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1. Introduction

In many physical problems we need to consider the model on backgrdumdnifolds with
boundaries on which the dynamical variables satisfy some prescribettlénguconditions. In
quantum field theory the imposition of boundary conditions leads to the modificatithe spec-
trum for the zero-point fluctuations and results in the shift in the vacuymeaation values for
physical observables. In particular, vacuum forces arise actingeocotistraining boundary. This
is the familiar Casimir effect (see Refs. [1, 2, 3]). Within the framework efrtitode summation
method, in calculations of the expectation values for physical observaidesften needs to sum
over the values of a certain function at integer points, and then subteacbtfesponding quantity
for unbounded space (usually presented in terms of integrals). Ptgtiba sum and integral,
taken separately, diverge and some physically motivated proceduradiehae finite result, is
needed (for a discussion of different methods to evaluate this finite eliitersee Refs. [4]). For
a number of geometries one of the most convenient methods to obtain thmetined values of
the mode-sums is based on the use of the Abel-Plana formula (APF) [SEfI&? this formula
has been used for the investigation of the expectation values of the energgntum-tensor for
a scalar field on cosmological backgrounds. Further applications to gieniCaffect with corre-
sponding references can be found in [1, 2]. The use of the APF attmwstract in a manifestly
cutoff independent way the contribution of the unbounded space asémirthe renormalized val-
ues in terms of exponentially converging integrals.

The applications of the APF in its usual form is restricted to the problems whereigen-
modes have simple dependence on quantum numbers and the normal neoebgdiaitly known.
For the case of curved boundaries and for mixed boundary conditiensotimal modes are given
implicitly as zeroes of the corresponding eigenfunctions or their combinatitménclude more
general class of problems, in Ref. [7] the APF has been generaliee@liso Ref. [8]). The gener-
alized version contains two meromorphic functions and the APF is obtainegdeif\{eing one of
them (for other generalizations of the APF see [2, 4]). Applying the gdired formula to Bessel
functions in Refs. [7, 8] summation formulae are obtained for the seriesloweeros of various
combinations of these functions (for a review with physical applicationsiseeRef. [9]). In the
present paper we give applications of the generalized Abel-Plana fotmygphysical problems.
The paper is organized as follows. In the next section we briefly outlingeheralized Abel-Plana
formula and discuss special cases. In section 3 we consider the vamlanzation by spherical
boundaries on background of global monopole spacetime. The applicativmgeneralized Abel-
Plana formula to the problem of the influence of uniformly accelerated miorotee properties of
the Fulling-Rindler vacuum is given in section 4. Section 5 describes soraeaytplications.

2. Generalized Abel-Plana for mula

Let f(z) andg(z) be meromorphic functions fa < x < bin the complex plane = x-+iy. We
denote byz;  andzy the poles off (z) andg(z) in the regiona < x < b, respectively, and assume
that Imz; x # 0. By using the residue theorem, it can be seen [7] that if the funcfiGmsandg(z)
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satisfy the conditions
betih betico

lim dz[g(z) + f(2)] =0, lim dz[g(z) + f(2)] =0, (2.2)
h—e Jatih b—o Jb

and the integraf;’dx f(x) converges, then

b atjoo
im { [Caxioo-Rit@.a@l} =5 [ dzla@ +sarima @), @2)
where
R[f(2) ZZF_QZegsg + Iml;%egof(z)— Iml?egof(z) : (2.3)

We will refer to formula (2.2) as generalized Abel-Plana formula (GAPF)B=n+a, 0<a<
1,9(z) = —if (z) cotrz, and for analytic function$ (z) from (2.2) follows the APF [5]

Amo [i f(s)—/amradxf(x)] :%/j_iwdzf(z)(cotnz—i)—%/E;a+iwdzf(z)(cotnz+i). (2.4)

The useful form of (2.4) may be obtained performing the limit> 0. By taking into account that
the pointz= 0 is a pole for the integrands and therefore has to be avoided by arce sivill
circleC, on the right and performing — 0, one obtains

A (ix) — f(—ix)
_/0 dx f(x) + +/ dx e2nx T (2.5)

Note that now conditions (2.1) are satisfied if Jim, =2™| f (x+iy)| = 0, uniformly in any finite
interval ofx. Formula (2.5) is the most frequently used form of the APF in physical sqtjuits.
Another useful form [1] (in particular, for fermionic field calculations)tam over the values of an
analytic function at half of an odd integer points can be obtained from.(2.5)

Formula (2.2) contains two meromorphic functions and is too general. To ahtamspecific
consequences we have to specify one of them. In applications we oftdriionsum over the values
of a certain function at the points being the zeros of the other function.rderdo obtain the
summation formula for this type of series, as a functygn) we take the function for which these
zeros are poles. Then the first term in the square brackets of Eqw(.8lve the corresponding
series. This choice should be made in a way to meet conditions (2.1). We wiltalleghis on
specific physical examples of quantum field theory with boundaries.

3. Vacuum densitiesfor spherical boundaries

Consider a real scalar fielpl with curvature coupling parametéron a(D + 1)-dimensional
spacetime regioM with static boundaryM. The corresponding field equation has the form

(G0 +m?+{R) ¢ =0, (3.1)

whereR s the scalar curvature for the background spacetimie,the mass for the field quanta,
is the covariant derivative operator. We assume that on the boundafiglth satisfies the Robin
boundary condition

(A+Bri) ¢(x) =0, x € M, (3.2)
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with constant coefficientd, B andn' being the inward-pointing normal to the boundary. The
vacuum expectation values (VEVSs) for physical quantities bilinear in thé €iperator, can be
found evaluating one of two-point functions. Here we will consider thehtvigan function, as it
also determines the response of particle detectors in a given state of mdtisrfuiiction can be
determined from the mode-sum formula

W(x,X) = (0] (x Z bo(x (3.3)

where{¢s(x), ¢;(X')} is a complete orthonormal set of positive and negative frequency saution
to the field equation, specified by quantum numbzeend satisfying boundary condition (3.2).

3.1 Vacuum inside a spherical shell in the global monopole spacetime

As the first example we consider the region inside a spherical shell wiitsra¢h the global
monopole spacetime. In the hyperspherical polar coordinat@sg) = (r, 641, 6z,...6,, @), n =
D — 2, the corresponding line element has the form

ds = dt? —dr? — a?r?dQ3, (3.4)

wheredQ3 is the line element on the surface of unit spher®udimensional Euclidean space,
the parameted is smaller than unity and is related to the symmetry breaking energy scale in the
theory. The solid angle corresponding to Eq. (3.4¢%&p, with S = 2r°/2/I(D/2) being the
total area of the surface of the unit spher®hdimensional Euclidean space.

For the region inside the sphere the complete set of solutions to Eq. (3.1&dsiesp by
the set of quantum numbets= (A, mk) wherem< =(mp=1,my,...,my) andmy, my,...,m, are
integers suchthat & my, ; <My o2 < <M <I, —my_1 < m, < My_1. The corresponding
eigenfunctions have the form

do(X) = Bot 23, (A)Y(M; 8, 0)e ™ w=1/A2+m2, 1 =0,1,2,. (3.5)
whereJy, (2) is the Bessel function of the order
1 ny 2 2 NES
== (|+§) +(1-a )n((n+1)z—z)} : (3.6)

andY (my; 3, @) is the hyperspherical harmonic of degte&@he coefficientgl; can be found from
the normalization condition and is equal to

ATy (Aa) z

B2 — Nmowaad T V@ = Z 0201 2320

(3.7)

From boundary condition (3.2) it follows that the possible valuesif@re solutions to the
equation
A, (2)+Bz], (2 =0, z=Aa, A=A-nB/2, B=-B/a (3.8)

It is well known that for real, B, andv, > —1 all roots of this equation are simple and real, except
the cased/B < —v; when there are two purely imaginary zeros. In the following we will assume
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values ofA/B for which all roots are reah\/B > —v. LetAy, x, k=1,2,..., be the positive zeros of
the functionAJ,, (z) + Bz, (2), arranged in ascending order. The corresponding eigenfreigsenc

w = wy, k are related to these zeros by the formulay = , /)\\flyk/a2+ mé. Substituting Eq. (3.5)
into Eqg. (3.3) and using the addition formula for the spherical harmoniespbtains

n-n/2
% ;(Zl +n)C"*(coso)

Z )\v| kTv| /\v| )
AG +mPa?

W(x,X) =

‘]VI( Vi, kr/a)‘]VI( "y /a)elw\;' ot t) (3.9)

whereCJ(x) is the Gegenbauer polynomial of degieand ordei, and@ is the angle between the
directions(d, ) and(39', ¢'). As the normal modes,, i are not explicitly known, the Wightman
function in the form (3.9) is not convenient for the evaluation of the VEdsthe observables
bilinear in the field. In addition, the terms with large valdeare highly oscillatory. In order
to obtain summation formula for the series okeras a functiong(z) in the GAPF we choose
9(2) =iYy(2)f(2)/3,(2), whereY, (z) is the Neumann function and for a given functiriz) we
use the barred notation

F(2) = AF(2) + BzF (2). (3.10)

The conditions (2.1) are satisfied if the functibfz) is restricted by the constraint
f(2)] < e()eM, z=x+iy, |7 — oo, (3.11)

wherec < 2 ande(x) — 0 for x — c. Assuming that the functiofi(z) is analytic in the right half-
plane, for (2.3) one find&[f(z),9(2)] = 25k Tv(Avk) f(Avk). Substituting this expression into
(2.2) and taking the limia — 0, it can be seen that the following summation formula takes place

- Y (2)
3 A 2/ dx f(x +4§_sf()Jv(z)

Zn/owdxlf:((x)) [V f(ix) + €' f (—ix)] , (3.12)

where we have introduced the modified Bessel functipfg andK, (x). By taking in this formula
v=1/2,A=1,B=0, as a special case we receive the APF in the form (2.5). Formula (at2)
be generalized in the case of the existence of purely imaginary zerosefcﬁumbtionJ_V(z) by
adding the corresponding residue term and taking the principal values afitégral on the right
(see Ref. [9]).

For the summation ovéein Eq. (3.9) we apply formula (3.12). The corresponding conditions
are satisfied if +r’'+ |t —t’| < 2a. In particular, the latter constraint takes place in the coincidence
limit for the points away from the boundary. Now the Wightman function is preeskin the form

W(x,X) =Wm(X,X) + (¢ (X) (X))p, (3.13)

where the term

Jy (zn)dy, (21, (3.14)

) = atP 2 24n V2(¢os6) dzév22+ -y
(X, ZHSJZ) n/zc s/ z
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comes from the first integral on the right of Eq. (3.12) and

a2 2 4n ZK_\,l(az)

B n/2 ®
BB = T S e (COSG)/m a2

X % cosh[\/ 22 —ma(t' — t)} :

The part (3.14) in the Wightman function does not depen@,omhereas the contribution of the

term (3.15) tends to zero as— co. It follows from here that expression (3.14) is the Wightman

function for the unbounded global monopole spacetime. This can belsedyyaxplicit evaluation

of the mode-sum using the eigenfunctions for the global monopole spacetihmaittboundaries.
Having the Wightman function we can evaluate the VEVs for the field squar¢éharenergy-

momentum tensor taking the following coincidence limits:

(3.15)

(0]¢2|0) = )!ijW(x,x’), (3.16)
(OT0) = fim dowixx)-+ | (¢~ 3 ) auai! ~(0i0- 2R @970 @)

Similar to the Wightman function, these VEVs are presented as sums of theargifree and
boundary-induced parts and are investigated in Ref. [10]. Hencegpplication of the GAPF
allowed to extract from the VEVs the parts corresponding to the backdraithout boundaries.
For points away from the boundaries, the boundary-induced parfinédesand the renormaliza-
tion procedure is needed for the boundary-free part only. This eadohe by using the standard
methods of quantum field theory without boundaries. In addition, the @yyridduced parts are
presented in terms of exponentially convergent integrals convenientifoerical calculations.

For a = 1 the bulk corresponds to th{® + 1)-dimensional Minkowskian spacetime and one
hasvi =14-n/2. In this case the vacuum densities for a scalar field with Robin boundadjtons
on spherical boundaries are investigated in Ref. [11]. In the case el¢ltromagnetic field on the
D = 3 Minkowski bulk we have two types of modes. For the first one (TE moithesgigenmodes
are zeroes of the functiakh, ,/,(2), and for the second one the eigenmodes are determined by the
zeroes of the functiod ;1 /»(2) with A/B=1/2. On the base of the GAPF the corresponding VEVs
for the energy-momentum tensor are investigated in Ref. [12].

3.2 Region between two spheres

In this section we are interested in the VEVs of the field bilinear products okgbaund of
the geometry described by Eqg. (3.4), assuming that the field satisfies tiretRoimdary condition
(3.2) on two spheres with radiiandb, a < b, concentric with the monopole. We will consider the
general case when the coefficients in the boundary conditions for tke @amal outer spheres are
different and will denote them b)§(,- and I§j with j = a,b. The corresponding eigenfunctions are
given by the formula which is obtained from (3.5) by the replacement ofatialrpart:

Iy (A1) = gy (Aa,Ar) =3, ANV (Aa) — I (Aa)Y,, (Ar), (3.18)
and the barred functions are defined in accordance with

FU(2) =AF(2) +BjzF (2, As=A;-Bjn/2, B;=nUB;/j, j=ahb, (3.19)
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wheren® = —1 andn® = 1. From the normalization condition, for the coefficient in the eigen-

functions one finds
2 AT (b/a,Aa)

9 AN(my)waaPb-1’ (3.20)
where we use the notation
1
T(n,2) =z EaC [A5+B5(n°Z —v?)| — AL —B3(Z— v?) =2 (@2
v ) J-‘Eb)z(nz) b a ) a .

The functions chosen in the form (3.18) satisfy the boundary conditidhesphere = a. From
the boundary condition on= b one obtains that the corresponding eigenvalues for the quantum
numberA are solutions to the equation

CP(b/a,Aa) = I (Aa)Yy” (Ab) — 3T (Ab)YVi¥ (Aa) = 0. (3.22)

Below the roots to this equation will be denoteddy =y, k, k=1,2,....
Substituting the eigenfunctions into the mode-sum formula, one finds

(R

W(x,X) = 4ra5a01 |;(z +n)C"*(cos8) kZlh(yv, WT20(b/a, i k), (3.23)

with the function

7e\/Z/@+mR(t 1)
B 72+ méa?

To obtain a summation formula for the series over zeros of the fun€§b(m, z), in the GAPF as
functionsg(z) and f (z) we take

h(z) 9w (z zr/a)gy (z.2r'/a). (3.24)

1 [A™ 2 #®m2] F@

) F(2)
g(z)—ﬁ I_T\Sla)(z) |—T\<,2a)(z) C8°(n,2)’

O e O

whereF (z) is an analytic function in the right half—planblﬁl’z) (z) are the Hankel functions, and

the notationg={1), j = a, b are introduced in accordance with (3.19). For the combinations entering
in the right hand side of the GAPF we obtain

H™® (2 F(2)

9(2) — (1) (2) = —i—= , q=1,2, (3.26)
@= 0" H () C3°(n.2)
and for the residue term one has
m
Resg(2) = - TN, waF (Wk)- (3.27)
=Yy k 2

The conditions for the GAPF, written in terms of the functf(z), are as follows

F(2)] < a0, [z — o, z=x+1y, (3.28)
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wherec; < 2(n — 1), x%0+%0~1g, (x) — 0 for x — +. From Eq. (2.2) we obtain the following
summation formula

o 2 [ F(x)dx 1 F(2H,” (n2)
Z (W) T, '7 Wk) = ,Tz/o JT\:a)Z(X)Jr\?V(a)Z(x) HBZ%S CSb(n,Z)ﬁ\(/la)(Z)

—%T/Omdeav(X,nX) [F(ix) + F (—ix)]. (3.29)

In EqQ. (3.29) we have introduced the notation

Ky (n%) /Ky ()
K 0015 (%) — K& (015 (%) 429

Qav (X, NX) =

Note that (3.29) may be generalized for the functiéi{g) having poles and in the case of the
existence of purely imaginary zeros 0§°(n, z) [9].

Now, to sum the series ov&rin Eg. (3.23), we take in (3.2%(z) = h(z). The corresponding
conditions are satisfied if+r’ + |t —t’| < 2b. In particular, this is the case in the coincidence limit
for the region between two spheres. As a result, for the Wightman funatiemlotains

gl D & n/2 o h(z)dz 2 [®
W(xX) = (cosf) / 22 T4z,
2nasp ZJ rr’ ”/ZCI 0 I +Y (g T/ma

x %G&?)(z,zr/a)@?)(z,zr’/a) cosh[m(t’ —t)} } (3.31)

where we have introduced the notation

&/ (zy) =K @) -} (@Ku(y), f=ab (3:32)

In the limit b — o the second integral on the right of (3.31) tends to zero, whereas theriies
does not depend dm It follows from here that the term with the first integral in the figure bsace
corresponds to the Wightman function for the region outside a single sphiéérgadiusa on
background of the global monopole geometry. The latter we will denow(Byx, X'). To extract
from this function the part induced by the presence of the sphere wibeisgentity

av(zzr/a)gy(z zr’/a) 1 2 o “
22 1Y22) Jy(zr/a)dy(zr' /a) — Z;I—Tf)(z Hy” (zr/a)Hy” (zr'/a).  (3.33)

The contribution from the first term on the right of this relation gives the \tigim function
W (x,X') for the geometry without boundaries. In the part coming from the seconuve rotate
the contour for the integration oveby the anglerr/2 for s= 1 and by the angle-11/2 fors= 2.

Introducing the modified Bessel functions, one finds

a2 24n 0 °°
@ (%,X) = Win(x,X) — S Z} — n/2C|n/ (cos@)/ dzz

><‘I<v(( )) K"'\(/ZL"'ZH osr’{\/z2 ] (3.34)
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As a result the Wightman function in the region between two spheres is peddarthe form

1D o S
_ w@ _a 2l4+n _n2 Qay (a2 b2)
W(Xaxl) W (va,) mS I; (rr/>n/2C| (cosB) /m dz 2 _mP
xG (az rz)G (az r'2) COSh[ 22 —me(t' - t)} : (3.35)

In the coincidence limitx' = x, the second summand on the right hand side of (3.35) will give a
finite result fora < r < b, and is divergent on the boundary= b. Hence, in the problem with
two boundaries, the GAPF allowed to extract the part corresponding tgetireetry with a single
boundary and to present the part induced by the second boundanmis & exponentially con-
vergent integrals. The VEVs for the field square and the energy-mometetusor in the region
between two spheres are obtained from the Wightman function on the bésemaflae (3.16),
(3.17) and are investigated in Ref. [13].

We have considered the case of a scalar field. The VEVs for the ensgyentum tensor of
a fermionic fieldy with the massm on background of the global monopole have been discussed
in Ref. [14] for the case of a single spherical boundary and in Reb] fdr the geometry of
two spherical boundaries assuming that the field satisfies bag bourwtetiyion (1+ iy n|) Ww=0
on bounding surfaces. For the region inside a spherical shell withgadibe corresponding
eigenmodes are the zeroes of the functﬁ%(z), where for a given functior(z) we use the
notation

FW(z) =zF (2) + {n(w) (mw— 24 mZW2> — (—l)"vg} F(2), (3.36)

with n® =1, vy = (j+1/2)/a — (—1)9/2, j is the total angular momentum, aad= 0,1 cor-
respond to two types of eigenfunctions with different parities. By usindaAF, a summation
formula for the series over zeroes of the functiﬂ;ﬁ) (z) is derived in Ref. [14]. In the region
between two concentric spherical boundaries with radindb, a > b, on the global monopole
bulk, the eigenmodes of the fermionic field are the zeroes of the fund"f,fjé(z)\?v(f) (za/b) —
¥i2(2)3 (za/b) with n®) = —1. A summation formula for the corresponding series is obtained in
Ref. [15] and has been applied to the investigation of the correspondimMs VThe properties of
the electromagnetic vacuum in the region between two concentric sphereshfirtkowski bulk

are studied in Ref. [16] by using the GAPF.

4. Vacuum polarization by uniformly accelerated mirrors

It is well known that the uniqueness of the vacuum state is lost when wk within the
framework of quantum field theory in a general curved spacetime or irinertial frames. For
instance, the vacuum state for a uniformly accelerated observer, thegFRlilidler vacuum, turns
out to be inequivalent to that for an inertial observer. An interesting tiopilse investigations of
the Casimir effect is the dependence of the vacuum characteristics orptheftthe vacuum. In
this section we will consider the application of the GAPF for the investigationeo$tialar vacuum
polarization brought about by the presence of infinite plane boundaogmg by uniform proper
acceleration through the Fulling-Rindler vacuum.
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4.1 Wightman function for a single plate

Consider a massive scalar field with general curvature coupling antysagiRobin boundary
condition on an infinite plane moving with uniform proper acceleration. In tlieelarated frame it
is convenient to use the Rinlder coordinates with the line element

ds? = £2d1? —dE2 —dx2. (4.1)

A world-line defined byé,x = const describes an observer with constant proper acceleéation

We will assume that the plate is locatedéat= a and will consider the region on the right from
the boundaryé > a, wherea! is the proper acceleration of the plate. In the Rindler coordinates,
boundary condition (3.2) takes the form

(A+B9/d&)p(x) =0, &=a (4.2)

For £ > a a complete set of solutions that are of positive frequency with respegfdas and
bounded a§ — » is

$o(X) = CoKin(AE)ET9T g = (w,k), A = /k2+ . (4.3)

From boundary condition (4.2) we find that the possible valuesufdrave to be zeros of the
function K_iw()\ a), where the barred notation is defined by (3.10) with the coefficiantsA, B =
B/a. We will denote these zeros iy = ay = wn(k), n= 1,2, ... arranged in ascending order,
wh < any1. The coefficienCy in (4.3) is determined by the normalization condition:

1 liwn(A0)
(ZH)D_l %Kiw(/\ Q) |w=an
Substituting the eigenfunctions (4.3) into the mode-sum formula (3.3), we obtain

Cs = (4.4)

I,w Aa)

W(xx) / ¢ i ;o )K.wus)K.w(As) ey (45)

19w

A summation formula for the series over zerascan be obtained from formula (2.2) taking

l(n) +1-2(n)
Kiz(n)

with a functionF (z) analytic in the right half-plane. By using the asymptotic formulae for the
modified Bessel functions for large values of the index, the conditiorthéoGAPF can be written
in terms of the functiork (z) as follows:

f(z) = f—_i[F(z)sinhnz, 0(z) = F(2), (4.6)

F(2)] <e(lZ)e ™24/, z=x+iy, x>0, |7—w, 4.7)

Where|z\£(\z]) — 0 for |zl — . From the GAPF we obtain the summation formula

Lz(n)F(@) 1o : Folo(n) [ . Ix(n) F(ix)+F(=ix)
Z t?Klz /dz F/o dxF(x) sinhrix — 2Ko(1) —/0 dXKx(fl) o , (4.8)

Z=Uh

whereFy = lim,_ozF(2).

10
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Now for the summation ovar in formula (4.5) we choosE (z) = Kiz(A &)Kiz(A &' )e 21-T),
It can be seen that condition (4.7) is satisfied’~ 7 < |E&’|. Note that this is the case in the
coincidence limitr = 1’ for the points in the region under consideratiéné’ > a. The contribution
coming from the first integral term on the right of formula (4.8) corresjsoto the Wightman
function for the Fulling-Rindler vacuum without boundaries:

1 eik(xfx’) 00 _ T
WR(X,X) = F/olkw/o dewsinh(mw)e YT VKiu(AEKio(AE).  (4.9)
As a result, the Wightman function is presented in the form
W(x,X) =WR(X,X) + (¢ (X)9 (X))b, (4.10)
where the second term on the right is induced by the presence of the plate:

iK(x—X')  poo |
(¢(x)¢(x’)>b:_7_1_[/dk én)Dl/o dw:(‘:(()‘/\?) Ko(AE)Ko(A €Y costio(T— )], (4.11)

and is finite in the coincidence limit fof > a. The divergences are contained in the first term
corresponding to the Fulling—Rindler vacuum without boundaries. TheésviE the field square
and the energy-momentum tensor can be found by making use of the forfouthe Wightman
function and relations (3.16) and (3.17). The corresponding resultsefound in Ref. [17].

4.2 Wightman function in the region between two plates

Now we consider the vacuum in the region between two plates situated in thdRigher
wedge and having the coordinatés=a andé = b, b > a. On the surfaces of the plates the
scalar field satisfies Robin boundary conditions (3.2), in general, witbrdift coefficients for
separate plates. In terms of the Rindler coordirgatdhese conditions are written in the form
(Aj+nU)Bja/3&) ¢ =0, for & = j = a,b. In the region between the plates, the eigenfunctions
satisfying the boundary condition on the pldte- b have the form

0o (X) = CoG) (Ab, A £ )glxieT, (4.12)
where the functiorGf,j)(u,v) is defined by formula (3.32). From the boundary condition on the
plateé = a we find that the possible values farare roots to the equation

GiB(Aa Ab) = Il (AD)KTE (Aa) — Kig) (Ab)Ify) (Aa) =0, (4.13)

()

and the barred notations are defined by formula (3.19) Ajte- Aj, B; = n()B;/j. For a fixed

A, the equation (4.13) has an infinite set of real solutions with respeat td&Ve will denote
them byQ, = Q,(Aa,Ab), Q, > 0,n= 12 ..., and will assume that they are arranged in the
ascending orde®, < Qn1. In addition to the real zeros, in dependence of the values of the ratios
A;/Bj, equation (4.13) can have a finite set of purely imaginary solutions. Tésepce of such
solutions leads to the modes with an imaginary frequency and, hence, tostadlenvacuum. In

the consideration below we will assume the values of the coefficients in E2) f(8 which the
imaginary solutions are absent and the vacuum is stable.

11
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The coefficientCy in formula (4.12) is determined from the normalization condition. Taking
into account boundary conditions, for this coefficient one finds

(2m*Pii (Aa)
I (Ab) ZGB(AaAb) |

w ~lw

Cs= (4.14)

Now substituting the eigenfunctions into the mode sum formula (3.3), one finds

k(x—x') o (@ —iw(1—T1')
W(x X) = /dk - Z bI w (Aa)e
2m) 111 (Ab) 2G2(Aa, Ab)

Gl (Ab,AE)Gly) (AD,AE")| g, (4.15)

To obtain a formula for the summation overin the GAPF we choose

- @ i (£) 4 1@ (T
f(Z)Zf—;F(z)sinhnz, o(2) = F(z) 2l éiz)(nl'f)m)liZ(E),

with a functionF (z) analytic in the right half-plane. The corresponding conditions are satifie
the functionF (z) is restricted by the condition

(4.16)

F@l<e(z)e™E/m™, z=x+iy, x>0, |-, (4.17)
where|z|e(|z]) — O for |z) — . Now from the GAPF one obtains the summation formula
2 I mIGE) Lo
— 2)|~q, = — | dxF(x)sinhmx
Z dGab n E)/dZ ( )‘Z*Qn nzA ( )
_1 /wdzﬁa><n>@<s>
2 jo — G¥(n.&)

For the further evaluation of the Wightman function we apply to the summueEq. (4.15)
the summation formula (4.18) taking

[F(iz) + F(—iz)]. (4.18)

(/\b/\E) ()‘b)‘f)e z(1— r)

" animan)

(4.19)

Condition (4.17) for this function is satisfiedafel™ 7'l < £&’. In particular, this is the case in the
coincidence limitr = 1’ in the region under consideratiod; &’ > a. As a result, for the Wightman
function one obtains the expression

dke'k x—x")

fo}()\b,)\é)eiw(;\ b,A&")cosHeo(T — T')], (4.20)

W(x,X) = W) (x,x) - / / dwQbe(Aa,Ab)

where

cP

dkek(x—x) - (Ab,AE)GY (Ab,AE)
(b) B iw(T—T') G
w (x,x’)—/n2(2nD 1/ dwsinh(rw)e ﬁb)(/\b)ﬁ) on (4.21)

12
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is the Wightman function in the regidh< b for a single plate a§ = b. The latter can be presented
in the form
W (x,x) = We(x.X) +($(x)® (X)), (4.22)

whereWi(x,X') is the Wightman function for the right Rindler wedge without boundaries and

dkeK(x=x) oo _6(53) (Ab) . ,
(99 (X)), = _/W/O deIM(A &)lw(AE") coshaw(t —1')] (4.23)
is induced in the regiod < b by the presence of the plate &&= b. Note that the representation
(4.22) with (4.23) is valid under the assumptiéé’ < b%e7-7|. The results of the investigation
for the VEVs of the field square and the energy-momentum tensor, as svédr dhe vacuum
interaction forces between the plates can be found in Ref. [18].

5. Other applications

In this section we briefly outline the problems to which the GAPF is applied in thestinve
gation of the quantum vacuum effects. For a scalar field obeying the Raolindary condition
on two parallel plates in the Minkowski spacetime the corresponding normaddsrare the zeros
of the function(1 — blbzzz) sinz— (by + bp)zcosz, where the coefficientb; are related with the
coefficients in the boundary conditions by the formiala= Bj/Aia, and a is the distance between
the plates. The corresponding summation formula is obtained and is appliée fevaluation of
the vacuum energy-momentum tensor in Ref. [19]. Similar type of seriesiarike investigation
of the Casimir effect for a scalar field with non-local boundary conditioparallel plates [20]. In
this case the coefficients in the Robin boundary conditions are functiotteeaquantum numbers
corresponding to the degrees of freedom parallel to the plates.

Series over the zeros of the cylindrical functions arise in the investigatignamtum vacuum
effects in presence of boundaries with cylindrical symmetry. For the eteegnetic field inside
a cylindrical shell the eigenmodes are zeros of the funciit) for the TM modes and the zeros
of the functionJ/(z) for the TE modes, = 1,2, .... The VEVSs of the energy-momentum tensor in
this region are evaluated in Ref. [21] making use of summation formula (3HFd)the electro-
magnetic vacuum in the region between two coaxial cylindrical shells withaadidb the eigen-
modes are zeros of the functidriz)Y, (zb/a) — Y, (2)J (zb/a) for the TM modes and of the function
J(2)Y/(zb/a) —Y/(2)J/(zb/a) for the TE modes. For the investigation of the corresponding VEVs
of the energy-momentum tensor in Ref. [22] the GAPF is used. For a digdthsatisfying Robin
boundary condition on cylindrically symmetric boundaries the Wightman functi&vs for the
field square and the energy-momentum tensor are investigated in Ref24]48r the cases of a
single and two coaxial boundaries by using summation formulae (3.12) &%) .(&or the geome-
try of a wedge with the opening angs and with a coaxial cylindrical boundary, the eigenmodes
for a Dirichlet scalar field are zeros of the functidg,, (z). For the investigation of the vacuum
densities in Refs. [25] the GAPF is applied to the corresponding mode-stimsgeometry of a
cylindrical boundary in the cosmic string spacetime is considered in Rdf. [26

Series over the zeros of combinations of the cylindrical functions ariseeim#estigation of
the one-loop quantum vacuum effects in the Randall-Sundrum typevibodds. The correspond-
ing background spacetime is described by the line elemgnt e~2©Yn,,, dx*dx’ — dy?, where
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Nuv is the metric for theD-dimensional Minkowski spacetime arkg is the inverse radius for
the background AdS spacetime. In the two-brane model the radial pdme @igenfunctions is a
combination of the cylindrical functions. The corresponding eigenmaeezssioes of the function

T @V (200 ) -V @I (20 ), v =/ (D/22 -DD+ D+ /G (5.1)

wherea andb, a < b, are they-coordinates of the branes. The corresponding two-point function,
the VEVs of the field square and the energy-momentum tensor are invediilg&ef. [27]. Similar
issues for higher dimensional braneworlds with compact internal spaee®nsidered in [28].

6. Conclusion

We have considered the application of the GAPF for the renormalization dENes of local
physical observables in quantum field theory on manifolds with boundartesse VEVs contain
series over the eigenmodes of the corresponding problem which areszefrthe corresponding
part in the eigenfunctions. We have shown that the GAPF allows to obtainitm@ation formulae
for the series over these zeros, which explicitly extract from the VEV#res corresponding
to the bulk without boundaries. In addition the boundary induced partprasented in terms
of integrals which are exponentially convergent for the points away fitemboundaries. As a
result, the renormalization is necessary for the boundary-free pdytand this procedure is the
same as that in quantum field theory without boundaries. In general, yisecphquantities in the
problems with boundary conditions can be classified into two main types. Fautngities of
the first type the contribution of the higher modes into the boundary indfteisis suppressed
by the parameters already present in the idealized model. Examples of saictitigs are the
local physical observables for points away from the boundaries anidtieraction forces between
disjoint bodies. As we have seen, the Abel-Plana formula provides aieaffway to evaluate
the quantities of this type. For the quantities from the second type, such asdhgy density
on the boundary and the total vacuum energy, the contribution of theaaybliigher modes is
dominant and they contain divergences which cannot be eliminated by thiasdaenormalization
procedure of quantum field theory without boundaries and additiotdiamiions are necessary.
Methods to extract finite results for the quantities of the second type aetoped in [29].

The work was supported by PVE/CAPES program and in part by the Aemeéviinistry of
Education and Science Grant No. 0124.
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