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Spectral theory of linear waves and instabilities of maghgdrodynamics (MHD) describes an
enormous variety of plasma dynamics in the laboratory antiéenUniverse. The reason is the
abundance of plasma: more than 90% of visible matter in theddse is plasma, whereas dark
matter may have a substantial plasma component as well. HEoedtical basis comes from the
fact that the MHD equations are scale-independent and thHid Bpectral theory can be castin a
completely analogous form to that of quantum mechanicsMiH® force operator is self-adjoint
in the Hilbert space of plasma displacement vectors [1]. edieless, MHD spectral theory is
still very incomplete at present. In particular, group tleical investigation of symmetry prop-
erties has hardly been undertaken. Considering the canteaplasmas are to play in a future
model of the Universe, this calls for a major mathematicref

Probablythecomplicating factor is the omni-presence of large backgddiows, which are often
super‘sonic’ (surpassing one the three critical MHD spgddwplying that the standard picture
developed for static plasmas breaks down: Plasma dynasticbe described hyon-selfadjoint
operatorsand the necessary background states are frequeatigonic The mathematical prob-
lems associated with these two features are enormous,dartthe found monotonicity properties
of the complex spectrum and singularities in the equilitrifiows provide confidence that a
meaningful structure will eventually emerge.

This will be illustrated with recent results on the spectrofaccretion disks [2] and new insta-
bilities driven by transonic transitions of the flow thatdhve singularttrans- slow Alfvén modes
with a continuous spectrufi3]. Except that these instabilities appear to have exgifihysical
properties (facilitating accretion flows and jet formadiothhey have quite interesting geometri-
cal properties as well since they ‘live’ on the curved twandnsional surfaces spanned by the
plasma velocity and magnetic fields.
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1. Introduction

Astronomical observations show that plasma is the mostdanr(> 90%) state of matter in
the Universe. Recently, dark matter is also considered ¥e hasubstantial plasma component.
Hence, on should expect plasmas to play a major role in futasgnology. A crude definition
reads: plasma is a completely ionized gas of freely movirgitipely charged nuclei and negatively
charged electrons. On Earth this state of matter is exaggtiobtained in laboratory thermonu-
clear fusion experiments at high temperatufes<(10®K). In astrophysics, plasmas are ever more
prominent (stellar coronae, magnetospheres, pulsars cBigtion disks, AGN jets, etc.).

What is so special about plasmBfasma is essentially a global stdtecause of the embedded
magnetic field, so that it is meaningless to discuss an emlatall piece of plasma.

Consider the standard view of nature (Fig. 1). In betweemelgary particles interacting
through the nuclear forces and astronomical objects kemther by the gravitational force, the
intermediate levels are dominated by the electrostatuefgiving rise to atoms and molecules, the
electrically neutral building blocks of ordinary mattehé electrostatic force is ‘exhausted’ on the
larger distance scales: the dots in the figure appear toatedtbat nothing of fundamental interest
happens over 18 decades in length scale!

Nuclear forces

4

quarks/leptons

nuclei () / electrons {) 107 m

Electrostatic forces

4

atoms/molecules 10 %m

(ordinary matter: electrically neutral)

Gravity
U
stars/solar system 10°/103 m
galaxies/clusters 1029/10%3 m
universe 1026 m

Figure 1: Standard view of nature

The mistake implicit in this figure is that the main constituef the Universe is assumed to
be ordinary matter instead of plasma. Plasma is also aleltjrineutral, but the nuclei) and
electrons {) are not tied in atoms or molecules but freely move aboutimfone collective fluid.
The unavoidable result is induction of electric currentd aragnetic fields, giving rise to large-
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scale plasma dynamics determinedrbggnetic flux conservationn contrast to the omni-present

spherical symmetry of electrostatic and gravitationatésrin atomic physics and astronomy, such

symmetries are absent on the plasma scaleB = 0 is incompatible with spherical symmetry

(evidenced by the violent disruptions of stellar magnetiofigurations). Instead, the magnetic

plasma confinement geometries (toroidal or infinitely longular structures) become the basic

entities. Hencemagnetohydrodynamics (MHD) describes the intermediateldeof the Universe.
Theoretical plasma models roughly fall into three catezgori

(1) Kinetic theories, describing the local small scales lans of Boltzmann equations for the

electron and ion distribution functiorfg;(r,v,t), coupled with Maxwell’s equations for the electric

and magnetic fieldg, B (r,t);

(2) Two-fluid theories, describing both small and large ssddly means of electron and ion fluid

variablesng;, Uej, Pei (r,t), again coupled with Maxwell’s equations f&t B (r,t);

(3) Magnetohydrodynamics, describing global large sdayameans of the single fluid variablps

v, p, B (r,t). Frequently, dissipation is a slow process so that digsgdHD simplifies to ideal

MHD, the simplest and most effective of all plasma models.

lo (M) By (T) to (s)
tokamak 20 3 3x10°
magnetosphere Earth 4 x 107 3x107° 6
solar coronal loop 108 3x 1072 15
magnetosphere neutron star 10° 108 * 102
accretion disc YSO 1.5 x 109 1074 7% 10°
accretion disc AGN 4 % 10'8 1074 2 x 1012
galactic plasma 102! 1078 101°

(= 10°ly) (= 3x10"y)

- Table 1: Scales of actual plasmas

The ideal MHD equations are obtained by averaging the kineguations over space and
time, breaking the symmetry betweBrandB by exploiting pre-Maxwell's equations (neglecting
displacement current and electrostatic force), and datarghthe electric field fronkE = —v x B:

aa_lt) +0-(pv) =0, (conservation of mass) (1.1)
ov 1

p(—+v-Dv)+Dp+pD<D——(D><B)><B:O, (momentum) (1.2)
ot Ho

%-FV‘ Up+ypd-v=0, (entropy ) (1.3)

aa_?_mx (vxB)=0, 0.-B=0. (magnetic flux) (1.4)

These equations describe an enormous variety of diffetastras (Table 1) because they scale-
independentby proper scaling, plasma sizl)( magnetic field strengthBg), and time scalet()
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drop out of the equations. The time scale is associated Witplasma densitypg) through the
Alfvén speed §y= Bo//loPo = to = lo/Va.

To solve the MHD equations (1.1)—(1.4), two general apgrea@xist in plasma dynamics:
(a) Keep thdull nonlinear model This involves numerical, large-scale computing (inaateiwith
respect to the distinction between dynamics parallel anpgmalicular to the magnetic surfaces);
(b) Split innonlinear equilibriumandlinear perturbations This leads to spectral theory, which is
followed here (restricted to small amplitudes, but invotypowerful mathematics).

Our angle on the field is dictated by the attempt to unify thetatory and astrophysical pic-
tures of MHD waves and instabilities by exploiting the sealgependence of the MHD equations.
We call thisMHD spectroscopylt originated from MHD spectral theory and large-scale eual
computations applied to laboratory fusion experiments anynauthors since the 1970s. MHD
spectroscopy for tokamaks was proposed in Ref. [4] by falgvthe example of helio-seismology
as a very accurate method to determine the interior chaistate of the Sun. A similar, astrophys-
ical, program is magneto-seismology of accretion disksiabompact objects [2].

2. MHD spectral theory of static plasmas

For static plasmas (no background velocities), lineaongbroceeds according to the scheme:
(a) Static equilibriumvariablespg, po, Bg (functions ofr) are determined by the nonlinear PDEs

jox Bo= Upo+ polld, jo=0xBo, 0-Bo=0, (2.1)

with only one BC,n-By =0 (at the wall).
(b) Linear perturbationsv1, p1, B1, p1 (functions ofr,t) are determined by the linear PDEs

ov . ,

Pod—,[1 = —0p1+j1xBo+joxB1—p 0P, (2.2)
17}
% = —V1-Opo—ypoll-vy, (2.3)
%:Dx(leBo), 0-B;=0, (2.4)
fd
% = —0-(pov1), (2.5)

with the BCsn-v; =0 andn-B1 =0 (at the wall).
An extremely effective method to reduce the system (2.23}({2 obtained by exploiting the
Lagrangian displacement vector fiefdr,t), which is related to the plasma velocity by

v=—=—+4vVv-0§ = vi=—-. (2.6)

It permits integration of the equations (2.3)—(2.5) per B1, p1, and presentation of the momentum
equation (2.2) in terms df alone. This yields an equation of motion (tisehrédinger equatior)’
in terms of the force operatdt:

2
F(E)E—Dn—Bx(DXQ)+(D><B)xQ—ir(DdJ)D-(pE):p%, 2.7)
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with the shorthand notation

m(=p) =-ypd-§-&-Op, Q(=B1)=0x({xB). (2.8)
For normal modesf(r)e—“*’t , the following eigenvalue problem is obtained:
F(&)=—pw?é = spectrum{w?} . (2.9)

The resulting spectrum contains both discrete and contmparts (even on a finite interval!).

Differential eqgs. Quadratic forms
(‘Schrodinger’) (‘Heisenberg’)
Equation of motion: Hamilton’s principle:
F€) = p& 5[ (K[é] B W[E]) gt —0 - Fulldynamics:
3152 t1 g(r7 t)
Eigenvalue problem: Rayleigh’s principle:
Wigl Spectrum{w?}
F(¢) = —pw? 0——==0 = ,
(&) = —p¢ 1] & eigenf. {£(r)}
Marginal equation: Energy principle:
Stability (¥)
F(¢) =0 W 20 n
© el < 7 &uial £(r)

Figure 2: Two ‘pictures’ of MHD spectral theory

One may introduce Hilbert space and quadratic fornfsr this eigenvalue problem, and thus
obtain a complete (mathematical) analogy with quantum rmeick (Fig. 2):

(1) Define an inner product for vector fiel§sandn (satisfying the BCs), with finite norm,

Em=3[pE nav. JEI=@EEH <. (2.10)
(2) In this Hilbert space, the force operatois aself-adjoint linear operatar
L[ r@av=1 [&-Fnav, 2.11)

so that the eigenvalues pf 1F are real. Hencew? > 0 = stable, orw? < 0 = unstable.

(3) The linearized kinetic energy is related to the norm,
KE%/pvde%%/pfdeEHfH2<00. (2.12)
The potential energy follows from energy conservatdh= —K, and self-adjointness,

W:—%/E*F(E)dv. (2.13)
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The intuitive meaning of Eq. (2.13) fa¥ is that it is the work done against the forige

(4) This yields the powerfutnergy principlg5] to investigate stability by means of trial functions:
eitherW[&] > 0 for all £ = stable, orW[§] < O for a single§ = unstable.

Not surprisingly, the standard spectral theory of statisplas starts with the model problem
of solving the MHD force operator equatidi§) = —pw?€ (the time-independent ‘Schrodinger
equation’) for acylindrical flux tube(the ‘H atom’). This involves first projecting the Fourier
modes,

£(r,0,2) = (&(r),&o(r), & (r)) MoK, (2.14)

onto the magnetic geometry (i.e. normal to the magneti@sed, . and||B) = x(=ré&),n, .
Next, eliminating the tangential componemtsy’, x) and{(x’, x), which leads to a radial wave

equation fory [6, 7],
d / N dyx vV o /wy

a(ﬁa>+|:u+5+<5>])(—o, (215)
whereN, D, U, V, W are functions of (involving the background equilibrium solutiopsgr), p(r),
B(r) of Eg. (2.1)) and otv?. Here, two kinds of singularities occur, associated withzaros oN
andD:

2 2

N = p?(yp+B?)(w? — wf) (w® — wd) = genuine continugwd}, {wR},
(2.16)

— wh) (W? — why) = apparent continuéw? }, {w?,} .

The genuine continua [8, 9] correspond to localized Alfvéd fast magneto-sonic waves, repre-
sented byd-functions localized at particular magnetic surfaces ajygarent continua are just fake
singularities [10, 11, 12] representing the turning poregfiencies of the slow and fast magneto-
sonic waves.

This leads to a schematic structure (Fig. 3) with the spetthanging’ on the continu@w%},
{w?} and{w?(= =)}, where the slow magneto-soni¢)( Alfvén (1), or fast magno-tosonic
modes become singuldvlonotonicity of the spectrum outside the singularitesild be proved by
splitting the quadratic form in a 3D internal product and aStDrm—Liouville type expression [13].

mm continuum
=== non-monotonic
—  Sturmian

<—  anti-Sturmian

2 2 2
{('OS } {wA } wF =0
— - — - - —
— e I — — e >
0 2 2
{wo} {wf}
\\ﬁ%/ Y ~ v —
slow Alfvén fast

Figure 3: Schematic spectral structure of MHD waves
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The following ‘picture’ has emerged:

(a) MHD spectral theory is powerful organizing principldor the dynamics of macroscopic waves
and instabilities in plasmas.

(b) Thespectral structure centers about the three contifa&}, {w2}, w2 = . For example,
most of tokamak stability theory concerns ‘interchangstatilities, i.e. cluster spectra emitted by
the continua when they extend o= 0 (Fig. 4):

Figure 4: Local stability associated with the limitsa ~ ws ~ kB — 0

This is the basis of the celebrated ballooning formalisnj.[14

(c) The insight has been embedded in powerful numerical cedploiting advanced eigenvalue
solvers like the Jacobi—Davidson algorithm developed ley/8n and van der Vorst [15].

(d) Folding in the data obtained from a large variety of digjits in tokamaks has led to the
maturation of MHD spectroscopy fetatic laboratory plasmas

(e) MHD spectroscopy fostationary astrophysical plasmas still immature. Spatially resolved
observations are presently absent, but they will undolptderge in 21st century.

3. Maodifications for stationary plasmas

For stationary plasmas, spectral theory is much more coatplil than for static plasmas since
the equilibrium involves the background flow field

0-(pv) =0, (3.1)
pv-Ov+Op+pdd=jxB, j=0xB, (3.2)
v-Op+ypld-v=0 (3.3)
Ox (vxB)=0, 0.B=0. (3.4)

Hence, theequilibrium becomes a nonlinear problem in its own right.
The linear perturbations are again representable withpdadisment vector field [16],

F(&)+2ipwv- D& + pw?E =0, (3.5)
F= Fstatic(f) + 0. [p(V- DV)E — PpVV- DE ) (3-6)

but theoperator is no longer self-adjoinso thatcomplex eigenvalue® occur corresponding to
damped and ‘overstable’ modes. The MHD spectral problem,

Fstatic(&) + 0 [p(v-Ov)E] + p(w+iv-0)2& =0, (3.7)

is now a quadratic eigenvalue problem, involving Doppléftsiand Coriolis effects.
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Theradial wave equatiorfor the model cylindrical problem is again an ODE [17, 2],
d /N dy ~ VWY
E(BE)*[‘”SJF(S)]X_O’ (3.8)

whereN, D, U, V, W are functions of and of theDoppler shifted frequencw,
W= w—Q(r), Qo =mvp/r +kv,. (3.9)
Forward @) / backward ¢) shiftedgenuineandapparentcontinua (both real!),

Qéoniws, QXEQQ:EOL)A, ng:l:oo, (310)

Q;tOE Qo:l:(;)so, Q?to onia)fo, (3.11)

determine the spectral structure: clustering of complgemialues occurs towards the real axis.
The relationship between the MHD and hydrodynamic (HD) spes illustrated in the figures

below, demonstrating how the latter result from taking thetIB — 0.

(1) Structure of the MHD spectrum, with threal slow, Alfvén, and fast continuavhere (in the

presence of gravity) forward and backward, Sturmian and&tntmian discrete modes cluster,

forming the maximum allowable number of ten sub-spectrd [18

backward forward
p—
fast Alfvén slow slow Alfvén fast
. (Qg)
QF Qp Qs Qg ox af
- - + +
Qro Qg0 Q Qg0 Qfo

Figure 5: Schematic spectral structure of MHD waves with flow

(2) Structure of HD spectrum for ordinary shear flow fluid,iwtthereal flow continuun{found by
Case [19]), where gravity modeg-(nodes) cluster, whereas sound wavesrodes) cluster ab:

backward backward / forward forward
p modes g modes p modes
(Qg) .
Q Q Qp
-+ — - — ®
B s E— S

- +
Qo Q0

(=)

Figure 6: Schematic spectral structure of hydrodynamic waves with flo
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This analysis has produced the following new insights:

(@) In the HD limit (B — 0), the four MHD Alfvén and slow continua collapse into the HBw
continuum:

Qx —»Qp, QF—Qy (Qf remains at-e). (3.12)

Vice versa, the flow continuum is absorbed by the four MHD itarat whenB = 0. Hence, in
contrast to common beliefthere is no separate flow continuum in MHLS].

(b) For a plane plasma slatmonotonicity of the MHD spectrum along the real actsild be proved,
whereas the analysis of a cylindrical plasma (with Corifdise) required the construction of a new
guadratic formQ taking the place ofv in the complex plane [18].

(c) Significant progress was obtained in the understandfriheofull complex spectrunfin the
presence of the magneto-rotational, Rayleigh—Taylor,Ketdin—Helmholtz instabilities) of a thin
cylindrical slice as a model for accretion disks around cacbpbjects [2, 20].

Let us now make up the balance. In astrophysical plasstasonary equilibrium flowsnust
appear center stage. Hence, the complications associdatedaon-selfadjoint operators, Doppler
shifts, eigenvalues on unknown paths in the compleglane, centrifugal and Coriolis effects in
curved velocity fields necessarily have to be addressed.olld trace the central spectral structure
(continua and monotonicity) along the real axis, and are @bhccurately compute full complex
spectra. However, the big challenge is yet to cotnansonic flows This requires analysis in at
least two dimensions since hyperbolicity and shocks brealsymmetry of the simpler 1D equi-
libria. Hence, our next subject is MHD spectral theory of 2ihsonic flows. This is tied to the fol-
lowing physical problem: In accretion disks around neustams or black holes, accretion—ejection
requires anomalous dissipation, i.e. small-scale indiabi The standard magneto-rotational in-
stability (MRI) only operates for low magnetic field strengfre therenstabilities that operate at
arbitrary field strength?

4. Instabilities of transonic flows

Accretion disks rotating around massive objects, togethtir emitted jets, abound in astro-
physics. They occur in the wide range about young stellagablfly SOs), with a mass of the order
of the solar massMx ~ 1Mg), but also about active galactic nuclei (AGNs), with the saf
hundreds of millions of starsVx ~ 10®M.,). They are observed with optical and radio telescopes
and generally show near-relativistic jets, emitted pedpzrar to the rotational plane, with a sur-
prising stability. The detailed mechanisms of both acoretind ejection are not quite understood
although the magneto-rotational instability, operatihgraall magnetic field strengths, is claimed
to be responsible for the anomalous dissipation neededéoetion [21, 22].

Here, we enlarge the discussion to the plasma dynamitansonically rotating magnetized
(thick) disks about a compact object for arbitrary magnéuaf the magnetic fieldn this manner,
we are able to describe the dynamics of both astrophysigatish like accretion disks, and labo-
ratory fusion devices, like tokamaks, from the single pointiew of the magnetohydrodynamics
of axi-symmetric magnetically confined plasmas. Of coutise,only reason this can be done is
the scale-independence of MHD discussed in Sec. 1. Fig.wsstiee schematic configuration: a
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‘superposition’ of a tokamak and a black hole. The disk isatefl to a thick torus with magnetic
field components in the toroidal as well as the poloidal dioec(indicated by the corresponding
Alfvén speeddy andb,) and also rotating in those directions (indicated by the Bpeeds/y and
Vp). In the center of the torus, a compact object of nidsss placed, indicated by the symbgl
Of course, in laboratory devices, this object is absenthénanalysis, switching off this effect is
simply effected by putting the gravitational paramdidintroduced below) equal to zero.

g
e >

Vo, b
¢ P9

Vp. bp
Figure 7: Rotating magnetized disk about a compact object

We investigate the stationary 2D equilibrium and the looatabilities of this configuration,
assuming that the accretion speed is much smaller than thtioro speeds of the disk. We will
find new instabilities driven by the transonic transitiorfsttee flow that involve singulatrans-
slow Alfvén modes with a continuous spectihiat ‘live’ on the curved two- dimensional surfaces
spanned by plasma velocity and magnetic field. The grasitatiparameter, measuring the devia-
tion from Keplerian flow (wher& = 1) is defined by

_ PCMx 1 GMs v parallel flow|. (4.1)
RoM2B?

RV

where ¢ is the magnetic flux (serving as a radial labd®), is the distance from the symmetry
axis to the magnetic axis (located somewhere in the intefidhe torus), andv is the poloidal
Alfvén Mach number (the Mach number of the poloidal flow meadwvith respect to the Alfvén
speed). The analysis, taken from Ref. [3], is amplified byrdseilts from two numerical codes, viz.
FINESSE, for the computation of transonic equilibria [28)d PHOENIX, for the computation of
the corresponding transonic MHD spectra [24].

First, the system of PDEs (3.1)—(3.4) is transformed intar@ational principle for stationary
MHD equilibria involving two fields, viz. the poloidal fluxy, and the square of the poloidal Alfvén
Mach numberM? = pv%/B%. The stationary axi-symmetric states are then obtainedibiymizing
a Lagrangian,

M)

1 My Tl ULE!
6/$dV:0, L=——(1-M)OyY)P-— - —=+—>_, 4.2
e (L MAIDWE - o=+ (4.2)
where three nonlinear compositelg (/\i(L[I);R,Z) enter that are functions of five arbitrary flux
functionsA; (). These are the stream functign the Bernoulli functionH, the entropy S, the
vorticity-current density stream functid€, and the electric potentig, which in turn are nonlinear
composites of the primitive variablgs, p, vp, vy, Bp, andBy .

10
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The Euler—Lagrange equations of the variational prindi$l2) constitute a second order PDE
for the fluxy (R, Z), and an algebraic equation for the squisi€R Z) of the poloidal Alfvén Mach
number. Substitution of the solutidi? = M?(|0y|, ¢; R, Z) of the latter equation back into the
PDE for ¢ provides a rather complicated expression for the coeffisiehthe highest derivatives,
determining theharacteristics d¥'dy = 4++/A, where

< 0: elliptic
_ yp+B? M2 — M2 p

4T e mzvEw 3

> 0: hyperbolic

Here, the quantitiesl., Mg, andM; are nonlinear expressions of the primitive equilibriumiatles
that yield two hyperbolic flow regimes, viz. a slow regime ¢ < M? < M2 and a fast regime
for M? > M]?. For other values df1? the flow is either elliptic or forbidden (existence of soturts
is not guaranteed for all arbitrary choices of the five fluxclions).

We then arrive at what may be called tin@nsonic enigma

(1) At transonic transitions, the character of the equilifor flow changes from elliptic to hyper-
bolic. Consequently, standard tokamak equilibrium salvbverge in thényperbolicregimes. For

the time being, the ‘remedy’ appears to be to restrict theutalion to theelliptic regimes which

in MHD (in contrast to ordinary hydrodynamics) contain betlb- and super-critical regimes.

(2) Because of the transonic transitions, the linear waassaCiated with time dependence) and
the nonlinear stationary states (associated with the 2Despl@pendence) become interconnected,
as illustrated by the figures below:

— Thewave spectraluster at theeontinuous spectrétws}, {£wa}, £ (wr), for simplicity here
shown for the static equilibrium case:

slow Alfvén fast
4— ——
‘ T | . | [ 2
‘ .f||||| | | ||||||||W|—"°
0 2 2
wg WA 00

Figure 8: Asymptotic behavior of the three MHD waves
— Thehyperbolic flow regimeare delimited bycritical values of the poloidal Alfvén Mach number

that correspond to the above singularities, where it is todied that the hyperbolic Alfvén regime
consists of a singularly isolated point in the middle of efdden flow regime [25]:

Eos H, E.  “Ha & H

M2 M2 1 M 00

slow Alfvén fast

Figure 9: Corresponding three hyperbolic MHD flow regimes

11
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It is of interest to investigate the stability propertieghe first elliptic flow regime (indicated
by &sin Fig. 9). In this regime, we studidtansonic continuum modgge. singular modes local-
ized about aingle magnetic/flow surfacnd mainly directed tangential to it:

n(y,9,9) ~ 8(w—yo)A()em,

A (4.4)
J(W.9.9) ~ 3(W—o){ ().
For each magnetic surface, labeledyny we then obtain a discrete eigenvalue problem,
O“RZB%O“ M2 M2 BZ 0 pRBf’ 2 ; M2 M2 BZ 0 pRB¢ ar
[T T MR o(5e)| i 5o (B) | e
A= ,  (4.6)
: B2 /PRBy B2
F(M2 _ M2\ —_ TM2R2 o 2 _m2\El
i (M? M2 [a( > )} FM2B J—l—p[d((M Mc)pzdpﬂ
N R%B3 - _ -
. (\/ﬁw—ﬂM)Fp(\/ﬁw—M,?) —iay/p@
B= , 4.7)

io/pw (VPO—FM)B*(yp—M.F)

where w = w — nQ is the Doppler shifted improper eigenfrequency in a framatiiog with the
angular velocityQ, a is the Coriolis parametefg(...)] indicates derivatives of the equilibrium
guantities tangential to the magnetic surfaces, g@nds the derivative along the magnetic field
lines. The continuous spectrum is mapped out by the calleaif solutions of Eq. (4.5) for all
different values ofp (ranging from 0 on the magnetic axis to 1 at the wall).

Note that we have a truly localized problem now, associatithl nvodes that are ‘living’ on
the two-dimensional surfaces spanned by the magnetic firedd And coinciding with the surfaces
of the flow. The terms on the diagonal of the maﬁbsuggest that those modes of the continuous
spectrum become unstable in the trans-sltWé & M2) elliptic flow regime. These modes could be
studied in accurate detail by means of the newly developatisii of equilibrium-stability codes
FINESSE-PHOENIX [23, 24]. One particular result is showrfig. 10 where the continuous
spectrum is plotted in the complex-plane for a thick accretion disk (torus) with flow parallel t
the magnetic field lines and the vallie= 2 for the gravitational parameter. The colors indicate
the radial positiors = /¢ of the modes. Some of the continuum modes are located on dhe re
w-axis, as in static plasmas, but the flow now drives a sigmifipart of them into the complex
plane to become unstable (km> 0). Typically, two real modes coalesce and then produce a
pair of two complex conjugate modes, one of which is an ‘adedale’ mode (a wave with an
exponentially growing amplitude). Overall, two kinds ofepstable modes occur, corresponding to
modes propagating clockwise or anti-clockwise in the miabdirection (the short way around the
torus). For the parameters chosen, these pairs of modeaante formlocked modegRew = 0)
with huge exponential growth rateen the scale of the rotation period of the disk, shown in the
middle of the figure.
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Figure 10: Complex trans-slow continuum instabilitids=2,n=1

Led by the numerical results, which exhibit dominant cauplof six slow magneto-sonic and
Alfvén continuum modesS;, ,;, A%, S, ;, which are degenerate at the rational magnetic surfaces
(whereq = —m/n), an explicit analysis of the dispersion equation could &eied out by small
inverse aspect ratio expansion. This confirms that the -skms Alfvénic continuum modes are
unstable at, or close to, the rational surfaces for all ttalomode numbers. For a very massive
central object[ > 1), the growth rate in the limin|,|m| — c« becomes huge,

W~ (i/\/20)MT, (4.8)

far in excess of the Alfvén frequency. Since these modesaaaized both radially and in the
anglesd and ¢, they areperfectly suitable to produce turbulence of the flow needegrdduce
both accretion and detachment of the flow from the magnelitifieolved in jet formation.

5. Conclusioning remarks

(a) MHD spectroscopy of extended magnetic flux tubes dessiiaveling Alfvén wave excitations
of magnetic strings that can be observed everywiretke Universe.

(b) In transonic plasma flows about compact objects, the coatiawspectra of those waves are ex-
plosively unstablefacilitating both accretion and ejection of jets from atimn disks about those
objects.

(c) It is appropriate to close with expressing deep apptiecieof the mathematical power of
Hilbert space(1912), that first provided the mathematical apparatus f@antuym mechanics and
now also for the completely classical theory of magnetodydamics. With the many space mis-
sions planned to provide spatial resolutions of a largeetsanf astrophysical objects, and knowing
that most of them are dominated by plasma dynamics, MHD spsmipy awaits a great future!
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Appendix: Variational principle for the stationary states of two-fluid plasmas

For the stationary axi-symmetric equilibrium states offiluid plasmas, a similar variational
principle as Eq. (4.2) could be derived [26]:

5/$TF(XG>DXaaPa>(/-’aD(/-’a§~0>D§7’>7ZD77; R,Z)dVZO (a :evi)> (51)
_ 1 2, 1 e 1 2 102 Lo
1 2 _ 1 y e 1 .y
+ 2LOR2 1“+ peFe v— 1pe S+pF V— 1p| S. (5.2)

It involves the seven fieldge, Xi, Pe, Oi, W, @, 7V, i.e. the electron and ion stream function for the
poloidal flow, the electron and ion density, the poloidal metic flux, the electric potential, and
the gravitational potential, respectively, and three imaa@r composites of those fields,

| (Xe, Xi) = RBy = lo+ Ho[(€/mMe) Xe— (Z&/my) Xi] ,

1

~ ~ e 2 e ~ ~
Fe(Xe: W, @, 7;R Z) = He—ﬁ(Le—n—bw) b (et @)= Ta— T

F(Xi.W.0.7;RZ) = H 1<i Zew>2 Ze ~ .

_ﬁ +ﬁ —ﬁ((ﬂk—F(P)—%*—%a

which in turn involvesix arbitrary stream functions &(Xei), Lei(Xei), Si(Xei) and the three
potentialsy, @, 7. Here. Hg; are the Bernoulli functions,e; are the generalized specific an-
gular momenta, an&,; are the specific entropies of the electrons and ions. Nesetiesay, this
problem is considerably more complex than the ideal MHDimtary equilibria, since it also
contains the microscopic scales of the electromagnetisnph and cyclotron waves, so that the
scale-independence of ideal MHD is lost. Here, transoaicsitions also occur, when the electron
and ion flow speeds surpass the respective sound speedsspm ding to the small-scale asymp-
totics of the waves of the two-fluid plasma. The associataalstrnic enigma and its implications
for the calculation of the spectrum of two-fluid waves anddbdities has been indicated, but not
investigated in any detail.
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