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1. Introduction

Different types of topological defects [1] may have been formed dufhiegohase transitions
in the early Universe. Depending on the topology of the vacuum manifose thee domain walls,
strings, monopoles and textures. Physically these topological defectaraggpa consequence of
spontaneous breakdown of local or global gauge symmetries of thersyGtebal monopoles are
spherically symmetric topological defects created due to phase transitionanglebal symmetry
of a system is spontaneously broken.

The simplified global monopole has been introduced by Sokolov and Stakyhji2]. Bar-
riola and Vilenkin [3] have determined the gravitational field produced biplbay monopole in a
four-dimensional spacetime, considering a system comprising by a sgifitcg iso-scalar Gold-
stone field tripletp?, whose original globaD(3) symmetry is spontaneously brokenddl). The
matter field plays the role of an order parameter which outside the monopole’'sacquires a
non-vanishing value. The main part of the monopole’s energy is comtedtnto its small core.
Coupling this system with the Einstein equations, a spherically symmetric metrig ierisand.
Neglecting the small size of the monopole’s core, this tensor can be apptekingaven by the
line element

2
ds? = —dt2+(l—r2+r2(d62+sin29dcp2), (1.1)

where the parameter?, smaller than unity, depends on the symmetry breaking energy scale.

Similarly to a gauge cosmic string [4, 5], a global monopole exerts essentiafjseniational
interaction on the surrounding matter; however Barriola and Vilenkin notltatdt acts as a grav-
itational lens in the same manner as a cosmic string. So, this object may have mhpmlgan the
cosmology and astrophysics.

Although topological defects have been first analysed in four-dimeakspacetime [1], they
have been considered in the context of braneworld. In this scenariopgbimgical defects live in a
n—dimensions submanifold embedded iD & 4+ n dimensional Universe. The domain wall case,
with a single extra dimension, has been considered in [6]. More recentlyodmaic string case,
with two additional extra dimensions, has been analysed in [7, 8]. For gewih three extra
dimensions, the 't Hooft-Polyakov magnetic monopole has been numericallysad in [9, 10].
In Refs. [11, 12, 13, 14, 15] numerical analysis of global monop@eegsented.

The calculation of the vacuum polarization effects due to four-dimensgiobhl monopole
on the scalar and fermionic fields, have been developed in [16] andrdsfiectively. Here we
shall analyse this effect on a quantum massless scalar field considaingdidimension of the
spacetime is greater than four. In this way, two distinct topological spacetitid® considered:
a) In the first, the global monopole lives in the whd@e= 1+ d dimensional Universe. In this case
the metric tensor associated with this spacetime can be given by the followinddimera

dr?
ds,) = —dt® + 5 +r°d0F ; = gund"dxX" (12)

whereM, N=0,1,2...d, withd > 3 andx™ = (t,r,0y,6,, ..., 84_2, @). The coordinates are defined
in the intervald € (—o, ), 6 € [0, fori =1,2...d— 2, ¢ € [0,2m1] andr > 0. In this coordinate
system the metric tensor is explicitly defined as shown below:

goo=—1, 011 =1/a?, gop = r? andg;j = rsir? 8 sirf 6...sirf 6;_» , (1.3)
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for 3< j <d, andgyn = 0 for M £ N. This spacetime corresponds to a pointlike global monopole.
It is not flat: the scalar curvature is given By= (d — 1)(d — 2)(1— a?)/r?, and the solid angle
associated with a hypersphere with unity radiu®is: 2r1%/2a?/I (d/2), so smaller than ordinary
one.

b) In the second, the global monopole lives in a three dimensional sub-maboffdidjher di-
mensional (bulk) spacetime, having its core in our Universe describedtgnsverse flagp —
1)—dimensional brane. In this case the metric tensor associated with this spacetime is

dsfy) = NMuvdxdx’ +d 5 +12dQ3 = gunddxX" | (1.4)

wheren,, =diag(—1, 1, ..., 1) is the Minkowski metric. The curvature scalar associated with
this manifold isR = 2(1— a?)/r?, and the solid angle associated with a sphere of unity radius is
Q = 4na?.

2. Euclidean Scalar Green Function

In order to develop the analysis of the vacuum polarization effects iassdavith a scalar
field, one of the most important quantity is its Green function. Here, in this sgatie shall
calculate this function admitting that the matter field propagates in the whole space.

The Euclidean Green function associated with a massless scalar field chtalveed by solv-
ing the non-homogeneous second order differential equation

&P (x—x)

(O—ER) Ge(x,X) = =8°(x,X) = — N

(2.1)
with

0= %ammdwam - (22)

We have performed in the metric tensors defined by (1.2) and (1.4) a Wiatomot = it on the
temporal coordinates. Moreover we have introduced in (2.1) an agbduavature coupling .
The Euclidean Green function can also be obtained by the Schwingeit¥evkhalism as
follows: -
Ge(x,X) :/o dsK(x,X;s) , (2.3)

where the heat kernef(x,X;s), can be expressed in terms of a complete set of normalized eigen-
functions of the operatdrl — R as follows:

K(x,X;s) ZCDO X) exp(—so?) , (2.4)

with o2 being the corresponding positively defined eigenvalue. Writing

(0—ER)Dy(X) = —02Dy(X) (2.5)
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we obtain the complete set of normalized solutions of the above equation:
For the metric spacetime defined by (1.2), we have [18],

f[ap 1 . _
Dy (X) = Erd/Z—le 13, (pr)Y (1, mj; ,6) , (2.6)

Y(l,m;; @, 6;) being the hyperspherical harmonics of degrkd], andJ,, the Bessel function of
order

vi=a /(1 +(d-2)/27+(d-1(d-2)(1-a?)(E - F), 2.7)
with the conformal couplind = %.
For metric spacetime defined by (1.4), we have [20],

— \/a_peiikx‘]\ﬂ(pr)“m(e’ (p)

CDO'(X) (27_[) p/z\/F 9

(2.8)

with

v=a /(1 +1/2°+2(1-a2)(§ - 1/8), 2.9)

kx= nuvkHkY, andYin(8, @) the ordinary spherical harmonics.

In (2.6) 02 = w? + a?p?, and in (2.8)02 = k? + a?p?.

Substituting the above expressions in the definition of the heat kernebfiid)sing (2.3), we
obtain the following Green functions:
For the spacetime defined by the metric tensor (1.2),

d—2

e V2 S (2 -1+ dQy 1 2(coshu)C (cosy), (2.10)

4nd/2+1 (rr’)Lgl d-2 |

G (x,X) =

ey

where
a2AT? +r2 12
2rr! ’

coshuy = (2.11)
andCI“ (x) being Gegenbauer polynomial of degtee
As to the spacetime defined by (1.4), the Green function reads

GP (x,X) = L i1 ! S (2 Jrl)QF%1 (coshup)R(cosy) ,(2.12)
=T 2B AP (1) B (sinhuy) 7 |; m-2 ’ Ve

with
AX22 4 12 4 172

coshup = o7

(2.13)

In both Green function$Q)) Q, is the (associated) Legendre function, gnthe angle be-
tween the two arbitrary directions.
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3. The Computation of (®?(X))ren

The vacuum expectation value of the square of the scalar field is formaliggsed by taking

the coincidence limit of the Green function as shown below:
(¢%@>Z&@GHK%% (3.1)

However this procedure provides a divergent result. In order tarobtdinite and well defined
result, we must apply some renormalization procedure. Here we shall saopoint-splitting
renormalization one. The basic idea of this procedure is to analyse thrgeliveontributions of
the Green function in the coincidence limit and subtract them off. In [2X|dv@bserved that
the singular behavior of the Green function has the same structure ashyitke Hadamard one,
which on the other hand can be written in terms of the square of the geodsaitog between two
points. So, here we shall adopt the following prescription: we subtrawct the Green function the
Hadamard one before applying the coincidence. In this way, the renoetdaticuum expectation
value of the field square is given by:

(D?(X))Ren = )I(,TX [Ge(x,X) = GH (x,X)] - (3.2)

Because the explicit expression of the Hadamard function depends dmtéasion of the space-
time, the above calculation can only be explicitly performed by specifying therdiimes of the
spacetime. So in the next sub-sections we shall consider spacetimes witlb Slemensions.

3.1 Five Dimensional Spacetime

In order to develop the analysis f(?(x)), it is necessary to write explicitly the Green func-
tions takingd = 4 in (2.10) andp = 2 in (2.12); moreover, it is also necessary to adopt for the
respective Legendre functions specific representations. Here alleaglopt integral representa-
tions as follows:

For the first function, we shall use [22]:

hu L d e 3.3
_1/»(cos =— t :
Qu-1/2( ) 2 Ju,  \/cosH —coshu, (3:3)
and for the second, we shall use [22]:
1/2 . 7_'[ e Vb
QV|71/2(Cosmb) =1 2 /sinhup - (3.4)

Because the orders of the Legendre functionsjepend on the parametiin a very compli-
cate form, itis not possible to proceed exactly their respective summatior guamtum number
in (2.10) and (2.12). The bestwe can do, is to develop a series expamgiowers of the parameter
n? = 1— a? considered much smaller than urityrhe expansions are:

(3¢ -1/2)

v (14+1)(1+ n2/2)+,+71n2+0(n4), (3.5)

1in fact, for a typical grand unified theory in four dimensions, the paitam? is of order 16°°
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for the caséa), and

(2¢-1/4) »

v (1+1/2)(1+n%/2) + == —n*+0(n%), (3.6)

for the caséb).

Taking first the coincidence limit in the angular variables, and after someriatiates steps,
the Euclidean Green functions read:
For the cas¢a):
_ 1 1 /°° dt 1 cosht/2)
16283 (rr")3/2 Ju, ~ \/cosh — coshu, sinké(t/2)

2
[1— 2§itr’17r(t) (1+4¢& sinhz(t/Z))] +0(n%. (3.7)

GA(r,r") X

For the cas¢b):
b 1 1 (1+n? U
GO(xx) = 6477 (rr’)3/2 sinkuy [1_ sinhup,
The general expression to the Hadamard function for scalar fields inpteetme of odd
dimensions has been given in [23]. For a five-dimensional spacetime trentéad function reads,
1 1
= 16\/2"2 0-3/2()(’ X’)
being o(X,x) the one-half of the square of the geodesic distance between two arlgtitg,
andR the scalar curvature. The one-half of the radial geodesic distancbstfospacetimes read
o(x,X) = (1/2a?)(r —r")?. In our approximation it can be written as~ (1/2)(r —r’)?(1+n?+
).
Now we are in position to calculate the renormalized vacuum expectation Vialne square
of the field operator up to the first order if. Once more the two distinct situations have to be
analysed separately:
i) For the spacetime defined by (1.2) the scalar curvatuRe=s6n?/r?. Substituting (3.7) and
(3.9) into (3.2) we get

(1+4¢ sinI’F(ub/Z))} +0(n*. (3.8)

Gy (X,X’)

[1+(1/6—&)R(X)T(x,X)] , (3.9)

3 2
(@2()ren = o -5
We can see that for the conformal coupling in five dimensional spacefime3/16, the renormal-
ized vacuum expectation value of the operabd(x) is zero, up to the first order in2.

i) For the spacetime defined by (1.4) the scalar curvatuRe=s2n?/r?. Substituting (3.8) and
(3.9) into (3.2) we get a vanishing result:

(D?(X))Ren = O (3.11)

(& —3/16) . (3.10)

for any value of the non-minimal coupling constdnt

Because the above vanishing result, we may want to know the vacuumtape of the field
square in the next-to-leading order, i.e., at or@en“). To do that, we have to construct the Green
and Hadamard functions up to this order. Developing a long calculation y@®ffinally get a
non-vanishing result:
n*

<¢2(X)>Ren = 1923

(E-1/8) . (3.12)
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3.2 Six Dimensional Spacetime

Following the same steps, the Euclidean Green function for the spacetimedefirf1.2), in
six dimensions (d=5) reads

G (1) = 3 1 * 1 cosht/2) y
T 128218 ()2 \/coskt coshug sintt(t /2)
[1 Sﬁ&0(1+4fmn¥a/aﬁ (3.13)

As to the spacetime defined by (1.4), the Green function (p=3) reads

1-n2 1 1 2 1
2478 (1) sinhuy I;}(ZI +1)Qy, _1/2(coshup)R (cosy) . (3.14)

(b)(xa)(,) =

In order to investigate the he vacuum polarization effect we shall uselid)(&he integral repre-
sentation to the associated Legendre function given below [22]:

T sink (u) [ eVt

Q(‘,_l/z(cosm) - \/; F(l/Z/i)) /u at (cosht — coshu)A+1/2 (3.19)
For this cas& = (p—1)/2= 1. However the above representation can only be appliglday) <
1/2. This integral representation, on the other hand, can be used foesifbld (p— 1)—brane of
smaller dimension. In the calculation of vacuum polarization effects, we ddopted the point-
splitting renormalization procedure, subtracting from the Green functiorl#ltmmard one. This
procedure provides a finite and well defined result to evaluate themafined vacuum expectation
value of the square of the scalar field. In what follows, we shall allow in rdam®rmalization
procedure, that the dimension of the brane be an arbitrary number. hakgisre may use (3.15)
in Green function above, and also in the definition of Hadamard functiomllfziim the calculation
of the vacuum polarization effect, we shall tage~ 3 before to take the coincidence limit in the
renormalized Green function. As we shall see we shall obtain a finite atidefened result.
Adopting this procedure the Green function can be written by

V2  a? 1 /°° dt y
32n2\/ﬁ(rr )2T(1/2—A) Ju (cosh —coshu)A+1/2

GPI(X,x) =

z (20 +1)e 'R (cosy) . (3.16)

Takingy =0 (R (1) = 1) into the above equation it is possible to develop an approximated expres-
sion to the summation on the angular quantum nurhber
The Hadamard function in a six dimensional spacetime has the general form:
AY2(x,x) Tag(x,X) ar(x,X) ax(xX), [ Hc(x,X)
Gu(X,X) = g . o | - 3.17

H (<) 16m® | 02(x,X) * 20(x,X) 4 n( 2 ﬂ ’ 317
whereu is an arbitrary energy scale introduced in this formalism to prevent imfrsireyularity,
A(x,X) is the Van Vleck-Morette determinant and the coefficieag$x, x'), for k=0, 1, 2, have
been computed by many authtir&or the radial point-splitting we hawe(x', x) = (r' —r)?/2a?.

2See Refs. [24] and [25].
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The expressions for the coefficiersisdepend on the scalar curvature, Ricci tensor, etc. For
the metric tensor defined by (1.2), the Hadamard function, up to the firgt esgbansion in the
parameten?, reads:

_2n2 _ 2 2
G,(j‘)(r,r’): 161713 [4((3_3,’)74)%—2521“ Eg:,))g —?—4(5—1/5)In(u2(r—r’)2/4)} . (3.18)

However for the metric tensor defined by (1.4) we have:

1 [41-2n%) (1-68)n> n?
{ (r—r% " 3r2(r—r)2  6ré
At this point we shall adopt the approach below to express the Hadaoratidns in a integral

representation. We shall express the different powel?épﬁn the Hadamard functions above by

the following integral representation:

For the Hadamard function defined in (3.18), we use

(b) 1
Gy’ (1) = 153

(1/5—&)In (u3(r — r’)2/4)} . (3.19)

1 V2r(9)
(r'=n)d=t pd-1(pry % /(51
*° dt cosht/2) (3.20)
u v/Costt _costusintf 1(t/2) ’ '
and for the Hadamard function (3.19),
1 (-n-u r) y
(rF=nd = i3 (SRR (A -a)
/°° dt cosht/2) ‘ (3.21)
u (cost — coshu)z* sinf~1(t/2)

Substituting the parameter for the appropriated values in order to reproduce the correct
powers of%, and expressing the logarithmic term in both function€gycoshu), we obtain two
long expressions. The renormalized vacuum expectation values ofdigdgeshave to be evaluated
separately, for both cases:

i) For the first case we have to substitute (3.13) and (3.18) into (3.2). Teiengpincidence limit
we have

2 2
(@2(X))ren = ”—(47 1oa)+ 0 (& —1/5)In(ur) . (3.22)

- 96méré \ 25 8mr4

ii) For the second case we have to substitute (3.16) and (3.19) into (3.2)eveigvas we have
mentioned before, we shall taRe— 1 first into the renormalized Green function before to take the
coincidence limit. Doing this procedure we get:

1 n? /47 1 n?
576r3 r4 \ 25 4873 r4

We can see that, although both results above are different, there areisoiladties between

them:
a) For the conformal coupling in six dimensiofi= 1/5, there is no ambiguity in the definition of

the above vacuum polarization effects, i.e., the logarithmic contributionsmisapand
b) for & = 47/250 the contributions proportional tg'rt* disappear.

(@2(X))on = 10 ) + (E-1/5)n(ur).  (3.23)
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4. Energy-Momentum Tensor

In this work we are analyzing the quantum effects associated with a masstdas field in
the metric spacetimes defined by (1.2) and (1.4). As we can see these mefoicstpresent no
dimensional parameter. Moreover we are adopting the natural systenwingiteh =c = 1. As
a consequence we can conclude that any physical quantities calcudatenhly depend on the
radial coordinate or on the renormalization mass scale By dimensional arguments we could
expect that/®?(x))ren is proportional to ¥r"=2 and (Tyn(X))ren Proportional to ¥r", beingn
the dimension of the spacetime considered. The factor of proportionalitydsheen given in
terms of the parameter? and the non-minimal coupling. In this section we want to analyse the
renormalized vacuum expectation value (VEV) of the energy-momenturarteBg calculations
developed previously, we have shown that, up to the first ordef,ithe renormalized VEV of the
field square in the metric defined by (1.4) is zero for a five-dimensionaksipae®. Although we
cannot affirm that these vanishing result also occur in the calculatioredof #V of the energy-
momentum tensor, we shall analy@en (X)) ren for the six-dimensional spacetime only.

The renormalized vacuum expectation value of the energy-momentum tadd obey the
conservation condition

Om(TY' ())Ren =0, (4.1)
and provides the correct trace anomaly. For a six-dimensional spacetiesael$[23]:

1
6473

Taking into account all above informations, we can conclude that the@esteucture for the
renormalized vacuum expectation value of the energy-momentum is:

(T () ren = Wlw [AW(n*,&)+Bua(n® &) In(un)] , (4.3)

(Tw (X))Ren = ag(X) - (4.2)

with AY, obeying specific restriction conditions that will be examined later. Becaweseutoff

factor u is completely arbitrary, there is an ambiguity in the definition of this renormalizegura

expectation value. Moreover the change in this quantity under the chénige enormalization
scale is given in terms of the tens®f as shown below:

(TR ())ren () — (T\ (X)) Ren (1) = ngrgBM(nzy &)In(u/u'). (4.4)

The difference between them is given in terms of the effective action wleplends on the loga-
rithmic terms whose final expression, in arbitrary even dimension, is [23]:

1 1
(4m)"2 /g

In our six dimensional case we need the faekgix). The explicit expression for this factor can be
found in the paper by Gilkey [26] and in a more systematic form in the papéably and Parker
[27], for a scalar second order differential operafr+ X, Dy being the covariant derivative

(Tmn (X)) Ren (1) — (TN (X))Ren (M) =

o
5 [ dx/Bayain(u/u) . @5)

3For the spacetime defined by (1.2) we have seen that this vacuuntatiprealue does not vanish.
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including gauge field an& an arbitrary scalar function. This expression involves 46 terms and
we shall not repeat it here in a complete form. The reason is becausmloufation has been
developed up to the first order in the parametérand only the quadratic terms in Riemann and
Ricci tensors, and in the scalar curvature are relevant far TiBis reduces to 12 the number of
terms which will be considered. Discarding the gauge fields and taking-& R we get:

= 1/1 1 52 M E MN E M
= (=- = — & )ROR+ 2=RMRy + =R"NRyy — =RMR
aa(x) 6 <6 f) (5 f) + R Ru+gg MN — 5eR7 R
1 . . :
=T [28ROR+ 17RMRM — 2Ryn:pRM™NP — 4Ryn.pRYPN +
9RunpscRNPIC — 8RyuNOIRYN + 24RynRYPN b+
12RunpdIRNPS +O(R?) . (4.6)

This expression is of sixth order derivative on the metric tensor. Oursteg is to take the func-
tional derivative ofag(x). Using the expressions for the functional derivative of the Riemann and
Ricci tensor, together with the scalar curvature, we obtain after a longlaatn the following
expression for the tens@:

N2 en o PPl e ez €, 28, 1 oy
Bu(n%.¢) = 5 [ s R(‘s 3+840)+14OD R+
ONOMOR <52—%+ 4%)] +O(R?) . (4.7)

Developing all the terms which appear in the above equation we obtain aftercaculations:
i) For the metric spacetime defined by (1.2):

2
BII\\I/I(nzv E) = r77_5 dlag ( 21 2> _17 _11 _17 -1 ) +
16n2(& —1/5)(& —2/15) diag(1,-4,2,2,2,2) . (4.8)
i) For the metric spacetime defined by (1.4):
N2 n* .
Bu(n<,¢&) =— ﬁdlag( 1,1,1,1, -2 -2)—
8n%(& —1/5)(§ —2/15) diag ( 1,1,1,-2/3,4/3,4/3) . (4.9)

We can see that by taking= 1/5 the trace of both terms vanish.

After conclude the analysis above for the teanjr, let us present below the restriction con-
ditions obeyed by the components of the ten@g&r for the spacetimes defined by (1.2) and (1.4)
separately:

By applying the conservation condition, (4.1), and the correct tracmalycexpression, (4.2), we
can write, for the conform coupling = 1/5, the following results for spacetime defined by the
metric tensor (1.2):

Al = AJ—T++B]
0 1
AZ:A3:A4:Ag:I—ﬁ—E (4.10)

4The term proportional ta1°R in ag(x) is also not relevant because it can be written as a total derivative.

10



Vacuum polarization effects Eugénio R. Bezerra de Mello

with
2
T =rba3(x) = r6¥D2R+ O(R?) = —% +0(n%) . (4.11)
As to the spacetime defined by (1.4), we observe that the geometry of ite beation has a
Minkowski-type structure, consequently we expect m%lt: A} = A%. Admitting this fact we

can write:

B3
A=A+ -T, (4.12)
Aﬁ:AE:—ZAg—%ng%, (4.13)
with
T =rba3(x) = r6$D2R+ o(n*) = 63i52 +0(n%) . (4.14)

We conclude this section by saying that the complete evaluatiéR{(i))ren, for both space-
times, requires the knowledge of at least one component of the taf}stor exampleAd. However
we shall not attempt to develop this straightforward and long calculation here

5. Concluding Remarks

In this paper we have investigated the vacuum polarization effects aesbwidh a massless
scalar field induced by the presence of a global monopole in spacetimigsarisions higher than
four. Two different geometric spacetimes have been considered:

¢ In the first, the global monopole lives in whole space.

¢ In the second, the monopole lives in a three-dimensional submanifold cérhagmensional
(bulk) spacetime.

Our main objective in this paper was to investigate how different geometsesiased with
the same topological object can provide different results at quanturh léveorder to answer
that question two specific calculations have been developed: the renadaicuum expectation
values of the field squarép?(x))ren, and the energy-momentum tengdf) (x))ren-

As to (D?(x))ren, We develop this calculation for spacetimes of five, respectively six dimen-
sions. We have found that, up to the first order in the paramgter 1 — a?, assumed to be
smaller than unity, this quantity presents different results for each geoowisjdered. In the five
dimensional case, the vacuum average gets, in principle, a non-vanrgisuit for the spacetime
defined by (1.2), and a vanishing result for the spacetime defined by Fb#the six dimensional
one, although being different the values found @2 (x))ren, they present some similarities as
mentioned in section 3.

The renormalized vacuum expectation value of the energy-momentum,thiasobeen an-
alyzed for a six dimensional spacetime under dimensional grounds onli\haWweshown that it

5By (4.9), we can see tha& = B} = B3 for any value of curvature coupling

11
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behaves as/lﬁ, wherer is the distance from the monopole’s core, and presents an additional
contribution proportional to Ifur)/r®, beingu is an arbitrary mass scale introduced by the renor-
malization prescription. This term is associated with the coeffigigix), which, according to [28],
comes from the purely geometric (divergent) Lagrangian that shoutdmesiize the modified clas-
sical Einstein one. When this extra term is inserted into the gravitational attteteft-hand side

of the field equation is modified by the presence of order six terms propartion

¢19a8PR+ C20°Rag + Csa00IR+ O(R?) . (5.1)
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