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1. Introduction

Recently we have derived the Fokker-Planck equation via a variational principle with gauge-
invariant Lagrangians[1]. The starting point is the notion of Galilean-covariance for non-relativistic
theories, working in a (4+1) Minkowski space-time G with light-cone coordinates [2]-[4]. In the
context of U(1) gauge group, the drift and the diffusion terms are then derived with the physical
content of a metric tensor on a pseudo-Riemannian manifold defined in such way that G is the
local manifold. In the generalization for non-abelian symmetries, we studied an SU(2) gauge
invariant Fokker-Planck equation, considering a stationary Ornstein-Uhlenbeck process. Here we
review these results but we analyze, as one of our proposal, a non-stationary color-like Ornstein-
Uhlenbeck process.

One of the most outstanding interest and motivation for such a study is the possibility to
construct an effective color Fokker-Planck dynamics. This follows a recent trend to develop, using
methods of field theories, phenomenological Yang-Mills-like equations describing fluids as the
deconfined quark-gluon plasm [5, 6, 7]. However,a difficult aspect in these formalisms is to obtain
the transport coefficients. Another goal of the present paper is, using Lie algebras, to point a
systematic way to derive such coefficients for the Fokker-Planck dynamics; that is, the drift and
diffusion tensors.

Lie symmetries have often been invoked to solve and generalize the Fokker-Planck equation
with non-trivial drift and diffusion terms [8]-[18]. The central ingredient of these approaches is a
starting basic symmetry which is usually considered as the symmetry of a more restrictive set of
equations. For instance, the well-known symmetry group of the diffusion equation has been used to
derive Fokker-Planck equations [13]; but the problem of how to choose the starting symmetry and
its realizations remains open. To find a way to treat this problem is of interest since it can be useful
to understand and solve several Fokker-Planck equations which are available in the literature. That
is the case of some equations with log-terms in the transport coefficients, associated with quantum
chaocity and experimental results describing nucleation in metals [11, 19, 20, 22, 23]. In this
paper, we exploit a method by considering different realizations of three-dimensional Lie algebras
in the (1 + 1) dimensions of space-time. Let us emphasize that our central aim is to show that a
Fokker-Planck dynamics can be thought of as a field theory fully defined in terms of symmetries.

The plan of this article is as follows. In Section 2, we briefly review the derivation of classes
of Fokker-Planck equations with U(1). In Section 3 the SU(2) gauge-invariant Lagrangians are
studied. In Section 4 we develop the procedure to derive drift and diffusion terms from Lie algebras,
with applications presented in Section 5. Section 6 is dedicated to some concluding remarks.

2. U(1)-Gauge Fokker-Planck Lagrangian

In this section, we review the derivation of Fokker-Planck equations via a gauge-invariant La-
grangian and the notion of Galilean covariance [1]. Let us consider the five-vector pµ = (p, p4, p5),
where p is the Euclidean momentum vector, p4 = H/v (H is the energy and v has units of velocity),
and p5 = mv (m is the mass). Then, by using the metric

η = δi jdx j⊗dxi−dx4⊗dx5−dx5⊗dx4, (2.1)
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we find the following dispersion relation:

pµ pµ = pµ pνgµν = p2−2p4 p5 = k2, (2.2)

where k is a constant. This relation is consistent with the fact that a free particle with mass m has
total energy equal to H = p2/2m, so that

pµ pµ = p2−2mH = 0.

Henceforth, we will take k equal to zero, or absorb it within H. The metric in Eq. (2.1) defines a
(4 + 1) Minkowski space with a 15-dimensional Poincaré algebra (corresponding to the inhomo-
geneous group of linear transformations in the extended configuration space) which contains both
the usual 10-dimensional Poincaré algebra and the Galilei algebra. Therefore, this extended mani-
fold provides a unifying scheme for treating both relativistic and non-relativistic physics in (3+1)
dimensions.

We can associate with the five-vector pµ a set of canonical conjugate coordinates qµ =(q,q4,q5)
in a configuration space G with metric η . They can be interpreted as follows: q are the canonical
conjugate coordinates of p, q4 is the conjugate coordinate of p4 (the energy, H/v), so that q4 is a
time coordinate, and q5 is conjugate of p5 (the mass, mv). Thus, we can write q5 as a function of q
and q4 which obeys the following expression for the analogue of an interval in G :

qµqµ = qµqνgµν = q2−2q4q5 = s2.

Since such an expression is the canonical coordinates counterpart of the dispersion relation, Eq. (2.2),
we choose s = 0, which corresponds to k = 0, so that we find

q5 = q2/2q4.

With q4 = vt, it follows that q5 = q2/2vt. In short, we have defined an embedding of the Euclidian
space into G :

(q, t)→ qµ = (q,q4,q5),

according to the aforementioned prescription. As noted earlier, the isometries of the extended
space-time manifold G contain the symmetries of both Poincaré (relativistic) and Galilean (non-
relativistic) physics so that the embedding defines the kinematics.

Let us consider U(1) gauge-invariant Lagrangian written in terms of the 2-form tensor field F ,
with components Fµν :

L =−1
4

FµνFµν . (2.3)

The tensor Fµν is written in terms of the Abelian gauge fields J as

Fµν = ∂µJν −∂νJµ ,

where J remains to be specified. This leads to the usual Euler-Lagrange equations

∂
µ

∂µJν −∂
ν
∂µJµ = 0. (2.4)
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The Lagrangian L is invariant under the gauge transformation: Jµ → J̄µ = Jµ + ∂ µh(x). We
take the gauge condition as being ∂ µ∂µJν = 0, such that h(x) satisfies the constraint equation:
∂ µ∂µh(x) = β , where β is an arbitrary constant. Therefore, we find ∂µJµ = α, where α is another
arbitrary constant, which we can take equal to zero. Then the Euler-Lagrange equations can be
written as follows,

∂µJµ = 0. (2.5)

In order to specify the five-dimensional vector field theory, we have analyzed this gauge theory
in a pseudo-Riemannian manifold R(G ), with metric gµν(x) given by the tensor

g = P(x)Bi j(x)dx j⊗dxi−dx4⊗dx5−dx5⊗dx4, (2.6)

such that, at each point of R(G ), there is a flat space G . The result is to write the components of
Jµ as

Ji = Ai(x)P(x)+∂ jP(x)Bi j(x),

J4 = P(x),

J5 = 0.

We obtain from Eq. (2.5) that

∂tP(x, t) =
∂

∂xi

[
−Ai(x, t)P(x, t)+

∂

∂x j Bi j(x, t)P(x, t)
]
. (2.7)

This is the Fokker-Planck equation with the drift term Ai(x, t), and the diffusion tensor Bi j(x, t).
We can take P(x, t) to be a real positive and normalized function, so that it can be interpreted as a
(covariant) probability density. In the following section this procedure is generalized to non-abelian
gauge-symmetries.

3. SU(2)-Gauge Fokker-Planck Lagrangian

Consider a gauge-invariant non-Abelian Lagrangian defined on the manifold G ,

L =−1
4

FaµνFaµν , (3.1)

where the Latin index a stands for the gauge group, with generators ta, a = 1, ...,n, satisfying
the Lie algebra [ta, tb] = Cab

c tc, where Cab
c are structure constants of the gauge group (summation

convention over Latin indices is assumed). The field strength tensor Fa
µν is given by

Fµνa = ∂µJνa−∂νJµa−λCbc
a JµbJνc,

for which the equation of motion is Dµb
a Fµνb = 0, where Dbµ

a is the covariant derivative Dµb
a =

∂ µδ b
a + λCbc

a Jµ
c . Using the gauge condition ∂µ∂ µJνa = 0, the equations of motion for each com-

ponent of J are written as

∂ν∂µJµ
a = λCbc

a ∂µ(Jµ
c Jνb)+λCbc

a Jµ
c ∂µJνb

+λCcb
a Jµ

c ∂νJµb +λ
2Ccb

a Cde
b Jµ

c JµdJνe. (3.2)
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Despite the non-linear structure of these equations, a Fokker-Planck system can be recognized if J
is defined as in the Abelian case, and if we discard the non-linear terms in Eq. (3.2) [1], such that

∂µ∂νJµ
a = 0.

As a consequence
∂µJµ

a = α, (3.3)

where α is a constant. If we choose α = 0, we obtain Eq. (2.5), which leads to a Fokker-Planck
equation for each gauge index a.

On the other hand, by considering α << 1, then Eq. (3.2) reduces, up to second order terms
in λα , to

∂ν(∂µJµ
a +λCbc

a Jµ
c Jµb) = 2λCbc

a Jµ
c ∂µJνb +λCbc

a (∂νJµ
c )Jµb. (3.4)

The left-hand side of this equation can be integrated for each ν = 1, ...,5, such that the right-hand
side results in a non-local term along each direction. In a heuristic construction, if we discard as a
first approximation this non-local terms we obtain the following nonlinear [1] equation

∂µJµ
a +λCbc

a Jµ
c Jµb = 0. (3.5)

Let us consider as an example the su(2) symmetry with Jµ
a defined by:

Ji
a = εai j[Ak

jPk +∂k(Bnk
j Pn)] ,

J4
a = Pa ,

J5
a = 0 ,

where both gauge and tensor indices are of the same nature (that is, i, j,k and a,b,c are all equal to
1,2,3), Ak

j = Ak
j(x) describes the drift term (which is now a rank-two tensor, taking into account the

vector and the gauge index), whilst Bnk
j (x) stands for the diffusion term. Notice that this definition

can be developed with the reasoning used in the abelian case. From Eq. (3.5), it follows that
εabcJµ

c Jµb = εabcJicJib = 0. Hence

∂tPa = εa ji[∂i(Ab
jPb)+Bcb

j ∂i∂bPc]. (3.6)

Let us analyze the content of this Fokker-Planck-like equation in some particular situations.
First, define

P2 = P3 = P,

A1
2 = f (z), A1

3 = g(y),

B13
2 = a(y), B12

3 = b(z),

where P is a constant and the other components of Ab
j and Bcb

j are zero. With the above expressions
for the drift terms A1

2 and A1
3, and the diffusion tensor components B13

2 and B12
3 , we are assured

that we have an arbitrary process for this theory with color as the gauge index, and yet, with the
characteristics of a Fokker-Planck like dynamics. Indeed, if we write

P1(y,z, t) = ϕ(y)φ(z)ewt ,

5
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we get

w =
1

φ(z)

[
d2

dz2 [b(z)φ(z)]+
d
dz

[ f (z)φ(z)]
]

− 1
ϕ(y)

[
d2

dy2 [a(y)ϕ(y)]+
d
dy

[g(y)ϕ(y)]
]
.

Therefore, with

1
φ(z)

[
d2

dz2 [b(z)φ(z)]+
d
dz

[ f (z)φ(z)]
]

= F1, (3.7)

1
ϕ(y)

[
d2

dy2 [a(y)ϕ(y)]+
d
dy

[g(y)ϕ(y)]
]

= F2, (3.8)

we find F1−F2 = w. By multiplying Eq. (3.7) by exp(F1t), we use

F1φ(z, t) =
∂

∂ t
φ(z, t),

together with
φ(z, t) = φ(z)exp(F1t),

to find the equation
∂

∂ t
φ(z, t) =

∂ 2

∂ z2 [b(z)φ(z, t)]+
∂

∂ z
[ f (z)φ(z, t)]. (3.9)

Similarly, Eq. (3.7) becomes

∂

∂ t
ϕ(y, t) =

∂ 2

∂y2 [a(y)ϕ(y, t)]+
∂

∂y
[g(y)ϕ(y, t)]. (3.10)

Note that Eqs. (3.9) and (3.10) are as general as Eq. (2.7); hence we study, as an example,
a non-stationary Ornstein-Uhlenbeck process, providing expressions for a(y),g(y),b(z) and f (z);
that is, we assume that

a(y) = D g(y) =−γy,

b(z) = D f (z) =−γz.

Then we have two known equations that are written as

∂

∂ t
Φ(x, t) =

∂ 2

∂x2 [DΦ(x, t)]+
∂

∂x
[−γxΦ(x, t)]. (3.11)

where Φ(x, t) stands for ϕ(y) and φ(z). We take for the initial condition Φ(x,0) = δ (x). Then the
solution of Eq. (3.11) is given by [24]

Φ(x, t) =
[

γ

2πD(1− e−2γt)

]1/2

exp
[

γx2(1− e−γt)2

2D(1− e−2γt)

]
,

which leads to

P1(y,z, t) = ϕ(y)φ(z)ewt

=
[

γ

2πD(1− e−2γt)

]
exp
[

γ(y2 + z2)(1− e−γt)2

2D(1− e−2γt)
+w
]
.

In the following section we address the problem of deriving explicitly, in (1 + 1) space-time,
the diffusion and the drift terms by considering general arguments of symmetry.

6
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4. Symmetries of drift terms and diffusion tensors

In order to derive the drift vector and diffusion tensor terms in Eq. (2.7) or (3.6), we proceed
with arguments based on Lie groups [17, 18]. First, we discuss the symmetries of the differential
equations. In order to do so, we take a generic element G of the symmetry Lie group. If G is
connected to the identity, we can write it as

G = exp

(
m

∑
k=1

αkTk

)
, (4.1)

where Tk denotes the generators of symmetries, and the coordinates αk are finite numbers. A partial
differential equation can be cast into the following general form

∆(x)θ(x) = 0, (4.2)

where ∆(x) is a partial differential (field) operator defined in Rm with coordinates x =(x1,x2, ...,xm),
and θ(x) is a function of Rm. As explained in Refs. [8, 9, 17, 18, 25], to say that G is a symmetry
group of Eq. (4.2) means that for a symmetry transformation generator L(x) which belongs to the
Lie algebra of G, we have

L(x)∆(x)θ(x) = 0.

Since we can write this generator in terms of the generators Tk as L(x) = akTk(x), then we can
rewrite the invariance condition above as follows:

[Tk(x),∆(x)] = rk(x)∆(x), k = 1, ...,dim(G), (4.3)

where rk(x)’s are functions in Rm.
Our purpose is to utilize Eq. (4.3) with ∆, a generic Fokker-Planck type differential operator,

and T ’s the generators of of a given symmetry, in order to determine explicitly the form of drift
and diffusion terms. The problem at this point is that there is no prescription to provide us with a
specific symmetry. Then we have started a systematic study using the classification of Lie algebras.

5. Derivation of drift and difusion terms

Let us show this procedure for some 3-dimensional Lie algebras which are given by the fol-
lowing commutation relations [26]

[T1,T2] = [T1,T3] = [T2,T3] = 0, (5.1)

[T2,T3] = T1, (5.2)

[T1,T3] = T1, [T2,T3] = T1 +T2, (5.3)

[T1,T3] = T1, [T2,T3] = T2, (5.4)

[T1,T3] = T1, [T2,T3] =−T2, (5.5)

[T1,T3] = T1, [T2,T3] = aT2,0 <| a |< 1 (5.6)

[T1,T3] = −T2, [T2,T3] =−T1, (5.7)

[T1,T3] = aT1−T2, [T2,T3] = T1 +aT2,a > 0 (5.8)

[T1,T2] = 2T2, [T1,T3] =−2T3, [T2,T3] = T1 (5.9)

[T1,T2] = T3, [T2,T3] = T1, [T3,T1] = T2. (5.10)

7
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Therefore, we can consider each one of these algebras, and apply Eq. (4.1) with three gener-
ators T1, T2 and T3. Before that, however, we have to study the realizations of each algebra. This
procedure demands long calculations, and the full study will be presented elsewhere. Here we limit
ourselves to some of these algebras. Let us deal with

[T1,T2] = 2T2, [T3,T1] = 2T3, [T2,T3] = T1. (5.11)

Clearly, it is possible to define many realizations of this Lie algebra in terms of vector fields, even
for a specific number of manifold dimensions. We will work with realizations of this algebra in
(1+1) space-time of the form

T1 = ∂t ,

T2 = k1(x, t)∂t + k2(x, t)∂x,

T3 = k3(x, t)∂t + k4(x, t)∂x,

(5.12)

where k1(x, t),k2(x, t),k3(x, t) and k4(x, t) are functions of x and t constrained by the commutation
relations in Eq. (5.11). If we substitute the expressions for T1 and T2 from Eq. (5.12) into the
commutator [T1,T2] of (5.11), then we find

[∂tk1(x, t)−2k1(x, t)]∂t +[∂tk2(x, t)−2k2(x, t)]∂x = 0,

which leads to ∂tk1(x, t) = 2k1(x, t) and ∂tk2(x, t) = 2k2(x, t), the solutions of which are

k1(x, t) = f1(x)exp(2t), k2(x, t) = f2(x)exp(2t). (5.13)

Similarly, with the commutator of T1 and T3 in Eq. (5.11), the realization of Eq. (5.12) gives us

[∂tk3(x, t)+2k3(x, t)]∂t +[∂tk4(x, t)+2k4(x, t)]∂x = 0,

such that
k3(x, t) = f3(x)exp(−2t), k4(x, t) = f4(x)exp(−2t). (5.14)

Finally, by using the third commutator, [T2,T3], of Eq. (5.11), together with Eq. (5.12), we have

1 = k1(x, t)∂tk3(x, t) − k3(x, t)∂tk1(x, t)

−k4(x, t)∂xk1(x, t) + k2(x, t)∂xk3(x, t), (5.15)

and

0 = k1(x, t)∂tk4(x, t) − k3(x, t)∂tk2(x, t)

+k2(x, t)∂xk4(x, t)− k4(x, t)∂xk2(x, t). (5.16)

From Eqs. (5.13) and (5.14), we find that Eqs. (5.15) and (5.16) lead to

f2(x)∂x f3(x)−4 f1(x) f3(x)− f4(x)∂x f1(x) = 1,

f2(x)∂x f4(x)−2 f1(x) f4(x)−2 f3(x) f2(x)− f4(x)∂x f2(x) = 0.
(5.17)

8
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Therefore, we may summarize by rewriting Eq. (5.12) as follows:

T1 = ∂t ,

T2 = f1(x)exp(2t) ∂t + f2(x)exp(2t) ∂x,

T3 = f3(x)exp(−2t) ∂t + f4(x)exp(−2t) ∂x,

(5.18)

where the f ’s satisfy Eq. (5.17). In the following we explore solutions of such equations to derive
drift and diffusions terms for Fokker-Planck equations, by substituting the realizations found above
into Eq. (4.3).

The term ∆(x) in Eq. (4.3) is the Fokker-Planck differential operator (2.7) in (1 + 1) space-
time, given by

∆(x, t)P(x, t) = ∂tP(x, t)+∂x[A(x, t)P(x, t)]+∂xx[−B(x, t)P(x, t)] = 0, (5.19)

so that the operator ∆ reads

∆ = ∂t +∂xA(x, t)−∂xxB(x, t)+ [A(x, t)−2∂xB(x, t)] ∂x−B(x, t) ∂xx. (5.20)

The drift and the diffusion terms are A(x, t) and B(x, t), respectively.
A rather trivial solution of Eqs. (5.17) is given by

f3(x) =− 1
4 f1(x)

, f2(x) = f4(x) = 0,

so that f1(x) remains an arbitrary function of x. In other words, we have

k1(x, t) = exp(2t) f1(x),
k2(x, t) = 0,

k3(x, t) =−exp(−2t) 1
4 f1(x)

,

k4(x, t) = 0,

so that Eq. (5.18) leads to the vector field realization

T1 = ∂t ,

T2 = exp(2t) f1(x)∂t ,

T3 = −exp(−2t) 1
4 f1(x)

∂t .

(5.21)

Let us see how Eq. (4.3) applied to the realization (5.21) with ∆(x) given by Eq. (5.20) provides
further restrictions of the differential equation. For the sake of illustration, if Eq. (4.3) is applied
on a general function F(x) with T1, then the equation

T1(x, t) ∆(x, t) F(x, t)−∆(x, t) T1(x, t) F(x, t) = r1(x, t) F(x, t),

becomes (with the notation Ft = ∂tF , Fxt = ∂xtF , etc.)

[Axt −Bxxt ]F +[At −2Bxt ]Fx−BtFxx =
r1[Ft +[Ax−Bxx]F +[A−2Bx]Fx−BFxx].

9
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Next we collect the factors of various derivatives of F :

Ft : 0 = r1,

Fxx : Bt = r1B,

Fx : At −2Bxt = r1[A−2Bx],
F : Axt −Bxxt = r1[Ax−Bxx].

From the first two lines, we find that B depends on x only, and from this and line three, we find
that A also is independent of t. By proceeding similarly with the generators T2 and T3, we find that
Eq. (5.20) can be written as

∆ = ∂t +
dA(x)

dx
− d2(B(x))

dx2 +
(

A(x)−2
dB(x)

dx

)
∂x−B(x)∂xx, (5.22)

where A(x) and B(x) are arbitrary functions of x.
Following the same scheme, another realization of Eqs. (5.17) for algebra Eqs. (5.9) is (we

have used the package in Ref. [27])

T1 = ∂t ,

T2 = e2t [c∂t + f2(x)∂x],

T3 = e−2t [− 1
4c

∂t + f3(x)∂x],

where

f3(x) =
(
−1

2

∫ 1
f2(x)I(x)

dx+ c1

)
I(x),

I(x) = exp
(∫ 2c− f2x

f2(x)
dx
)

.

The final equation reads

Pt +
c2[

exp
(∫ c

f2(x)
dx
)]2 +

[
f2x

c3

1
I(x)

+
2

I(x)

∫
I(x)dx− c4

c5

1
I(x)

]
Px +

f2(x)
c3I(x)

Pxx = 0.

Taking c = 1/2 and f2(x) = x/2, we get

Pt = (− a
x2 + k)P+(kx+

a
x
)Px−

1
2

bPxx,

such that

A(x, t) = kx+
a
x

B(x, t) =−b.

For a = 0 we have a Ornstein-Uhlenbeck process, while for a 6= 0 we have a Reyleigh-like process.
Interesting results come even from the commutative algebras, Eq.(5.1), including generators in the
form T = k1(x, t)∂t + k2(x, t)∂t + k3(x, t). These aspects of realizations and derivation of the drift
and diffusion terms will be presented in a separated publication, considering 2,3 and 4-dimensional
Lie algebras.
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6. Concluding remarks

In this paper we have constructed equations of Fokker-Planck type by enforcing various sym-
metries: (i) Galilean invariance is implemented with an extended Minkowski space to show that
the usual Fokker-Planck equation presents a U(1) symmetry; (ii) the theory of Lie symmetries of
differential equations is used to obtain explicit Fokker-Planck equations; (iii) non-abelian gauge
symmetry is analyzed by using the Galilean covariance, resulting in a Fokker-Planck Lagrangian
including color index. Item (i) were discussed to some extend in another publication [1]. However,
when rederiving those results here, we have focused our attention on the explicit form for the drift
and diffusion coefficients. Observe in addition that the Fokker-Planck equation constructed from
the general ∆-operators presents, as it would be expected, symmetries other than the original group.
In our case, it is evident that the Fokker-Planck equation is invariant under dilation, for instance;
yet this symmetry is not described by the algebra we have studied. This is due to the Lie algebra
(not the group) used for our proposal of deriving the transport coefficients.

Although there is no specific criteria for selecting a symmetry to derive Fokker-Planck equa-
tions, we proceeded by analyzing the classification of 3-dimensional Lie algebras. This classifi-
cation is available in the literature of mathematical works, but not their realizations which is of
most interest for physicists. It is our contention that by following the scheme presented here, it is
possible to carry out such an analysis. This is currently in progress and we will present the results
in a separate publication.
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