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1. Introduction

The bosonization of fermions has proved in the past to be a very usefuli¢gie for solving
guantum field theoretic models in 1+1 dimensions [1]. Recently this FermionrBoapping has
been discussed for the case of a finite Temperature, using the imaginarotimedism [2] and
real time formalism[3].

The following mapping at zero temperature in (1+1)D is well known:

—. 1
giyto,p — 5  0upote:, (1.2)
Gy — " a0 1.2
\/TT VY%, .
Myy — —%:cosz\/ﬁfp:. (1.3)

Here we establish this mapping at finite temperature through operatorial reetithih ther-
mofield dynamics formalisii@, 5, 6]. We also contrast this approach with direct computations
of fermion-current two-point function in imaginary-time and real-time computatid@he explicit
expression for the fermion field in terms of the massless scalar field is pdbvides work con-
densates the presentation provided in [7].

2. The Transmutation of Fermi-Dirac to Bose-Einstein Statistts

We illustrate here how the statistical transmutation, Fermi-Ditac> Bose-Einstein, occurs
in imaginary and real time formalisms.
2.1 Imaginary time

The current 2-point function in the imaginary time formalism is well known. eHge work
with light-cone coordinates. = x; +ix, andj+ = j1 £ij2, S0 that the Euclidean two-point current
correlator at zero temperature is given by

< Jr(X)j(y) > = —tr (yaiSe(X—y) y4iSe(y— X))
2 .
~ [ Gl ot

with,
2
1500 =4 | Gz l(p—Kis-+i(p—Wlpr+ipDe(p-kDe(p) (2
and
De(q) = e :

@ (+ig2)(qu—ig2)
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At Finite temperature and within imaginary time formalism it becomes expressed as

<P 09ir(y) >p= ;B/dklékm e (ky, @),

wherew, = 2,’3“ = are the Matsubara frequencies.

e 1
N7 (K, o 42;3 2n [P —i(m+3) Flpr— Ky —i(m—+3) 5

It is important to notice the lack of uniform convergence above so thatrtter i which the sum
and integral are to be performed are not interchangeable.
Indeed if we first sum by using that,

1 1 -
; [(m+ (1/2)+ix] [(m+ (1/2) +iy] X_y(tanhnx—tanhny),

it results

= 2 dps B B
I'I(+E+)(k1,wg) = _kl—i% /E (tanthl—tanhi(pl—kl)) .

with
tanh® a; = e(ar) (1 2N (u))

where Ng(|ai|) is the Fermi-Dirac distribution.

1
Ne(loe) = gy ok (2.2)
The integration ovep; results now in:
- 2 Kk
AE) (ke @) = PG

B

On the other hand if we first integrate then sum we notice thapthetegral leads to :

ap 1 )
2m [py—i(m+1/2) [P — ks —i(m—¢+1/2)F]

= —i[0(2m+1)0(~2m-+ 20— 1) — (~2m— (M- 20+ 1)) — 7.

1B

Now the sum ovemresults in

(© Copyright owned by the author(s) under the terms of the Cre@dmmons Attribution-NonCommercial-ShareAlike Licence.
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1)) = (600 +6(~0- 1)) —
2 i

7 2l ”
T[kl_lT

This is in contrast with the previous computation. In order to fix the ambiguity wettedk mean
of the two results

N 1k +iZg
My (k) =——+—7s. (2.3)
T[k]_* IT

With this we preserve Lorentz invariance in the zero temperature limit. We fustiiain that:

<P (y) >p =—fc92 B (x—y)
where

dkg dhaang 5z

;13 27-[ k2 21'[()

The final sum leads to

), _ [ dkK
De (Z>_/(2)

[ —i2m3(k?)Na(|k1|)

where Ng(|k1|) is theBose-Einsteimistribution

1

By rotating to Minkovski space
B ipB g —i [ 9K gikz[ 1 1.2
Dg’(2) — iDg (Z)—I/(Zn) [k2+i8+2m5(k INs(|Ka|) | , (2.5)
So that:
. . 1.,
<Ti+()J+(y) >p= 97D (X~Y). (2.6)
This result agrees with the identification
_ 1
gy — —ﬁf oo, (2.7)
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2.2 Realtime

The current 2-point function in the real time formalism is given by

2
M09 =4 [ Gra(p—k04peDE (P~ kD (), 29)

with

— q2+i£+2ni5(q2)N|:(\d]). (2.9)

where the Fermi-Dirac statistical factor is

1
(‘ql‘) 68|Q1‘ +1
The double integral is performed with: 1) In the temperature independens twerequire
dyJ* = 0. 2) In the temperature dependent terms use repeatedly the decomposition

a 1
amTiE = (x) —1Ne(a)d(x).

(2.10)

This leads to
o 1s ~ .
<Tiu(v(y) >p= -9u0siDg” (x~).
where
1
O = (g +2m( Nk )

The conclusion is that the results are necessary to establish the finite temgbsonization.
But it becomes clear that this procedure is not ibayninating with regards to showing how the
bosonization machinery works.

3. Free Massless Scalar thermofield

As a first step to two-dimensional bosonization we review the quantizationeaintissless
scalar@. This will be done within the Thermofield dynamics approach: we double théauof
fields by introducing a fictitious system with fietglbesides the physical fielg.

szf—gzédH(p&“(p—%duad“@, (3.1)

As an start point to quantization we consider the creation and annihilatioatope for the
chiral field components:

/ \/W fp(x) (a((_prl);)> + f(x) <a;$—pr£;)> ] (3.2)
Lol (S) e we ()L e
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with
fp(x) = &P (3.4)

We define the thermal vacuum by

0(B)) = Us(68)(0,0), (3.5)
with the unitary operatddg(6g)

-i2(08) _ o Jiodpt (5(p1)a(pl)—a*(pl)5¢(pl)> 6s(/p"[.8)

Ug(Bs) =€ = , (3.6)
where the Bogoliubov parameté(|p|, B) is:
ihes([p;) = — @)
sin B) = —, :
P \/1— e—BlpY
which is related to the Bose-Einstein distribution
1
1. Q) — o 1.3y
NB(’p |'B)_S|nhZGB(‘p ”B) - empl‘_l (38)
The thermal operators can now be introduced as
a(ph; B) = Us(—6s)a(p*) Us(6). (3.9)

The thermal chiral fieldgp(x™; B) are obtained thereupon
With this the chiral components two-point functions are readily obtained

(0,019(x*; B)p(y*; B)|0,0) = D" (x* —y*) +
tom | P loosplxt - y*)] Ne(pi )

where the first term is the zero temperature result. The integrals arempeddy introducing in-
dependent infrared regularization paramejefgero temperature) ana (temperature dependent
term). It results

~ ~ 1 B nxt—yt—ig)
+. +. L b nx:—y-—ig)
(0.0l9(x";B)e(y™:B)[0.0) = ——In {Iu —sinh 3 +
1 !/
+§TZ(I3,H ).
Here zis a constant ( singular fqr' — 0) that plays an important role in bosonization as will

be seen shortly.
The thermalized tilded fieldgy(x™; B), are analogously defined.

All the two-point functions are obtained thereupon
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4. Wick ordered exponential and selection rules

The building blocks for Mandelstam expression are given in terms of tinal ¢ield compo-
nents by:

W A) = @ 00X°) 1z gid 0 0x) gid ) (4.1)

We should require that

(OW(x;A)|0) = (O]W(x;A)|0) = 1. (4.2)

Using that
Us(68) 9 (x)Ug 1 (88) = &~ (:B) — &™) (. B), (4.3)
Us(68) 9 (x)Ug X (88) = &7 (. B) — & (x. B) . (4.4)

We obtain
(0(B)IW(xA)|0(B)) = (0,0/W(x;B,A)|0,0) = Z(B,u',A?), (4.5)
= (0(B) W(x;A)|0(B)) (4.6)

2 /! . . . . -
Thus the constant(B, u’,A2) = e~ #2B-H) is incorporated in the renormalized Wick or-
dered operators.
A direct computation of the Wick ordered exponentials leads, for instaoce,

2
- - = NS A
(O(B)| [ WoxAs) [0(B) = 2B (50 n)
1=
.Ij ['“smh(x'gl_"s)} Wt
Note that thezero temperaturselection rule
-i/\i -0 (4.7)

Eliminates simultaneously the dependence on both infrared parametamndu’.
With this we achieve that the Wick ordered exponentials live on a positive Riilbert Space,
provided they are associated to conserved charges.
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5. Free Massless Fermi thermofield

The doubling of fields reads now

L =iPHLY = L — P = Wy dup — (—iﬁyﬂauw). (5.1)
With
.
P(x)= (ig;i) : (5.2)
P(x) = (ggf;) , (5.3)
where
wix) = [ dzpn {f0c)bGED) + f50x)d'(wp)}, 5.4
9 = [ {05 + )} (). (55)

The unitary operator leading to the thermofields is now given by

— [ dp6 1l Blblbe 1BT1 Jld _df l&’fl
Ur(6F) = e I pF(\p\,B)((p) (p7)—b'(p7)b'(p*) +d(p")d(p) —d*(p") (p)>’ (5.6)

Notice that the Bogoliubov parameters are the same as before exceptifardtatistics

1

Vite Bp’

and that the Fermi-Dirac statistical weight is given by,

cosO:=(p;B) = (5.7)

1

Ne(p; B) = sir?6:(p; B) = T

(5.8)

The thermal fermionic fields are straightforwardly introduced:

oodp

W(xB) = L Tan

{ t60¢%) (b(p) cosr (p; 8) B (+p)sin6r (p: B)
+ 150¢) (d" (7p) coste (p; B) — d(Fp) sinér (p:B)) |} (5.9)
and

oodp

T 160¢) (BP) oSt (p: ) + b () sin (pi )

wocip) = |

+ 1(%) (d" (+p) cosd (p; B) + d(p) sinék (p:)) } . (5.10)
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The Fermion two-point function do not require regularizations:

1
t .
AT (vE- Tt vt " o -1 .
<O,0|QU(X ,B)‘.U (y ,B)|0,0> - 2iB Smh[g(xi —yi—l—lf)] ’ (5.12)
1
0,0 0, O : 5.13
< |Lp y:t B ‘ zﬁcosﬂg(xi _y:t)] ( )
This last correlator vanishes as -+ 0
Also notice that
(0,01@(x*; B)w' (y*;B)|0,0) = (5.14)
6. Free Massless Fermion thermofield Bosonization
The bosonized expression for the Fermion fields are now defined as
WO B) = Wh(x*; B) = C2(B, ') : VO F) (6.1)
PO B) = We(x"; B) = C (B, 1) : e 2oL (62)

We stress that the anti commutations, with thermal Klein factors added, hameobé&ined.
With the above expression the N point fermion functions are straightfdiywabtained with oper-
atorial methods.

The symmetrized short distance fermionic currents turn out to be obtained as

IHB) = P BV Y B) = — Ho(x;B), (6.3)

1
—0
VT
thereupon the two point function is recovered

(0,03 (6B)I*(:B)I0.0) = & ay- (0.0160.8)(y: £)[0.0
-1 1
T 4p2 sintf[F (x —y* —ie)]

The bosonization correspondence of the Lagrangians can be dss$leetehort distance prod-
uct of the free fermionic Hamiltonian leads to the free bosonic Hamiltonian.
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7. Massless Thirring Model

As an application of the bosonization formalism let us consider now the Téimiadel at
finite temperature:

P = 1P+ 59 BV 9) By - (—iwauw;g@ww)@‘vuw)) SN CEY

A general finite temperature solution can be obtained as

1 n(@®+8) i ayPe(+59(x)
P(x) = ﬁ(ﬂ) ! € ( ) “ (7.2)
where¢ is the Lorentz dual of.
Indeed the thermalized N-point functions result for the spin 1/2 solution:
5 - N E (5 R
(0.0l (%0 B) -+~ W (%o B) s (13 B) -+~ W (yni )]0, 0) = (2m) ™" (I) 2 ( 52)><
3 [ aanm (g B B >]41"<52+§m)
—sinh— (X" —x"—i¢ —sinh— (X" —X; —i& X
i|:! | B : ] I,_Jl K g\ i
_ 41 2 - 1 w2 _
n B . hn< ) ) . ) an (52+§Z+27TV20,> n B . hn( - - . ) an (52+p 27TV201>
—sinh— (y"—y —i¢e —sinh— [y —y; —i¢g X
I'! _ A ﬂ 75 Y,
_i w _1 2 _
n B ] hn. N L 4m (52+52+2nyga> n ,B ) hn. B o 4m (62+52 ZnygD,)
II_J| - sin E(X' -Y; —|£) II_J| —sin E(Xi -Y; —|s)

8. Conclusions

Let us stress that the framework of thermofield Dynamics allows for a najengralization
of T = 0 bosonization formulae in 1+1 dimensions to the case of non-zero tempgeralao the
“Mandelstam representation” for thermal fermions allows us to obtain in a acmyay the exact
and complete solution of a number of integrable models with massless fermions.

Appendix
Let us obtain the massless scalar field from the massive expressionsartWeith the massive
field
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2(xB) =U[6(B)Z(x)U[6s(B)] =

e .
=/ W{ ) (a(p) coshes(p: B) — & (p) sinhs(piB))
+13() (a'(p) coshy(p: B) — a(p) sinhBa(piB)) }. (A1)

The thermal two-point functions decomposes as:

(0,012(x; B)=(y; B)|0,0) = DS (x—y; m) + . (x—y; B,m) , (A2)

whereDS" (x—y; m) = corresponds to zero temperature

<+>( [(X‘Lv‘))\/ p2+mz+(xlfyl)p] n

Y e
. [Xoy"\/pzT( yl)p}}

; (A.3)
and the temperature dependent part is:
20y B.m) = o [ Prig(w ) { cos[0€ — yPyw-+ (- y1)p)
+cos[(x —yo)w—(xl—yl)p”, (A.4)
with
1 1
N ) = o = v (A.5)

As long asm # 0 both integrals (A.3) (A.4) are regular.
Now introduce the infrared regulatogsand i’ for each part and taken — 0. ThusNg(w,3) —
Ng(p; B). It turns out that

D06m B s = D60+ 5 [ <PNa(pi ) cospl) +

cosp(x‘)} , (A.6)

This leads naturally to the splitting into chiral two-point functions:

(0.0lp(x*:)9(0%B)0.0) =060 + 5 [~ P loospxNa(piB), (A7)

21 Jy
with

Dt —y*) = — o mlip (¢ —y* —ie)]. (A8)
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With this the thermalization of the chiral components is justified. Within this proegaduand
u should indeed be identified. Both came out from infrared regularizatiof.B) @nd (A.4).
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