
P
o
S
(
I
C
2
0
0
6
)
0
1
9

Generalized Abel-Plana Formula as a
Renormalization Tool in Quantum Field Theory with
Boundaries

Aram Saharian∗

Department of Physics, Yerevan State University,
375025 Yerevan, Armenia
and
Departamento de Física-CCEN, Universidade Federal da Paraíba,
58.059-970, Caixa Postal 5.008, João Pessoa, PB, Brazil
E-mail: saharyan@server.physdep.r.am

We apply the generalized Abel-Plana formula for the investigation of one-loop quantum effects

on manifolds with boundaries. This allows to extract from the vacuum expectation values of local

physical observables the parts corresponding to the geometry without boundaries and to present

the boundary-induced parts in terms of integrals strongly convergent for the points away from the

boundaries. As a result, the renormalization procedure forthese observables is reduced to the

corresponding procedure for the bulks without boundaries.

Fifth International Conference on Mathematical Methods inPhysics
24 – 28, April 2006
Rio de Janeiro, Brazil

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
I
C
2
0
0
6
)
0
1
9

Abel-Plana Formula as a Renormalization Tool Aram Saharian

1. Introduction

In many physical problems we need to consider the model on background of manifolds with
boundaries on which the dynamical variables satisfy some prescribed boundary conditions. In
quantum field theory the imposition of boundary conditions leads to the modification of the spec-
trum for the zero-point fluctuations and results in the shift in the vacuum expectation values for
physical observables. In particular, vacuum forces arise acting on the constraining boundary. This
is the familiar Casimir effect (see Refs. [1, 2, 3]). Within the framework of the mode summation
method, in calculations of the expectation values for physical observablesone often needs to sum
over the values of a certain function at integer points, and then subtract the corresponding quantity
for unbounded space (usually presented in terms of integrals). Practically, the sum and integral,
taken separately, diverge and some physically motivated procedure to handle the finite result, is
needed (for a discussion of different methods to evaluate this finite difference see Refs. [4]). For
a number of geometries one of the most convenient methods to obtain the renormalized values of
the mode-sums is based on the use of the Abel-Plana formula (APF) [5]. In Ref. [6] this formula
has been used for the investigation of the expectation values of the energymomentum-tensor for
a scalar field on cosmological backgrounds. Further applications to the Casimir effect with corre-
sponding references can be found in [1, 2]. The use of the APF allowsto extract in a manifestly
cutoff independent way the contribution of the unbounded space and present the renormalized val-
ues in terms of exponentially converging integrals.

The applications of the APF in its usual form is restricted to the problems wherethe eigen-
modes have simple dependence on quantum numbers and the normal modes are explicitly known.
For the case of curved boundaries and for mixed boundary conditions the normal modes are given
implicitly as zeroes of the corresponding eigenfunctions or their combinations. To include more
general class of problems, in Ref. [7] the APF has been generalized (see also Ref. [8]). The gener-
alized version contains two meromorphic functions and the APF is obtained by specifying one of
them (for other generalizations of the APF see [2, 4]). Applying the generalized formula to Bessel
functions in Refs. [7, 8] summation formulae are obtained for the series over the zeros of various
combinations of these functions (for a review with physical applications seealso Ref. [9]). In the
present paper we give applications of the generalized Abel-Plana formula to physical problems.
The paper is organized as follows. In the next section we briefly outline thegeneralized Abel-Plana
formula and discuss special cases. In section 3 we consider the vacuumpolarization by spherical
boundaries on background of global monopole spacetime. The applicationof the generalized Abel-
Plana formula to the problem of the influence of uniformly accelerated mirrorson the properties of
the Fulling-Rindler vacuum is given in section 4. Section 5 describes some other applications.

2. Generalized Abel-Plana formula

Let f (z) andg(z) be meromorphic functions fora6 x6 b in the complex planez= x+ iy. We
denote byzf ,k andzg,k the poles off (z) andg(z) in the regiona < x < b, respectively, and assume
that Imzf ,k 6= 0. By using the residue theorem, it can be seen [7] that if the functionsf (z) andg(z)
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satisfy the conditions

lim
h→∞

∫ b±ih

a±ih
dz[g(z)± f (z)] = 0, lim

b→∞

∫ b±i∞

b
dz[g(z)± f (z)] = 0, (2.1)

and the integral
∫ b

a dx f(x) converges, then

lim
b→∞

{

∫ b

a
dx f(x)−R[ f (z),g(z)]

}

=
1
2

∫ a+i∞

a−i∞
dz[g(z)+sgn(Imz) f (z)] , (2.2)

where

R[ f (z),g(z)] = π i

[

∑
k

Res
z=zg,k

g(z)+∑
k

Res
Imzf ,k>0

f (z)−∑
k

Res
Imzf ,k<0

f (z)

]

. (2.3)

We will refer to formula (2.2) as generalized Abel-Plana formula (GAPF) asfor b= n+a, 0< a<

1, g(z) = −i f (z)cotπz, and for analytic functionsf (z) from (2.2) follows the APF [5]

lim
n→∞

[

n

∑
1

f (s)−
∫ n+a

a
dx f(x)

]

=
1
2i

∫ a−i∞

a
dz f(z)(cotπz− i)− 1

2i

∫ a+i∞

a
dz f(z)(cotπz+ i). (2.4)

The useful form of (2.4) may be obtained performing the limita→ 0. By taking into account that
the pointz = 0 is a pole for the integrands and therefore has to be avoided by arcs of the small
circleCρ on the right and performingρ → 0, one obtains

∞

∑
n=0

f (n) =
∫ ∞

0
dx f(x)+

1
2

f (0)+ i
∫ ∞

0
dx

f (ix)− f (−ix)

e2πx−1
. (2.5)

Note that now conditions (2.1) are satisfied if limy→∞ e−2π|y|| f (x+ iy)| = 0, uniformly in any finite
interval ofx. Formula (2.5) is the most frequently used form of the APF in physical applications.
Another useful form [1] (in particular, for fermionic field calculations) tosum over the values of an
analytic function at half of an odd integer points can be obtained from (2.5).

Formula (2.2) contains two meromorphic functions and is too general. To obtainmore specific
consequences we have to specify one of them. In applications we often need to sum over the values
of a certain function at the points being the zeros of the other function. In order to obtain the
summation formula for this type of series, as a functiong(z) we take the function for which these
zeros are poles. Then the first term in the square brackets of Eq. (2.3)will give the corresponding
series. This choice should be made in a way to meet conditions (2.1). We will illustrate this on
specific physical examples of quantum field theory with boundaries.

3. Vacuum densities for spherical boundaries

Consider a real scalar fieldϕ with curvature coupling parameterζ on a(D+1)-dimensional
spacetime regionM with static boundary∂M. The corresponding field equation has the form

(

∇i∇i +m2 +ζR
)

ϕ = 0, (3.1)

whereR is the scalar curvature for the background spacetime,m is the mass for the field quanta,∇i

is the covariant derivative operator. We assume that on the boundary the field satisfies the Robin
boundary condition

(

Ã+ B̃ni∇i
)

ϕ(x) = 0, x∈ ∂M, (3.2)
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with constant coefficients̃A, B̃ and ni being the inward-pointing normal to the boundary. The
vacuum expectation values (VEVs) for physical quantities bilinear in the field operator, can be
found evaluating one of two-point functions. Here we will consider the Wightman function, as it
also determines the response of particle detectors in a given state of motion. This function can be
determined from the mode-sum formula

W(x,x′) = 〈0|ϕ(x)ϕ(x′)|0〉 = ∑
σ

ϕσ (x)ϕ∗
σ (x′), (3.3)

where{ϕσ (x),ϕ∗
σ (x′)} is a complete orthonormal set of positive and negative frequency solutions

to the field equation, specified by quantum numbersσ and satisfying boundary condition (3.2).

3.1 Vacuum inside a spherical shell in the global monopole spacetime

As the first example we consider the region inside a spherical shell with radius a in the global
monopole spacetime. In the hyperspherical polar coordinates(r,ϑ ,φ) ≡ (r,θ1,θ2, . . .θn,φ), n =

D−2, the corresponding line element has the form

ds2 = dt2−dr2−α2r2dΩ2
D, (3.4)

wheredΩ2
D is the line element on the surface of unit sphere inD-dimensional Euclidean space,

the parameterα is smaller than unity and is related to the symmetry breaking energy scale in the
theory. The solid angle corresponding to Eq. (3.4) isα2SD, with SD = 2πD/2/Γ(D/2) being the
total area of the surface of the unit sphere inD-dimensional Euclidean space.

For the region inside the sphere the complete set of solutions to Eq. (3.1) is specified by
the set of quantum numbersσ = (λ ,mk), wheremk = (m0 ≡ l ,m1, . . . ,mn) andm1,m2, . . . ,mn are
integers such that 06 mn−1 6 mn−2 6 · · · 6 m1 ≤ l , −mn−1 6 mn 6 mn−1. The corresponding
eigenfunctions have the form

ϕσ (x) = βσ r−n/2Jνl (λ r)Y(mk;ϑ ,φ)e−iωt , ω =
√

λ 2 +m2, l = 0,1,2, . . . , (3.5)

whereJνl (z) is the Bessel function of the order

νl =
1
α

[

(

l +
n
2

)2
+(1−α2)n

(

(n+1)ζ − n
4

)

]1/2

, (3.6)

andY(mk;ϑ ,φ) is the hyperspherical harmonic of degreel . The coefficientsβσ can be found from
the normalization condition and is equal to

β 2
σ =

λTνl (λa)

N(mk)ωaαD−1 , Tν(z) ≡ z
(z2−ν2)J2

ν(z)+z2J′2
ν (z)

. (3.7)

From boundary condition (3.2) it follows that the possible values forλ are solutions to the
equation

AJνl (z)+BzJ′νl
(z) = 0, z= λa, A = Ã−nB/2, B = −B̃/a. (3.8)

It is well known that for realA, B, andνl >−1 all roots of this equation are simple and real, except
the caseA/B < −νl when there are two purely imaginary zeros. In the following we will assume

4
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values ofA/B for which all roots are real,A/B≥−νl . Letλνl ,k, k= 1,2, . . . , be the positive zeros of
the functionAJνl (z)+BzJ′νl

(z), arranged in ascending order. The corresponding eigenfrequencies

ω = ωνl ,k are related to these zeros by the formulaωνl ,k =
√

λ 2
νl ,k

/a2 +m2. Substituting Eq. (3.5)
into Eq. (3.3) and using the addition formula for the spherical harmonics, one obtains

W(x,x′) =
(rr ′)−n/2

naSDαD−1

∞

∑
l=0

(2l +n)Cn/2
l (cosθ)

×
∞

∑
k=1

λνl ,kTνl (λνl ,k)
√

λ 2
νl ,k

+m2a2
Jνl (λνl ,kr/a)Jνl (λνl ,kr

′/a)eiωνl ,k
(t ′−t), (3.9)

whereCq
p(x) is the Gegenbauer polynomial of degreep and orderq, andθ is the angle between the

directions(ϑ ,φ) and(ϑ ′,φ ′). As the normal modesλνl ,k are not explicitly known, the Wightman
function in the form (3.9) is not convenient for the evaluation of the VEVs for the observables
bilinear in the field. In addition, the terms with large valuesk are highly oscillatory. In order
to obtain summation formula for the series overk, as a functiong(z) in the GAPF we choose
g(z) = iȲν(z) f (z)/J̄ν(z), whereYν(z) is the Neumann function and for a given functionF(z) we
use the barred notation

F̄(z) ≡ AF(z)+BzF′(z). (3.10)

The conditions (2.1) are satisfied if the functionf (z) is restricted by the constraint

| f (z)| < ε(x)ec|y|, z= x+ iy, |z| → ∞, (3.11)

wherec < 2 andε(x) → 0 for x→ ∞. Assuming that the functionf (z) is analytic in the right half-
plane, for (2.3) one findsR[ f (z),g(z)] = 2∑k Tν(λν,k) f (λν,k). Substituting this expression into
(2.2) and taking the limita→ 0, it can be seen that the following summation formula takes place

∞

∑
k=1

Tν(λν,k) f (λν,k) =
1
2

∫ ∞

0
dx f(x)+

π
4

Res
z=0

f (z)
Ȳν(z)
J̄ν(z)

− 1
2π

∫ ∞

0
dx

K̄ν(x)
Īν(x)

[

e−νπ i f (ix)+eνπ i f (−ix)
]

, (3.12)

where we have introduced the modified Bessel functionsIν(x) andKν(x). By taking in this formula
ν = 1/2, A = 1, B = 0, as a special case we receive the APF in the form (2.5). Formula (3.12)can
be generalized in the case of the existence of purely imaginary zeros for the function J̄ν(z) by
adding the corresponding residue term and taking the principal value of the integral on the right
(see Ref. [9]).

For the summation overk in Eq. (3.9) we apply formula (3.12). The corresponding conditions
are satisfied ifr + r ′+ |t− t ′|< 2a. In particular, the latter constraint takes place in the coincidence
limit for the points away from the boundary. Now the Wightman function is presented in the form

W(x,x′) = Wm(x,x′)+ 〈ϕ(x)ϕ(x′)〉b, (3.13)

where the term

Wm(x,x′) =
α1−D

2nSD

∞

∑
l=0

2l +n

(rr ′)n/2
Cn/2

l (cosθ)
∫ ∞

0
dz

zei
√

z2+m2(t ′−t)

√
z2 +m2

Jνl (zr)Jνl (zr′), (3.14)

5
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comes from the first integral on the right of Eq. (3.12) and

〈ϕ(x)ϕ(x′)〉b = −α1−D

πnSD

∞

∑
l=0

2l +n

(rr ′)n/2
Cn/2

l (cosθ)
∫ ∞

m
dzz

K̄νl (az)
Īνl (az)

(3.15)

× Iνl (zr)Iνl (zr′)√
z2−m2

cosh
[

√

z2−m2(t ′− t)
]

.

The part (3.14) in the Wightman function does not depend ona, whereas the contribution of the
term (3.15) tends to zero asa → ∞. It follows from here that expression (3.14) is the Wightman
function for the unbounded global monopole spacetime. This can be seen also by explicit evaluation
of the mode-sum using the eigenfunctions for the global monopole spacetime without boundaries.

Having the Wightman function we can evaluate the VEVs for the field square and the energy-
momentum tensor taking the following coincidence limits:

〈0|ϕ2|0〉 = lim
x′→x

W(x,x′), (3.16)

〈0|Tik|0〉 = lim
x′→x

∂i∂ ′
kW(x,x′)+

[(

ζ − 1
4

)

gik∇l ∇l −ζ ∇i∇k−ζRik

]

〈0|ϕ2|0〉. (3.17)

Similar to the Wightman function, these VEVs are presented as sums of the boundary-free and
boundary-induced parts and are investigated in Ref. [10]. Hence, theapplication of the GAPF
allowed to extract from the VEVs the parts corresponding to the background without boundaries.
For points away from the boundaries, the boundary-induced parts arefinite and the renormaliza-
tion procedure is needed for the boundary-free part only. This can be done by using the standard
methods of quantum field theory without boundaries. In addition, the boundary-induced parts are
presented in terms of exponentially convergent integrals convenient fornumerical calculations.

For α = 1 the bulk corresponds to the(D+1)-dimensional Minkowskian spacetime and one
hasνl = l +n/2. In this case the vacuum densities for a scalar field with Robin boundary conditions
on spherical boundaries are investigated in Ref. [11]. In the case of the electromagnetic field on the
D = 3 Minkowski bulk we have two types of modes. For the first one (TE modes)the eigenmodes
are zeroes of the functionJl+1/2(z), and for the second one the eigenmodes are determined by the
zeroes of the function̄Jl+1/2(z) with A/B= 1/2. On the base of the GAPF the corresponding VEVs
for the energy-momentum tensor are investigated in Ref. [12].

3.2 Region between two spheres

In this section we are interested in the VEVs of the field bilinear products on background of
the geometry described by Eq. (3.4), assuming that the field satisfies the Robin boundary condition
(3.2) on two spheres with radiia andb, a < b, concentric with the monopole. We will consider the
general case when the coefficients in the boundary conditions for the inner and outer spheres are
different and will denote them bỹA j andB̃ j with j = a,b. The corresponding eigenfunctions are
given by the formula which is obtained from (3.5) by the replacement of the radial part:

Jνl (λ r) → gνl (λa,λ r) ≡ Jνl (λ r)Ȳ(a)
νl

(λa)− J̄(a)
νl

(λa)Yνl (λ r), (3.18)

and the barred functions are defined in accordance with

F̄( j)(z) ≡ A jF(z)+B jzF′(z), Aα = Ã j −B jn/2, B j = n( j)B̃ j/ j, j = a,b, (3.19)

6
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wheren(a) = −1 andn(b) = 1. From the normalization condition, for the coefficient in the eigen-
functions one finds

β 2
σ =

π2λTab
νl

(b/a,λa)

4N(mk)ωaαD−1 , (3.20)

where we use the notation

Tab
ν (η ,z) = z

{

J̄(a)2
ν (z)

J̄(b)2
ν (ηz)

[

A2
b +B2

b(η
2z2−ν2)

]

−A2
a−B2

a(z
2−ν2)

}−1

, η =
b
a
. (3.21)

The functions chosen in the form (3.18) satisfy the boundary condition onthe spherer = a. From
the boundary condition onr = b one obtains that the corresponding eigenvalues for the quantum
numberλ are solutions to the equation

Cab
νl

(b/a,λa) ≡ J̄(a)
νl

(λa)Ȳ(b)
νl

(λb)− J̄(b)
νl

(λb)Ȳ(a)
νl

(λa) = 0. (3.22)

Below the roots to this equation will be denoted byλa = γνl ,k, k = 1,2, . . ..

Substituting the eigenfunctions into the mode-sum formula, one finds

W(x,x′) =
π2(rr ′)−n/2

4naSDαD−1

∞

∑
l=0

(2l +n)Cn/2
l (cosθ)

∞

∑
k=1

h(γνl ,k)T
ab

νl
(b/a,γνl ,k), (3.23)

with the function

h(z) =
zei

√
z2/a2+m2(t ′−t)

√
z2 +m2a2

gνl (z,zr/a)gνl (z,zr′/a). (3.24)

To obtain a summation formula for the series over zeros of the functionCab
ν (η ,z), in the GAPF as

functionsg(z) and f (z) we take

g(z) =
1
2i

[

H̄(1b)
ν (ηz)

H̄(1a)
ν (z)

+
H̄(2b)

ν (ηz)

H̄(2a)
ν (z)

]

F(z)

Cab
ν (η ,z)

, f (z) =
F(z)

H̄(1a)
ν (z)H̄(2a)

ν (z)
, (3.25)

whereF(z) is an analytic function in the right half-plane,H(1,2)
ν (z) are the Hankel functions, and

the notationsF̄( j), j = a,b are introduced in accordance with (3.19). For the combinations entering
in the right hand side of the GAPF we obtain

g(z)− (−1)q f (z) = −i
H̄(qa)

ν (λz)

H̄(qa)
ν (z)

F(z)

Cab
ν (η ,z)

, q = 1,2, (3.26)

and for the residue term one has

Res
z=γν ,k

g(z) =
π
2i

Tab
ν (η ,γν,k)F(γν,k). (3.27)

The conditions for the GAPF, written in terms of the functionF(z), are as follows

|F(z)| < ε1(x)e
c1|y|, |z| → ∞, z= x+ iy, (3.28)

7
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wherec1 < 2(η −1), xδBa0+δBb0−1ε1(x) → 0 for x→ +∞. From Eq. (2.2) we obtain the following
summation formula

∞

∑
k=1

F(γν,k)T
ab

ν (η ,γν,k) =
2

π2

∫ ∞

0

F(x)dx

J̄(a)2
ν (x)+Ȳ(a)2

ν (x)
− 1

π
Res
z=0

[

F(z)H̄(1b)
ν (ηz)

Cab
ν (η ,z)H̄(1a)

ν (z)

]

− 1
2π

∫ ∞

0
dxΩaν(x,ηx) [F(ix)+F(−ix)] . (3.29)

In Eq. (3.29) we have introduced the notation

Ωaν(x,ηx) =
K̄(b)

ν (ηx)/K̄(a)
ν (x)

K̄(a)
ν (x)Ī (b)

ν (ηx)− K̄(b)
ν (ηx)Ī (a)

ν (x)
. (3.30)

Note that (3.29) may be generalized for the functionsF(z) having poles and in the case of the
existence of purely imaginary zeros forCab

ν (η ,z) [9].
Now, to sum the series overk in Eq. (3.23), we take in (3.29)F(z) = h(z). The corresponding

conditions are satisfied ifr + r ′+ |t− t ′|< 2b. In particular, this is the case in the coincidence limit
for the region between two spheres. As a result, for the Wightman function one obtains

W(x,x′) =
α1−D

2naSD

∞

∑
l=0

2l +n

(rr ′)n/2
Cn/2

l (cosθ)

{

∫ ∞

0

h(z)dz

J̄(a)2
νl

(z)+Ȳ(a)2
νl

(z)
− 2

π

∫ ∞

ma
dzz

× Ωaν(z,ηz)√
z2−a2m2

G(a)
νl

(z,zr/a)G(a)
νl

(z,zr′/a)cosh

[

√

z2/a2−m2(t ′− t)

]}

, (3.31)

where we have introduced the notation

G( j)
ν (z,y) = Iν(y)K̄( j)

ν (z)− Ī ( j)
ν (z)Kν(y), j = a,b. (3.32)

In the limit b → ∞ the second integral on the right of (3.31) tends to zero, whereas the first one
does not depend onb. It follows from here that the term with the first integral in the figure braces
corresponds to the Wightman function for the region outside a single spherewith radiusa on
background of the global monopole geometry. The latter we will denote byW(a)(x,x′). To extract
from this function the part induced by the presence of the sphere we usethe identity

gν(z,zr/a)gν(z,zr′/a)

J̄2
ν(z)+Ȳ2

ν (z)
= Jν(zr/a)Jν(zr′/a)− 1

2

2

∑
s=1

J̄ν(z)

H̄(s)
ν (z)

H(s)
ν (zr/a)H(s)

ν (zr′/a). (3.33)

The contribution from the first term on the right of this relation gives the Wightman function
Wm(x,x′) for the geometry without boundaries. In the part coming from the second term we rotate
the contour for the integration overz by the angleπ/2 for s= 1 and by the angle−π/2 for s= 2.
Introducing the modified Bessel functions, one finds

W(a)(x,x′) = Wm(x,x′)− α1−D

πnSD

∞

∑
l=0

2l +n

(rr ′)n/2
Cn/2

l (cosθ)
∫ ∞

m
dzz

× Īνl (az)
K̄νl (az)

Kνl (zr)Kνl (zr′)√
z2−m2

cosh
[

√

z2−m2(t ′− t)
]

. (3.34)

8
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As a result the Wightman function in the region between two spheres is presented in the form

W(x,x′) = W(a)(x,x′)− α1−D

πnSD

∞

∑
l=0

2l +n

(rr ′)n/2
Cn/2

l (cosθ)
∫ ∞

m
dzz

Ωaνl (az,bz)√
z2−m2

×G(a)
νl

(az, rz)G(a)
νl

(az, r ′z)cosh
[

√

z2−m2(t ′− t)
]

. (3.35)

In the coincidence limit,x′ = x, the second summand on the right hand side of (3.35) will give a
finite result fora 6 r < b, and is divergent on the boundaryr = b. Hence, in the problem with
two boundaries, the GAPF allowed to extract the part corresponding to thegeometry with a single
boundary and to present the part induced by the second boundary in terms of exponentially con-
vergent integrals. The VEVs for the field square and the energy-momentum tensor in the region
between two spheres are obtained from the Wightman function on the base offormulae (3.16),
(3.17) and are investigated in Ref. [13].

We have considered the case of a scalar field. The VEVs for the energy-momentum tensor of
a fermionic fieldψ with the massm on background of the global monopole have been discussed
in Ref. [14] for the case of a single spherical boundary and in Ref. [15] for the geometry of
two spherical boundaries assuming that the field satisfies bag boundary condition

(

1+ iγ l nl
)

ψ = 0
on bounding surfaces. For the region inside a spherical shell with radius a the corresponding
eigenmodes are the zeroes of the functionJ̃(a)

νσ (z), where for a given functionF(z) we use the
notation

F̃(w)(z) ≡ zF′(z)+
[

n(w)
(

mw−
√

z2 +m2w2
)

− (−1)σ νσ

]

F(z), (3.36)

with n(a) = 1, νσ = ( j + 1/2)/α − (−1)σ/2, j is the total angular momentum, andσ = 0,1 cor-
respond to two types of eigenfunctions with different parities. By using theGAPF, a summation
formula for the series over zeroes of the functionJ̃(a)

νσ (z) is derived in Ref. [14]. In the region
between two concentric spherical boundaries with radiia andb, a > b, on the global monopole
bulk, the eigenmodes of the fermionic field are the zeroes of the functionJ̃(b)

νσ (z)Ỹ(a)
νσ (za/b)−

Ỹ(b)
νσ (z)J̃(a)

νσ (za/b) with n(b) =−1. A summation formula for the corresponding series is obtained in
Ref. [15] and has been applied to the investigation of the corresponding VEVs. The properties of
the electromagnetic vacuum in the region between two concentric spheres in the Minkowski bulk
are studied in Ref. [16] by using the GAPF.

4. Vacuum polarization by uniformly accelerated mirrors

It is well known that the uniqueness of the vacuum state is lost when we work within the
framework of quantum field theory in a general curved spacetime or in non–inertial frames. For
instance, the vacuum state for a uniformly accelerated observer, the Fulling-Rindler vacuum, turns
out to be inequivalent to that for an inertial observer. An interesting topicin the investigations of
the Casimir effect is the dependence of the vacuum characteristics on the type of the vacuum. In
this section we will consider the application of the GAPF for the investigation of the scalar vacuum
polarization brought about by the presence of infinite plane boundariesmoving by uniform proper
acceleration through the Fulling-Rindler vacuum.

9
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4.1 Wightman function for a single plate

Consider a massive scalar field with general curvature coupling and satisfying Robin boundary
condition on an infinite plane moving with uniform proper acceleration. In the accelerated frame it
is convenient to use the Rinlder coordinates with the line element

ds2 = ξ 2dτ2−dξ 2−dx2. (4.1)

A world-line defined byξ ,x = const describes an observer with constant proper accelerationξ−1.
We will assume that the plate is located atξ = a and will consider the region on the right from
the boundary,ξ > a, wherea−1 is the proper acceleration of the plate. In the Rindler coordinates,
boundary condition (3.2) takes the form

(

Ã+ B̃∂/∂ξ
)

ϕ(x) = 0, ξ = a. (4.2)

For ξ > a a complete set of solutions that are of positive frequency with respect to∂/∂τ and
bounded asξ → ∞ is

ϕσ (x) = Cσ Kiω(λξ )eikx−iωτ , σ = (ω ,k), λ =
√

k2 +m2. (4.3)

From boundary condition (4.2) we find that the possible values forω have to be zeros of the
functionK̄iω(λa), where the barred notation is defined by (3.10) with the coefficientsA = Ã, B =

B̃/a. We will denote these zeros byω = ωn = ωn(k), n = 1,2, ... arranged in ascending order,
ωn < ωn+1. The coefficientCσ in (4.3) is determined by the normalization condition:

C2
σ =

1
(2π)D−1

Īiωn(λa)
∂

∂ω K̄iω(λa) |ω=ωn

. (4.4)

Substituting the eigenfunctions (4.3) into the mode-sum formula (3.3), we obtain

W(x,x′) =
∫

dk
(2π)D−1 eik(x−x′)

∞

∑
n=1

Īiω(λa)
∂

∂ω K̄iω(λa)
Kiω(λξ )Kiω(λξ ′)e−iω(τ−τ ′)|ω=ωn. (4.5)

A summation formula for the series over zerosωn can be obtained from formula (2.2) taking

f (z) =
2i
π

F(z)sinhπz, g(z) =
Īiz(η)+ Ī−iz(η)

K̄iz(η)
F(z), (4.6)

with a functionF(z) analytic in the right half-plane. By using the asymptotic formulae for the
modified Bessel functions for large values of the index, the conditions forthe GAPF can be written
in terms of the functionF(z) as follows:

|F(z)| < ε(|z|)e−πx(|z|/η)2|y| , z= x+ iy, x > 0, |z| → ∞, (4.7)

where|z|ε(|z|) → 0 for |z| → ∞. From the GAPF we obtain the summation formula

∞

∑
n=1

Īiz(η)F(z)
∂ K̄iz(η)/∂z

∣

∣

∣

∣

z=ωn

=
1

π2

∫ ∞

0
dxF(x)sinhπx− F0Ī0(η)

2K̄0(η)
−

∫ ∞

0
dx

Īx(η)

K̄x(η)

F(ix)+F(−ix)

2π
, (4.8)

whereF0 = limz→0zF(z).

10
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Now for the summation overn in formula (4.5) we chooseF(z) = Kiz(λξ )Kiz(λξ ′)e−iz(τ−τ ′).
It can be seen that condition (4.7) is satisfied ifa2e|τ−τ ′| < |ξ ξ ′|. Note that this is the case in the
coincidence limitτ = τ ′ for the points in the region under consideration,ξ ,ξ ′ > a. The contribution
coming from the first integral term on the right of formula (4.8) corresponds to the Wightman
function for the Fulling-Rindler vacuum without boundaries:

WR(x,x′) =
1

π2

∫

dk
eik(x−x′)

(2π)D−1

∫ ∞

0
dω sinh(πω)e−iω(τ−τ ′)Kiω(λξ )Kiω(λξ ′). (4.9)

As a result, the Wightman function is presented in the form

W(x,x′) = WR(x,x′)+ 〈ϕ(x)ϕ(x′)〉b, (4.10)

where the second term on the right is induced by the presence of the plate:

〈ϕ(x)ϕ(x′)〉b = − 1
π

∫

dk
eik(x−x′)

(2π)D−1

∫ ∞

0
dω

Īω(λa)

K̄ω(λa)
Kω(λξ )Kω(λξ ′)cosh[ω(τ − τ ′)], (4.11)

and is finite in the coincidence limit forξ > a. The divergences are contained in the first term
corresponding to the Fulling–Rindler vacuum without boundaries. The VEVs of the field square
and the energy-momentum tensor can be found by making use of the formulaefor the Wightman
function and relations (3.16) and (3.17). The corresponding results can be found in Ref. [17].

4.2 Wightman function in the region between two plates

Now we consider the vacuum in the region between two plates situated in the right Rindler
wedge and having the coordinatesξ = a and ξ = b, b > a. On the surfaces of the plates the
scalar field satisfies Robin boundary conditions (3.2), in general, with different coefficients for
separate plates. In terms of the Rindler coordinateξ these conditions are written in the form
(

Ã j +n( j)B̃ j∂/∂ξ
)

ϕ = 0, for ξ = j = a,b. In the region between the plates, the eigenfunctions
satisfying the boundary condition on the plateξ = b have the form

ϕσ (x) = Cσ G(b)
iω (λb,λξ )eikx−iωτ , (4.12)

where the functionG( j)
ν (u,v) is defined by formula (3.32). From the boundary condition on the

plateξ = a we find that the possible values forω are roots to the equation

Gab
iω(λa,λb) = Ī (b)

iω (λb)K̄(a)
iω (λa)− K̄(b)

iω (λb)Ī (a)
iω (λa) = 0, (4.13)

and the barred notations are defined by formula (3.19) withA j = Ã j , B j = n( j)B̃ j/ j. For a fixed
λ , the equation (4.13) has an infinite set of real solutions with respect toω . We will denote
them byΩn = Ωn(λa,λb), Ωn > 0, n = 1,2, . . ., and will assume that they are arranged in the
ascending orderΩn < Ωn+1. In addition to the real zeros, in dependence of the values of the ratios
A j/B j , equation (4.13) can have a finite set of purely imaginary solutions. The presence of such
solutions leads to the modes with an imaginary frequency and, hence, to the unstable vacuum. In
the consideration below we will assume the values of the coefficients in Eq. (3.2) for which the
imaginary solutions are absent and the vacuum is stable.

11
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The coefficientCσ in formula (4.12) is determined from the normalization condition. Taking
into account boundary conditions, for this coefficient one finds

C2
σ =

(2π)1−D Ī (a)
iω (λa)

Ī (b)
iω (λb) ∂

∂ω Gab
iω(λa,λb)

∣

∣

∣

∣

∣

ω=Ωn

. (4.14)

Now substituting the eigenfunctions into the mode sum formula (3.3), one finds

W(x,x′) =
∫

dk
eik(x−x′)

(2π)D−1

∞

∑
n=1

Ī (a)
iω (λa)e−iω(τ−τ ′)

Ī (b)
iω (λb) ∂

∂ω Gab
iω(λa,λb)

G(b)
iω (λb,λξ )G(b)

iω (λb,λξ ′)|ω=Ωn. (4.15)

To obtain a formula for the summation overn, in the GAPF we choose

f (z) =
2i
π

F(z)sinhπz, g(z) = F(z)
Ī (a)
−iz(η)Ī (b)

iz (ξ )+ Ī (a)
iz (η)Ī (b)

−iz(ξ )

Gab
iz (η ,ξ )

, (4.16)

with a functionF(z) analytic in the right half-plane. The corresponding conditions are satisfied if
the functionF(z) is restricted by the condition

|F(z)| < ε(|z|)e−πx(ξ/η)2|y| , z= x+ iy, x > 0, |z| → ∞, (4.17)

where|z|ε(|z|) → 0 for |z| → ∞. Now from the GAPF one obtains the summation formula

∞

∑
n=1

Ī (a)
iz (η)Ī (b)

−iz(ξ )

∂Gab
iz (η ,ξ )/∂z

F(z)|z=Ωn =
1

π2

∫ ∞

0
dxF(x)sinhπx

− 1
2π

∫ ∞

0
dz

Ī (a)
z (η)Ī (b)

−z (ξ )

Gab
z (η ,ξ )

[F(iz)+F(−iz)] . (4.18)

For the further evaluation of the Wightman function we apply to the sum overn in Eq. (4.15)
the summation formula (4.18) taking

F(z) =
G(b)

iω (λb,λξ )G(b)
iω (λb,λξ ′)

Ī (b)
iz (λb)Ī (b)

−iz(λb)
e−iz(τ−τ ′). (4.19)

Condition (4.17) for this function is satisfied ifa2e|τ−τ ′| < ξ ξ ′. In particular, this is the case in the
coincidence limitτ = τ ′ in the region under consideration:ξ ,ξ ′ > a. As a result, for the Wightman
function one obtains the expression

W(x,x′) = W(b)(x,x′)−
∫

dkeik(x−x′)

π(2π)D−1

∫ ∞

0
dω Ωbω(λa,λb)

×G(b)
iω (λb,λξ )G(b)

iω (λb,λξ ′)cosh[ω(τ − τ ′)], (4.20)

where

W(b)(x,x′) =
∫

dkeik(x−x′)

π2(2π)D−1

∫ ∞

0
dω sinh(πω)e−iω(τ−τ ′) G(b)

iω (λb,λξ )G(b)
iω (λb,λξ ′)

Ī (b)
iω (λb)Ī (b)

−iω(λb)
, (4.21)
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is the Wightman function in the regionξ < b for a single plate atξ = b. The latter can be presented
in the form

W(b)(x,x′) = WR(x,x′)+
〈

ϕ(x)ϕ(x′)
〉

b , (4.22)

whereWR(x,x′) is the Wightman function for the right Rindler wedge without boundaries and

〈

ϕ(x)ϕ(x′)
〉

b = −
∫

dkeik(x−x′)

π(2π)D−1

∫ ∞

0
dω

K̄(b)
ω (λb)

Ī (b)
ω (λb)

Iω(λξ )Iω(λξ ′)cosh[ω(τ − τ ′)] (4.23)

is induced in the regionξ < b by the presence of the plate atξ = b. Note that the representation
(4.22) with (4.23) is valid under the assumptionξ ξ ′ < b2e|τ−τ ′|. The results of the investigation
for the VEVs of the field square and the energy-momentum tensor, as well as for the vacuum
interaction forces between the plates can be found in Ref. [18].

5. Other applications

In this section we briefly outline the problems to which the GAPF is applied in the investi-
gation of the quantum vacuum effects. For a scalar field obeying the Robinboundary condition
on two parallel plates in the Minkowski spacetime the corresponding normal modes are the zeros
of the function(1− b1b2z2)sinz− (b1 + b2)zcosz, where the coefficientsbi are related with the
coefficients in the boundary conditions by the formulabi = Bi/Aia, and a is the distance between
the plates. The corresponding summation formula is obtained and is applied forthe evaluation of
the vacuum energy-momentum tensor in Ref. [19]. Similar type of series arise in the investigation
of the Casimir effect for a scalar field with non-local boundary condition on parallel plates [20]. In
this case the coefficients in the Robin boundary conditions are functions onthe quantum numbers
corresponding to the degrees of freedom parallel to the plates.

Series over the zeros of the cylindrical functions arise in the investigation of quantum vacuum
effects in presence of boundaries with cylindrical symmetry. For the electromagnetic field inside
a cylindrical shell the eigenmodes are zeros of the functionJl (z) for the TM modes and the zeros
of the functionJ′l (z) for the TE modes,l = 1,2, . . .. The VEVs of the energy-momentum tensor in
this region are evaluated in Ref. [21] making use of summation formula (3.12).For the electro-
magnetic vacuum in the region between two coaxial cylindrical shells with radiia andb the eigen-
modes are zeros of the functionJl (z)Yl (zb/a)−Yl (z)Jl (zb/a) for the TM modes and of the function
J′l (z)Y

′
l (zb/a)−Y′

l (z)J
′
l (zb/a) for the TE modes. For the investigation of the corresponding VEVs

of the energy-momentum tensor in Ref. [22] the GAPF is used. For a scalarfield satisfying Robin
boundary condition on cylindrically symmetric boundaries the Wightman function, VEVs for the
field square and the energy-momentum tensor are investigated in Refs. [23, 24] for the cases of a
single and two coaxial boundaries by using summation formulae (3.12) and (3.29). For the geome-
try of a wedge with the opening angleφ0 and with a coaxial cylindrical boundary, the eigenmodes
for a Dirichlet scalar field are zeros of the functionJπ l/φ0

(z). For the investigation of the vacuum
densities in Refs. [25] the GAPF is applied to the corresponding mode-sums.The geometry of a
cylindrical boundary in the cosmic string spacetime is considered in Ref. [26].

Series over the zeros of combinations of the cylindrical functions arise in the investigation of
the one-loop quantum vacuum effects in the Randall-Sundrum type braneworlds. The correspond-
ing background spacetime is described by the line elementds2 = e−2kDyηµνdxµdxν −dy2, where
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ηµν is the metric for theD-dimensional Minkowski spacetime andkD is the inverse radius for
the background AdS spacetime. In the two-brane model the radial part ofthe eigenfunctions is a
combination of the cylindrical functions. The corresponding eigenmodes are zeroes of the function

J̄(a)
ν (z)Ȳ(b)

ν (zekD(b−a))−Ȳ(a)
ν (z)J̄(b)

ν (zekD(b−a)), ν =
√

(D/2)2−D(D+1)ζ +m2/k2
D, (5.1)

wherea andb, a < b, are they-coordinates of the branes. The corresponding two-point function,
the VEVs of the field square and the energy-momentum tensor are investigated in Ref. [27]. Similar
issues for higher dimensional braneworlds with compact internal spacesare considered in [28].

6. Conclusion

We have considered the application of the GAPF for the renormalization of theVEVs of local
physical observables in quantum field theory on manifolds with boundaries. These VEVs contain
series over the eigenmodes of the corresponding problem which are zeroes of the corresponding
part in the eigenfunctions. We have shown that the GAPF allows to obtain the summation formulae
for the series over these zeros, which explicitly extract from the VEVs theparts corresponding
to the bulk without boundaries. In addition the boundary induced parts arepresented in terms
of integrals which are exponentially convergent for the points away fromthe boundaries. As a
result, the renormalization is necessary for the boundary-free parts only and this procedure is the
same as that in quantum field theory without boundaries. In general, the physical quantities in the
problems with boundary conditions can be classified into two main types. For thequantities of
the first type the contribution of the higher modes into the boundary induced effects is suppressed
by the parameters already present in the idealized model. Examples of such quantities are the
local physical observables for points away from the boundaries and the interaction forces between
disjoint bodies. As we have seen, the Abel-Plana formula provides an efficient way to evaluate
the quantities of this type. For the quantities from the second type, such as theenergy density
on the boundary and the total vacuum energy, the contribution of the arbitrary higher modes is
dominant and they contain divergences which cannot be eliminated by the standard renormalization
procedure of quantum field theory without boundaries and additional subtractions are necessary.
Methods to extract finite results for the quantities of the second type are developed in [29].

The work was supported by PVE/CAPES program and in part by the Armenian Ministry of
Education and Science Grant No. 0124.
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