field were precisely
plagued by divergences and renormalization problems. Here, one can become aware to what extent the
respect of full de Sitter covariance leads to satisfying physical statements, even though the price to pay
is to introduce into the formalism these (non positive norm)auxiliary states.

6. Conclusion

We now arrive at the conclusion of the paper. From its content, we can claim the following.

• In the case of “massive” fields, associated with the principal series of the de Sitter groupSO0(1,4),
the construction of fields is based on analyticity conditionimposed to the Wightman two-point
function.

Wν(x1,x2) = 〈Ω,φ(x1)φ(x2)Ω〉,

whereΩ is the Fock vacuum andφ is the field operator.

• In the case of “massless” fields (e.g. minimally coupled massless field or conformally coupled
fields), associated to the discrete series ofSO0(1,4), the quantization scheme is of the Gupta-
Bleuler-Krein type.

• The next step logically consists in the construction of a consistent “de Sitter QED”, since we
now have all elementary bricks (“massive” spin-1/2 field and “massless” vector field) to set up
gauge invariant Lagrangian. But then arises the fundamental question of a measurement guide-
line/interpretation consistent with dS relativity. A firststep should consist in controlling the
“minkowskian” validity of such a theory through expansion of various quantitative issues of com-
putation in powers of the curvature.

In any fashion let us insist on the fact that relativity principles based on the theory of groups and of
their representations is one the corner stones of Physics. We hope that the present review which deals
with de Sitter relativity offers another convincing illustration of this well-known (but once too often
forgotten?) textbook statement.
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