PROCEEDINGS

OF SCIENCE

Boson-Boson Bound States in Higher-Derivative

Electromagnetism Augmented by a Chern-Simons
Term

Antonio Accioly™@ and Marco Dias®
& Laboratdrio de Fisica Experimental (LAFEX)
Centro Brasileiro de Pesquisas Fisicas (CBPF)
Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ,iBraz
b |nstituto de Fisica Tedrica (IFT)
S&o Paulo State University (UNESP)
Rua Pamplona 145, 01405-000 S&o Paulo, SP, Brazil
E-mail: acci ol y@bpf . br andacci ol y@ft. unesp. br,ndi as@ft. unesp. br

The Chern-Simons term alone is unable to form “scalar Copp#s”. Nonetheless, there exist
charged-scalar-boson — charged-scalar-boson bound stdtee framework of Maxwell-Chern-
Simons theory. Numerical calculations indicate that tlaeesalso Cooper pairs within the context
of three-dimensional electromagnetism with a cutoff démensional electromagnetism with
higher derivatives) supplemented by a Chern-Simons terma.sMéw that it is always possible
to find an interval where the models with higher derivativaseha total number of bound states
greater than those with lower derivatives.

Fifth International Conference on Mathematical Method®hysics — IC2006
April 24-28 2006

Centro Brasilerio de Pesquisas Fisicas, Rio de JaneirozBra

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Scalar Cooper Pairs Antonio Accioly

1. Introduction

It is well-known that “scalar Cooper pairs" do not occur in the framéwafr pure Chern-
Simons theory [1]. Nonetheless, charged-scalar-boson — chargda-boson bound states do
exist in the framework of Mawell-Chern-Simons theory [2]. Interestingugth, numerical calcu-
lations show that there are also scalar Cooper pairs within the contexteefdimensional elec-
tromagnetism with a cutoff [3, 4] (three-dimensional electromagnetism withehidhrivatives)
enlarged by a Chern-Simons term. The electromagnetic part of this moddirsdiby the La-
grangian

1 v a2 vV AA

whereF,, = d,A, — d, A, is the usual electromagnetic tensor field, @nid a cutoff. This La-
grangian is, of course, gauge and Lorentz invariant; in addition it leattscéd field equations
which are linear in the field quantities. Moreover, at distances much largerthie cutoff, the
fields described by it become essentially equivalent to the Maxwell fielis classical and quan-
tum formalism for the constrained Hamiltonian related to the singular higherdragrangian
in (2 +1) dimensions mentioned above were constructed by Gseab [5], and afterward the
canonical and the path-integral quantization were performed [5, &. |dtter was accomplished
by extending the Faddeev-Senjanovic method [7]. The massive spirt-Gflae electromagnetic
field unluckily has negative energy, which implies that three-dimensionetretaagnetism with a
cutoff is nonunitary due to the presence of a ghost state with negatise @m the other hand, the
breakdown of causality may perhaps only occur on a microscopic scake piattametea is small
enough to make the massive field only important on distance scales nearrtble IRlegth~ 1033
cm. It is therefore not unlikely that a higher-derivative model canesgnt areffectivetheory of
electromagnetism at more familiar lengths.

It is worth noticing that recently it was shown that in the framework of fdmnrensional
electromagnetism with a cutoff, the electromagnetic mass of a point chargesacthe equation
of motion in a form consistent with special relativity; furthermore, the erggetation of motion
does not exhibit runaway solutions or non-causal behavior, wheoutodf is larger than half of
the classical radius of the electron [8, 9].

Our main objective here is to analyze whether or not higher-derivatimestenay be used as
a mechanism for increasing the number of charged-scalar-boson rgedhscalar-boson bound
states (scalar Cooper pairs) related to the usual three-dimensionaldil&vern-Simons theory.

The paper is organized as follows. In section 2, we discuss the oncerg# bound states
is both Maxwell-Chern-Simons and higher-derivative models. A rougimate of the number of
bound states in the context of the preceding models is made in section 3. Rimalbpncluding
remarks are presented in section 4.

2. Scalar Cooper Pairs

To begin with, we derive an expression that allows us to calculate thedimessional nonrel-
ativistic potential for the interaction of two identical charged scalar bosiana photon exchange.
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This expression is used afterward to find the bound states for both Ma@hern-Simons and
higher-derivative models.

2.1 Charged-Scalar-Boson — Charged-Scalar-Boson Low energy#tntial or the Marriage

of Nonrelativistic Quantum Mechanics and Quantum Field Theory in the Nonrelativistic

Limit

Nonrelativistic quantum mechanics tells us that in the first Born approximatercribss
section for the scattering of two indistinguishable massive particles, in theregfrmass frame
(CoM), is given by
do |m [ . - 2
— =|— [e P V()P d?r
dQ ’471./ )

wherep (p’) is the initial (final) momentum of one of the particles in the CoM.
In terms of the transfer momentukn= p’ — p, it reads

)

2

d . (2.1)

_U _ m ik-r 42

aQ ‘477/\/(r>é a°r
On the other hand, from quantum field theory we know that the cross seittithe CoM, for

the scattering of two identical charged scalars bosons by an electroticdgrid, can be written as

do 1 2

dQ ~ |16mE

)

whereE is the initial energy of one of the bosons amd is the Feynman amplitude for the process
at hand, which in the nonrelativistic limiN.R.) reduces to

do 1 2
do = ‘—167Tm AINR

(2.2)

From Egs. (2.1) and (2.2) we come to the conclusion that the expressioentiales us to
compute the three-dimensional effective nonrelativistic potential has tire fo

1 1
Vi = 4n? (2m)2

which clearly shows how the potential from quantum mechanics and therfa@yamplitude ob-
tained via quantum field theory are related to each other.

/dz K. g e, 2.3)

2.2 Bound States for Maxwell-Chern-Simons Model

In the Lorentz gauge the Maxwell-Chern-Simons electromagnetism coupladcharged-
scalar field is described by the Lagrangian

¥ = —%FWF“V—F:ZEHVpAudvAp_ %(dvAv)z
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whereD, = d,, +igA,,.
It follows that the nonrelativistic potential is given by

Q? _ skq(sr) Q?
V(r)= L + —Ko(sr 2.5
(N=-— 2 L S Ko(s), (2.5)
whereL =r AP is the orbital angular momentum, aKds the modified Bessel function.
Let us then investigate whether or not this potential can bind a pair of idecdtiaeged-scalar
bosons. In this case, the corresponding time-independent Schridionggtion can be written as

1/ d? 1d
AT = —— <W% T %n|> + Vi i
= EnZni, (2-6)
veff = i—l—V(r)
=
12 Q? [1 sKy(sr) Q?
—Wﬁs[r—z r ]“z—” ")

whereZ,, is thenth normalizable eigenfunction of the radial Hamiltonigfiwhose corresponding
eigenvalue i€y, and\/leff is thelth partial wave effective potential. Note thafﬁ behaves a%

at the origin and a#l [ ] asymptotically.
On the other hand,

d e 2 Q11 Q%1
& = m [' - FJ B oy ()
Q22| QZ
_ |:mr[r2 27_[:| Kl(Sr)

Assuming, without any loss of generality, that O, it is trivial to see that, if > " the potential
is strictly decreasing, which precludes the existence of bound stateseffmmg possibility is
I < 2—; In this intervalVe" approaches- at the origin and 0 for r — o0, which is indicative
of a local minimum. Consequently, the existence of charged-scalar-bestrarged-scalar-boson
bound states is subordinated to the condition I0< %—Z

In terms of the dimensionless parametges sr, a = %, B="17, and By = mE“' , Eg. (2.6)
reads

d> 1d
[dyz } Donl + [Enl —V| ]%nl =0, (2-7)

with
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~ [(a—1 I
Gt =1 ity - T

Of course, Eg. (2.7) cannot be solved analytically; nevertheless) ibeaolved numerically.
To accomplish this, we rewrite the radial functionZg = t‘—})', As a consequence, Eq. (2.7) takes
the form

2
[C(ij—yz + 4—3/-2] Uni + [Enl —\7|eﬁ] Un- (2.8)
Using the Numerov algorithm [10], we have solved Eq. (2.8) numericallpéweral values
of the parametera, 3, andl. In Fig. 1 we present our numerical results for the potential in the
specific case df = 6. The corresponding ground-state energy-is68 x 108 MeV. The graphic
shown in Fig. 1 exhibits the generic features of the potential, although itdexsdpmposed using
particular values of the parametersf3, andl.
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Figure 1: Attractive effective nonrelativistic potential corresyting to the eigenvalule= 6. Here[\/ga ff] =

eV, [r] =MeV1, a = 7.6, andB = 7000.

2.3 Bound States for the Model with Higher Derivatives

2.3.1 The Lagrangian

1 uv az uv 5a 1 V2
S
+(Du(p)*D“cp—mz(p*(p+ES,JVPA“d"Ap, (2.9)

wheres > 0 is the topological mass.
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2.3.2 The Nonrelativistic Potential

A1 01
v(r) = —nfn—% [§ﬁ+;szMKl<Mr>] |
ZAJKO \/ﬂr] (2.10)

where
A — 1+ a?x _ 1+ a2 _ 1+ a?x3
T ax) (%) 0 e—x)(e—x3) " ° (xa—x1)(Xa—X2)’
B — —(1+a%x)?  —(1+a%x)? (14 a%xg)?
1= ) -

LX) (x—xs) | © e x)0e—xs) o La—x)(X— %)

andxy, Xo, andxz are the roots of the equation

2% x &

We are supposing < ngf, which implies that Eq. (2.11) has three distinct negative real roots.

2.3.3 Bound States

Xl h = £R. =

. . . 2
Employing the dimension parametgrs=sr, a = =, B = .

the effective nonrelativistic potential assumes the form

a4l

~ l(a—I
\/IeffE_ (ayz ) aB

ZaJKo Xjy) — — Zb,XZKl X;y). (2.12)

However, only ifa < 1 will the well-recognized properties of QiDe preserved. In this case
it can be shown that the existence of scalar Cooper pairs is subordinatedcondition G< | < a,
where we have assuméd- 0, without any loss of generality.

In Fig. 2 we present our numerical results for the potential and the spwneling radial
eigenfunctions concerning the first three bound states in the spec#otis 4. The associated
energies ar€y4 = —6.4x 107" MeV, Epxy = —1.3x 107" MeV, Ezs = —5.2x 10~° MeV. These
graphics exhibit, in a sense, the generic features of the potential, alttityghave been composed
using particular values of the parameterg, |, and a.

3. A Rough Estimate of the Number of Bound States

We derive here approximate expressions for the maximal number of [xiates$ related to
both higher-derivative and Maxwell-Chern-Simons models.
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Figure 2: fof with the lowest three allowed energies and the correspgnelimergy eigenfunctions. Here

Ve = eV, [r] = MeV~1, a = 8, B = 2000, anca = 0.00952MeV/ 1.

3.1 Bargmann’s Bound in Two Dimensions

It was shown by Bargmann [11, 12] that for a central potential the numibigound states in
two dimensions is given by

= izm V), (3.1)

V) < 2_1|/0°° V_(r)rdr.

HereV_(r) = supV(r),0). However, as far as our potentials are concerned, the analytical com-
putation ofV_(r) is rather involved. But, sinc¥_(r) = supV(r),0) > —|V(r)|,
No(—|V]) > No(V). Since we only want to make a rough estimate of the total number of bound
states we replace the sum in Eqg. (3.1) by an integral. Noting that=$dd the bound is divergent
reflecting the fact that a negative potential always has a bound state wlirtvemsions, we arrive

at the expression

where

Imax
N(Imax) < ‘ / d rdl|, (3.2)

wherelmax is the maximal angular momentum. This inequality, unlike Bargmann’s one, is espe-
cially suitable for our purposes.

3.2 Finding I max
3.2.1 The Model with Higher Derivatives

In order to findlmax for this model, we have to solve the inequality
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[ max Im—ax—g In(r)[°
( )i

m ims

SQLnasz KO /|XJ|I‘ |r0
2na4 Z FrKl \/ Xl 0y, < 0. (3.3)

The radial variable was limited to the intervgl< r < o to avoid the usual infrared divergences.
From (3.3) we obtain the constraints

|max: FS’ (3-4)

1 .
—zsln \/E S0 (3.5)

3.2.2 The Maxwell-Chern-Simons Model

In this case the constraint dpax is the same as i8.2.1 We have also a constraint on
however, since we want to compa8e.1with 3.2.2 we shall use here the constraint on the mass
found in3.2.1

3.3 An Estimate of the Number of Bound States
3.3.1 The Model with Higher Derivatives

N(Imax) é F 9

where

(1-2) [ () o s 2incy

Q
’ ﬁ'“(m)i 1|

3.3.2 The Maxwell-Chern-Simons Model

N_(lmax) S G ’

where,

G~ ’%In (%) — %(% - 1) In(srmax)‘ :
Note that in both3.3.1and3.3.2we have assumed that< rpyax in order to avoid that In
blows up at infinity.
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4. Concluding Remarks

If we choose, for instanc% = 38MeV1, we promptly obtaiinax~ 12. On the other hand,
takinga = 0.02MeV~1, we see tham~ 0.18 MeV, satisfies the constraint (3.5). Fofin MeV)
varying in the range ¥ 1023 < r < 8x 1076, we getNmax ~ 4Nmax.

Atfirst sight, it seems that the models with higher-derivatives will have &riataber of bound
states greater than that of the Chern-Simons model. However, this is a migleadiclusion.
Indeed, if we fixrmax, Say, equal to X 10-3MeV (10 Ansgtrom), and varyr keeping the values
of %,Imax, and m, equal to those of the example above, as it is shown in Fig. 3, weatdé th
0 < rp < 0.1, higher derivatives win the game; nowrf= 0.1, the game ends in a tie, and , finally,
if ro > 0.1, higher derivatives lose the Cup.
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Figure 3: NmaX/N_max versusrg. Here[rg] = Ansgtrom andrmax = 10 Ansgtrom

In conclusion, we may say that our rough calculations seem to indicate ibgidssible to
find an intervall C [ro,rmad Where higher derivatives win the Cup.

Acknowledgments

A. Accioly is very grateful to FAPERJ-Brazil and CNPg-Brazil for piaksupport. M. Dias is
very indebted to CAPES-Brazil for full support.

References

[1] R. Jackiw,Diverse Topics in Theoretical and Mathematical PhygWs®rld Scientific, Singapore,
1995).

[2] See, for instance, A. Accioly and M. Dialsit. J. Theor. Phys44, 1123 (2005).
[3] A. Accioly and M. Dias,Phys. Rev. 0, 107705 (2004).



Scalar Cooper Pairs Antonio Accioly

[4] A. Accioly and M. Dias,Int. J. Mod. Phys. 21, 559 (2006).
[5] A. Greco, C. Repetto, O. P. Zandron, and O. S. ZandsoRhys. A27, 239 (1994).

[6] A. Foussats, E. Manavella, C. Repetto, O. P. Zandron@rd. Zandron). Math. Phys37, 84
(1995).

[7] L. Faddeev;Theor. Math. Physl, 1 (1970); P. Senjanoviénn. Phys., NYL.OQ, 227 (1976).
[8] J. FrenkelPhys. Rev. B4, 5859 (1996).
[9] J. Frenkel and R. Santolsit. J. Mod. Phys. B3, 315 (1999).

[10] B. Numerov,Mon. Not. R. Astron. So84, 592 (1924).

[11] B. BargmannProc. Nat. Acad. Sci. U.S.A38, 961 (1952).

[12] P. Blanchard and J. StubtRev. Math. Phys35, 504 (1996).

10



