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We consider the problem of constructing an action functiémrgphysical systems whose classi-
cal equations of motion cannot be directly identified witHdftLagrange equations for an action
principle. The existence of an action principle for a giveggical system, or what is the same, the
existence of a Lagrange function for such a system, alloves@proceed with canonical quanti-
zation schemes. This, in particular, emphasizes the impoetof formulating an action principle
for any physical system. From simple consideration, we findessary and sufficient condi-
tions for the existence of a multiplier matrix which can ewdm prescribed set of second-order
equations with the structure of Euler-Lagrange equatiémsexplicit form of the Lagrangian is
constructed for a system which admits the existence of sunhltplier. If a given set of dif-
ferential equations cannot be derived from an action goiecione can reformulate such a set in
an equivalent first-order form which can always be treatetha$uler-Lagrange equations of a
certain action. We construct such an action explicitly. rEhexists an ambiguity (not reduced
to a total time derivative) in associating a Lagrange fuwrcivith a given set of equations. We
present a complete description of this ambiguity. The gdn@ocedure is illustrated by several
examples.
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1. Introduction

The problem of constructing an action functional for a given set otrbffitial equations is
known in literature as the inverse problem of the calculus of variations &vtbhian mechan-
ics. This problem has been under consideration for more then hundegd.yAs early as 1887
Helmholtz [1] presented a criterion of commutativity for second variationaValéves with the
help of which one can define whether a set of differential equationsabggan or not. In 1894
Darboux [2] solved the problem for one dimensional case. In 1941dke of two degrees of
freedom was investigated by Douglas [3]; in particular, he presentach@es of second-order
equations which cannot be obtained from the variational principle. Aftetsithere were numer-
ous works devoted to the development a general theory for multidimensigsi@ms (see e.g.,
[4]-[18] and references therein).

In the present work we attempt to settle some general points of such a.thgergonstruct
an action principle for a given system of second-order differentiabggns using so-called inte-
grating multiplier [3]-[6], i.e., such a nonsingular matrix which being multiplied lgien set of
equations reduces it to a standard Euler-Lagrange form. In sectiorpgesent a simple derivation
method for necessary and sufficient conditions for a integrating multipll@chadoes not appeal
to the theory of generalized functions. We also construct the explicit §dlobagrangian in a case
an integrating multiplier does exist and is known. Then we apply our methadvestigating the
inverse problem of the calculus of variations for some simple models. Wéragonan action prin-
ciple for multidimensional dissipative systems. We also consider an examplameaadynamical
system whose equations of motion do not admit the existence of an integratitiglisnuiand as a
consequence cannot be obtained from the minimum action principle.

Note that it is always possible to reduce non-Lagrangian second-egdations of motion to
an equivalent set of first-order differential equations. For suctagons, one can always construct
an action principle, the corresponding consideration is representedtiors& and, partially, is
based on results of works [14] and [18]. Thus, we show that systeadgidmally called non-
Lagrangian ones are, in fact, equivalent to some first-order Lagrnarsgstems. As an example,
we construct a first-order action functional for any linear dynamicstiesy.

2. Action functional for a set of second-order equations

2.1 General consideration

Let a system witm degrees of freedom be described by a set eécond-order differential
equations of motion, solvable with respect to second-order time derisaBgpose such a set has
a form

g —f'(t,q,9) =0, i=1..n, (2.1)

wheref!(t,q,q) are some functions of the indicated arguments, and by dots above we tereote
derivatives of the coordinates. Let us construct an action principlthie set. If (2.1) cannot be
directly identified with Euler-Lagrange equations, one can find an integratintiplier, i.e., such
a nonsingular matrixj (t,q,q) that being multiplied by (2.1)

hij [ — f1(t,q,q)] =0 (2.2)
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reduces this set to a standard Euler-Lagrange form for some Lagrdr{g),q,q),

oL oL AL ;oL
oq otog  aqaq ) agoq

jq‘i =0. (2.3)

In order to identify (2.2) with (2.3) we need to ensure that

%L
269
oL 9L %L .. -
- _ - = T = Al—=h.f]
oG oG agagd — Mt (2:5)

= hij, (2.4)

Provided that an integrating multiplier is known, equations (2.4)-(2.5) cantesreted as a sys-
tem of equations for a Lagrange functibnWe are going to solve the set of equations (2.4)-(2.5).
Its consistency conditions will give us all the necessary and sufficemditons for an integrat-

ing multiplier. Assuming thak is a smooth function of the indicated arguments, the consistency
condition for equation (2.4) imply that

ohij oy

hij = h; , a4~ g

(2.6)

If (2.6) does hold one can solve equation (2.4). To this end, we reminthiagieneral solution of
the equatiord f /dq' = g;, provided the vectog; is a gradient, is

f(g) = /Olds dgi(sq) +c,

wherec is a constant. Taking the above fact into account, we obtaih e do not consider
global problems which can arise from non-trivial topology of the comijan space) the following
representation:

L:K(t,q,(f])—l—h(t,C])ql—|—|0(t,(]), (2.7)

where
1 1
K(t.a.G) = [dag { [ dbdin t.q bq1>] (2.8)
0 0 q1=aq

andlo(t,q), li(t,q) are some functions of the indicated arguments. To find these functionseve u
equation (2.5). Substituting (2.7) into (2.5), we get

2 2k ; i\ s i j
K %K 9K (al,_al.).,_dl. %:ijfj_ (2.9)

g agat agag " \aq a9 ot ' oq

Differentiating this equation ovey; we obtain:

l, 9l
aT;_TqL: ik (2.10)
e 02 92 oh ohe 0
— K _ K ik Y ik 0 g
Lik = dgdq  dgaq * ot aq +aqk (hij f') . (2.11)
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This equation is a differential equation fipr The consistency conditions of equation (2.10) imply,
that first of all, the symmetric part @fy is zero, which can be written as

0f of

where

Using (2.12), one can rewrite (2.11) as follows

0%K %K of! of!
le - 0q'0qk - aqkdql +A|k ) A!k <hlj (3qk hk]dqi> (213)
Next, Lix does not depend on velocities, i.él,ik/dq' = 0, which yields
ohgy dhy
= 2.14
ad  oqk dq' —Ai. (2.14)
And, finally, the Jacobi identity
OLix  dLw = dLy 0Ak OAq OA;
k = k =0. 2.1
dq  dq = Ik 0= oq  dq + oK 0 (2.15)

Providedh;; obeys equations (2.12), (2.14) and (2.15)5an be found from equation (2.10). We
remind that the general solution flprof equation (2.10) is given by

a9 (t,
(to) = [dadLy(taq + 2259, (2.16)
0
where¢ (t,q) is an arbitrary function.
Now from equation (2.9) we can firg; to this end let us rewrite it as follows:
dlo
dql m ) ( )
where , )
. 0K 0K . 09K i dl;
_h.fi_ 9% I LA S T .
m h”f oq + atog +q FIEE| q'Li; + ot (2.18)

The consistency conditions of (2.17) imply, that, first, does not depend on velocities, i.e.,
om/dg< = 0. This condition is provided by equation (2.12). And second, the ventanust
be a gradient:

om  dny A 0AK d 0
K g aqk(h.,f )_0q' (hy 1) = 0. (2.19)

ok g at 9 ag

Taking into account (2.6), (2.12) and (2.14), one gets from (2.19)flefing algebraic condition:

hiiBl —heB! =0, (2.20)
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where ) ) _
i_1¢3f'é’fm “‘E of'

T 20qm g1 Coq  Cag
If hij obeys (2.20), then from (2.17) one gets

1
olt.0) = [dadmt,aq) + “5Y 4, (221
0

wherec(t) is an arbitrary function of time.

Thus, we have proved the following statemeitfit:for a given set of second-order ordinary
differential equations (2.1) there exist such a non-singular magti g, q) that obeys equations
(2.6), (2.12), (2.14), (2.15) and (2.20), then this set can be obtaioed the variational principle
with the Lagrangian (2.7), where functions(Kq,q), li(t,q) and b(t,q) are defined by (2.8),
(2.16) and (2.21) correspondingly and the functigng, q) and c(t) are arbitrary functions of the
indicated arguments.

The arbitrariness related to the functiohét,q) andc(t) enter Lagrangian (2.7) via the total
time derivative of a functioff,

F=¢ (t,q)+/c(t)dt.

Note that an integrating multiplidrj, and as a consequence the Lagrange fundtiolves
exist, but however not for any set of equations (2.1). In Section 3omsider an example of a
dynamical system which does not admit the existence of an integrating multighevever, if it
does exist, it is not unique, e.g., if the mathix is an integrating multiplier for a certain set (2.1),
it is easy to see that the matlﬁnq = ¢ hyj, wherec # 0 is a constant, is an integrating multiplier
as well. Therefore, Lagrangian (2.7) leading to the set of equationsignbt unique; for this set
there exist as many inequivalent Lagrangians as integrating multipliersahgigns corresponding
to different integrating multipliers are known agquivalent Lagrangians.

In the one dimensional casge—"f(t,q,q) = 0, an integrating multiplier is a non-vanishing
functionh(t, q,q) that obeys the equation

ch .odh 0

5t TU5q T ag(fM =0 (2.22)

This is a first-order partial differential equation which obviously has latem for any f and
initial conditionh(t =0,q,4) = ho(g,q). As we can see, an answer to the question whether there
exist a solution of the inverse problem of the calculus of variations dependhe number of
degrees of freedom Forn = 1 the answer is always positive, and there exist as many inequivalent
Lagrangians as functiorg (g, q) of two variables. Fon > 2 the answer is generally negative.

2.2 Examples

In this section we consider a possibility of constructing an action principledore examples
of dynamical systems. First of all, let us consider dissipative systemgoSapve have an ideal
system with the Lagrangian

¢ gl i
LO—E+V(q), g={d}, i=1l.n (2.23)
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Let us consider the case when besides the potential conservatimeofc%’, there exist a friction
force
Firc = ad, (2.24)

wherea is a phenomenological friction coefficient which in generally can depentinee. The
equations of motion for such a system have the form
oV .
j = — +adg. 2.25
d = 5q a4 (2.25)
These equations are non-Lagrangian, but for this set it is possibladtarimtegrating multiplier.
In the simplest case, when it does not depend on coordinates and veldthigs the form

hij _ efoadth'O_

i (2.26)

Wherehioj is an arbitrary, symmetric, nonsingular, constant matrix commuting with the nvgtex
9°V /dq'dql. Using the statement of the previous section, we obtain the following Lagrangia

1
1., . i 0V(sd)
0
If one setshioj = §j, Lagrangian (2.27) can be rewritten as
L=e2/ady (2.28)

Note that once the friction coefficient goes to zero, Lagrangian (2.28%forms into the initial
Lagrangian (2.23).

Let us now consider the case when the potential in the initial Lagrangian & imgelocities.
For simplicity we consider the two-dimensional case

Lo— % (2 2+ By— ). (2.29)

Let us consider this system in the presence of dissipative the forcg.(Z125 equations of motion
will have the form:
X= ax—py.
(2.30)
y=Bx+ay.
As was shown in [19], this system describes a moving charged particlenificsima magnetic field
with radiation friction. In this case,

B _ a’—p* —2ap
1=\ 2aB a2-p2

and from equation (2.20) one immediately gets

tr (hij) = h11+hxx=0. (2.31)
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Itis then easy to find that the general solution of the equations (2.6))(22124), (2.15) is defined
by an arbitrary functiorp(Z,n) and has a form

([ F+F i(F-F)
hlj_(i(F—l:_)—(F—l—_)’ (2.32)

~—

whereF = ¢ (ée*yt,é — aE) e " & =x+iy, y=a +iB and the bar denotes a complex conju-
gation.
The simplest real solution can be found if we gut 1/{. We have

2 (xy
N = (y—x> . (2.33)

Using the formulas (2.7), (2.8), (2.16) and (2.21) we find the followingraagian:

L= %)’(In (X +¥%) +yarctan<§> +ax—By. (2.34)
The corresponding Euler-Lagrange equations
X+yy XX—yy
XR+y2 T R4y =F (2.35)

are equivalent to the initial ones (2.30), with the exception of the poiaty = 0. Thus, we can
see that in this case the inverse problem of the calculus of variations i knManfortunately,
neither Lagrangian (2.34) nor any other Lagrangian constructed byatex (2.32) in the limit
o — O transforms into the initial Lagrangian (2.29), modulo a total time derivatities i$ because,
according to the algebraic condition (2.31), the trace of the Hessian mataixydfagrangian for
the set of equations (2.30) must be equal to zero and this property hoddsfter the limita — 0
is taken. On the other hand, the trace of the Hessian matrix of the Lagrdngiag2.29) is equal
to 2. This contradiction proves the statement.

Finally we consider example of dynamical system for which an integrating muttiatid,
consequently, the possibility of the Lagrangian description does not &usflas [3] showed that
the set of second-order equations

X+ = 0,
y+y=0

does not admit an integrating multiplier. Let us make sure of this. To this endslassume

the opposite, namely, let there exist such a non-degenerate ratthat obeys equations (2.6),

(2.12), (2.14), (2.15) and (2.20). Then from the algebraic equati@®)2 follows thathj; must
be diagonallf;» = hpy; = 0), since in this case

. (o0
B, = .

Then, from condition (2.12) we immediately obtains that = 0, and arrive at a contradiction,
deth;; =0.

Thus, we can see that an action functional in second-order formalisnothe constructed
not for some sets of differential equations. Nevertheless, as we shibw following section, it is
always possible to construct an action principle for the equivalenf $iesborder equations.
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3. Action principle in the first-order form

Let a system withh degrees of freedom be described by a sat abn-Lagrangian second-
order differential equations of motion. To construct an action principéereplace these equations
(which is always possible) by an equivalent set off2st-order differential equations, solvable
with respect to time derivatives. Suppose such a set has the form

x* = f9(t,x), a=1,..,2n, (3.1)

wheref?(t, x) are some functions of the indicated arguments and by dots stand for timatiesv
of coordinates. Since these equations are first-order, agtipthat yields (3.1) as Euler-Lagrange
equations must be linear in the first time derivatife Its general form is

SiX] :/dtL, L= 35 —H, (3.2)

whereJ, = Jq(t,x) andH = H(t,x) are some functions of the indicated arguments. The Euler—
Lagrange equations corresponding to (3.2) are

oS JdL doaL .
= S = 0= —0uH — Ao+ (dads — 0p%) ¢ =0, (33)
with the notation P 9
00 = d?’ dt = E .

Denoting the combinatio(dyJs — dgJa) by Qqp .
Qaﬁ = daJ,g - dﬁ\]g = QGB(I,X) = —QBO, (t,X), (34)

we rewrite (3.3) as follows:
QapXf = 0gH + 0 - (3.5)

Equations (3.3) or (3.5) can be identified with (3.1), provided that
detQgqp # 0, (3.6)
QaptP —0Ja = d4H. (3.7)

The functionsJ, andH can be found from conditions (3.4)—(3.7) if the matfyg is given.
Assuming thatl, andH are smooth functions the consistency condition for equations (3.7) imply

0/3 (Qayfy) —0q (ngyfy) +dtQa/3 =0= dth,B +£anB =0, (38)

where£¢ Q. is the Lie derivative of2, 3 along the vector field”. In addition, one can verify that
the matrixQ,g (3.4) obeys the Jacobi identitQ( g is @ symplectic matrix)

0aQpy + 0pQya + 0yQqp = 0. (3.9)

Now we are going to analyze these equations. It is known that the gesodudbn Qg of
eqguation (3.8) can be constructed with the help of a solution of the Cauobiepr for equations
(3.1). Suppose that such a solution is known,

Xt = ¢a(t>x(0))7 X‘(JO) = ¢a(07X(0)) (310)
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being a solution of equations (3.1) for axy, = <x€’0>> ,and x“(t,x) be the inverse function with
respect tap“ (t, X)), i.€.,

X* = 9%(t,X0) = X5 = X" (t,x), X" = 9%(t,X”), daX"|t—0= 9y (3.11)
Then
Qap(t,x) = dax” Qg (x) 9pX°. (3.12)
(0)

where the matri>QaB is the initial condition fonQO,p,
0
Qap(t. X0 = Q53 (%).

It follows from (3.9) att = O that the matrimgol)g(x) obeys the Jacobi identity such that the
general structure of this matrix is (we do not consider global problemgweaise from a nontrivial
topology of thex?-space)

a

Q%) = dap — dpia (3.13)

wherej, (x) are some arbitrary functions. Then equation (3.12) implies

Qup = 0o — 0 Ya , Ya(t,X) = jp (X(1,X)) 0aXﬁ(taX) . (3.14)

On the other hand, relation (3.4) must hold,

Ou Wﬁ - ‘9[3 Yo = daJB - dBJa )

which implies that

\]O{(tax) = ’~.Uor +0a¢ = JB (X(tax))daXB(taX) +aa¢(tvx)7 (315)

where ¢ (t,x) is an arbitrary function. One can represent another formdfdr, x), in which the
ambiguity related to the arbitrary functiorg (x) is incorporated in the matrng)g. The general
solution forJq(t,x) of the equation (3.4) provided th&, is a given antisymmetric matrix that

obeys the Jacobi identity, is given by
1
Ja (t,X) :/ xPQp(t,sX) sdst dad (t,X), (3.16)
0

where@ (x) is an arbitrary function. Substituting (3.12) into (3.16), we obtain

1
Jalty) = [ [axYQ)3 (x) 9px°] | __ sds+aab(t.y). (3.17)

Equations (3.15) or??) describe all the ambiguity (arbitrary functiofg(x) and¢ (t,x), or arbi-

9 and arbitrary functior (t,x)) in constructing the ternd, (t,x) of the

trary symplectic matri>Qy6

Lagrange function (3.2).

One can also see that choosing the maﬁ)ﬁg(x) to be nonsingular, we guarantee the non-
singularity (condition (3.6)) for the matri®,(t,x) since components of the latter are given by a
change of variables (3.12).
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To restore the terrhl in the Lagrange function (3.2), we need to solve the equation (3.7) with
respect tdH. We obtain forH the following representation:

H(t,x) = /Oldsx8 [Qpa(t,sx) 9 (t,sx) — Jp(t,sX)] +c(t), (3.18)

wherec(t) is an arbitrary function of time, an@g, andJs are given by (3.12) and (3.17) re-
spectively. All the arbitrariness in constructikbis thus due to arbitrary symplectic matm@,
arbitrary functionsp (t,x) entering intoQg, andJg and duec(t).

We can see that there exist a family of actions (3.2) which lead to the sam&éoaguef
motion (3.1). It is easy to see that actions with the seﬁ{fé but different functionsp (t,x) and
c(t) differs by a total time derivative (we call such a difference trivial). Aeliénce in Lagrange
functions related to different choice of symplectic matri(‘)%% is not trivial. The corresponding
Lagrangians are known asequivalent Lagrangians.

The first-order action (3.2) can be regarded as a Lagrangian actias, aHamiltonian ac-
tion with a noncanonical Poisson bracket. An equivalent second-bedgangian formulation is
always possible; however, it may include additional variables [20].

One ought to say that it is always possible to construct a Lagrangiam &gotinon-Lagrangian
second-order equations in an extended configuration space follovgimgpde idea first proposed
by Bateman [21]. Such a Lagrangian has the form of a sum of initial equsatibmotion being
multiplied by the corresponding Lagrangian multipliers, new variables. TherfEagrange equa-
tions for such an action contain besides the initial equations some new eguatiorotion for
the Lagrange multipliers. In such an approach one has to think how to ieténernew variables
already on the classical level. Additional difficulties (indefinite metric) cgreapin course of the
quantization.

As an example, let us consider a theory with equations of motion of thetform

X = A()X+ j(t) (3.19)

and apply the above consideration to construct the action principle forestieeory.
The solution of the Cauchy problem for the equations (3.19) reads

X(t) =T ()Xo + ¥(t), (3.20)
where the matrixX (t) is the fundamental solution of (3.19), i.e.,
F=Ar, T(0)=1, (3.21)
andy(t) is a partial solution of (3.19). Then following (3.12), we construct the ma&yix
Q=NA"TQOA, A=T"1 (3.22)

and find the functiond andH according to (3.17) and (3.18),

J= %XQ, H= %XBX— Cx, (3.23)

Here we use matrix notation,= (x7), A(t) = (A(t)g) i =319, a,p=1,...2n.

10
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where 1
BZE(QA—ATQ),C:Qj. (3.24)

Thus, the action functional for the general quadratic theory is
1 :
X = 5 / dt (XQX — XBx— 2CX) . (3.25)

One ought to say that an approach to constructing the action functigrtakfeet linear inho-
mogeneous equations was proposed in [22].
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