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Infrared behavior of the gluon and ghost propagators in Yang-Mills theories Silvio Paolo Sorella

1. Introduction

In recent years we have witnessed an intensive research activity aiming at improving our un-
derstanding of the behaviour of Yang-Mills theories in the low energy (infrared) regime. This is
a rather complicated issue, closely related to the confinement of quarks and gluons. We consider
pure Euclidear8U(N) Yang-Mills theories with action

Svm= i/d“x FoUFR (1.1)
whereAs,a=1,.., N2 —1is the gauge boson field, with associated field strength
F2, = 0uAS — 0 A% + g fADAS | (1.2)
The theory/L.1) is invariant with respect to the local gauge transformations
5A% = D", (1.3)

with
D2 = 9,,6%° — g fa*A | (1.4)

denoting the adjoint covariant derivative.

Thanks to the asymptotic freedom, the coupling constant of the theory turns out to be small at
very high energies, where perturbation theory then becomes reliaBle However, in the infrared
region, the coupling constant grows and nonperturbative effects have to be taken into account.

The introduction of condensates, i.e. the (integrated) vacuum expectation value of certain op-
erators, allows one to parametrize certain nonperturbative effects arising from the infrared sector of
e.g. the theory described k$.0). Via the Operator Product Expansion (OPE) (viz. short distance
expansion), which is applicable to local operators, one can relate these condensates to power cor-
rections which give nonperturbative information in addition to the perturbatively calculable results.

Possible causes of nonperturbative effects are given by Gribov ambiguities which affect the
Faddeev-Popov quantization procedure and hence the propa@jidahe[existence of (topolog-
ically) nontrivial field configurations like instantond][ etc. These effects are not necessarily
unrelated, as e.g. instantons can contribute to the conde(‘rsgﬁé,> [4], the Faddeev-Popov
operator has zero modes in an instanton backgrobjnetc.

Although propagators are not gauge invariant quantities, they are, to some extent, the simplest
Green functions which can be studied from the analytic point of view. As far as four-dimensional
Yang-Mills theory is considered, this task appears to be very difficult for more complicated Green
functions.

During the last decade, there has been an intensive activity from the lattice community in
the study of the gluon and ghost propagators. We can thus compare, at least qualitatively, our
theoretical predictions with the available lattice data.

So far, a certain number of gauges have been considered extensively from the theoretical as
well as from the lattice point of view. This is the case for the Landau, Coulomb and maximal
Abelian gauges. Throughout this paper, we shall mainly be interested in the Landau gauge

OHAZ = 0. (1.5)
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In particular, we shall focus on the effect of the dimension two conder{#gig) on the infrared
behaviour of the gluon propagator, in combination with the effects arising from a treatment of the
Gribov problem.

2. The dimension two condensate

The possible existence and relevance of a gauge condensate of dimension two has been advo-
cated a few years ago b@,[7]. The idea was put forward that the gauge invariant, dimension two
operatomﬁﬂn, obtained by minimizing\? along its gauge orbit,

, 1 2
A2, = min ﬁ/d“x(Aﬁ) ,

UeSU(N)
Al =UAUT+UoUT, (2.1)
might condense, i.e.
(Afin) #0 (2.2)

This nonvanishing condensate might be important for several reasons:

e (A2, could serve as an order parameter for the condensation of monopoles, relevant for the
dual Meissner effect in the dual superconductivity picture of color confinerber [

e it could account for certain power correctionsépwhich have been reported in the study of
two and three point correlation functions, see €3)9].

e it could give rise to a dynamical gluon masg via the OPE1(], which could be relevant for
the dual Meissner effecilll] as well as for obtaining analytic estimates of glueball spectra
[12].

3. Acloser look atA2.

The relevance of the operatAEnin for Yang-Mills gauge theories is known since many years. It
plays a key role in the study of the Gribov copies and of the geometrical and topological properties
of the space of gauge orbii%3,[14,15]. It can be expressed as an infinite series of nonlocal terms,
seellL], namely

A2 = / d*x [Af; (qw — ‘E?) A2 _ gfabe <(‘;V20Aa> <;20Ab> Aﬁ} +0(AY. (3.1)

From this expression, one can also check explicitly order by order in the coupling constant that
Arznin is gauge invariant. However, it is immediately clear bh%)]pn is a highly nonlocal expression,
a fact making it very difficult to handle. In general, it also falls beyond the applicability of the OPE,
which refers to local operators.

So far, the only possibility to study the operakﬁgm by analytical tools relied on choosing the
Landau gaugel(5). Due to the transversality condition, all nonlocal terms drop out, sodqﬁﬁt
reduces to the local operatA?,

A2.. = A?in the Landau gauge (3.2)



Infrared behavior of the gluon and ghost propagators in Yang-Mills theories Silvio Paolo Sorella

3.1 Effective potential for the local composite operator

The operato? is an example of a local composite operator (LCO).17[a method was
developed to construct a sensible effective potential for such operators. This so-called LCO method
was later applied to the caseAfin the Landau gaugdg]. We couple the operat@¥ to the Yang-

Mills action by means of a source

S = S{M+/d4x (;JAﬁAﬁ —;zﬁ) . (3.3)

The last term, quadratic in the sour&gs necessary to kill the divergences in vacuum correlators
like (A2(x)A?(y)) for x —y, or equivalently in the generating functionall(J), defined as

e WO = / ffieldge/9S (3.4)

The presence of the LCO paramefeensures a homogenous renormalization group equation for
W(J). Its arbitrariness can be overcome by making it a func¢g?) of the strong coupling
constang?, allowing one to fix{ (g?) order by order in perturbation theory in accordance with the
renormalization group equatiofh, 18].

In order to recover an energy interpretation, the téid¢ can be removed by employing a
Hubbard-Stratonovich transformation

1:/0e215(g+%A2“)2, (3.5)
leading to the action
S=Su+,
S = /d4x<2(;;Z+2§]:LZZgGA2+EB:LZ(A2)2> . (3.6)

A key ingredient for the LCO method is the renormalizability of the operafoit was proven in

[19] thatA? is renormalizable to all orders of perturbation theory, making use of the Ward identities
in the presence of the operatéf. In addition, an interesting identity was proven concerning the
anomalous dimensiop. of the operatoA?, first noticed in'2Q]. It can be shown thag,. can be
expressed as a linear combination of the gauge beta fungtioml of the anomalous dimensigg

of the gauge field\, according to the relationshiig]

@)

a

2
+ yA(a)> , a= g—nz . (3.7)

pote) = 2

Starting from B8.€) it is possible to calculate the effective potenNglo). The correspondence

(o) =-9 <A2> consequently provides evidence for a nonvanishing dimension two gluon conden-
sate using an effective potential approachgif # 0. Itis clear from8.€) that(o) # 0 also induces

an effective gluon mass/ (o) was calculated to two loop order id§, 21], and a nonvanishing
condensate is favoured as it lowers the vacuum energy. The ensuing effective gluon mass was found
to be a few hundred MeV.
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3.2 Restriction to the Gribov horizon

In the Landau gauge, it is necessary to restrict the domain of integration in the Feynman path
integral at least to the so-called Gribov regi@nwhose boundargQ is the first Gribov horizon,
where the first vanishing eigenvalue of the Faddeev-Popov operator,

WP =3, (auaab+gfa°bAg) , (3.8)

appears. This restriction is necessary due to the existence of the Gribov copies, which implies that
the Landau conditioril(5) does not uniquely fix the gaug8][

It has been discussed i83, 23] how this restriction can be accomplished at the Lagrangian
level. More precisely, the starting Yang-Mills measure in the Landau gauge is given by

diy = DAS(9,AL) det(.27 e (Smu+VH) | (3.9)

where
H— / d*xh(x) = ¢ / A FaRoAD, (.7~ 1) fecae (3.10)

is the so-called horizon function, which implements the restriction to the Gribov ré€pidiotice
thatH is nonlocal. The parametgr known as the Gribov parameter, has the dimension of a mass
and is not free, being determined by the horizon condition

(h(x)) =4(N*-1) , (3.11)

where the expectation valyb(x)) has to be evaluated with the measdrg. To the first order, the
horizon condition'8.11) reads, ind dimensions,

N(@d-1) , [ dik 1
1= 4 9 /(z;T)d K4+ 2Ng2y4 (3.12)

This equation coincides with the original gap equation derived by Gribov for the parayi8ler

Albeit nonlocal, the horizon functiorl can be localized through the introduction of a suitable
set of additional fields. The final action reads

S— S yg [ ' (1A g+ FATPES— d(N2— 1))
S = Srm +/ddx (0%, A% +T29, (Dyc)?)
- / d9x (?iiffa\, <o"v¢ﬂ°+gfabmA€¢ﬂ‘°> — W0y (deﬁ°+gfabmABwﬂ‘°>
~g (9,@Y) *°"(Dyc)” {,”°> - (3.13)
The fields( f‘f, q)f}") are a pair of complex conjugate bosonic fields. Similarly, the fi@aﬁ, wf}c)

are anticommuting. The horizon condition is equivalent with the demand that the quantum effective

actionl” obeys
or
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Gauge LOperator

linear covariant %AﬁAﬁ
Curci-Ferrari %A";}Aﬁ + acac?
maximal Abelian| 1ABAP + achcP

Table 1: Gauges and their renormalizable dimension two operator

As shown inR2, 123, 124], the resulting local action turns out to be renormalizable to all orders of
perturbation theory. Remarkably, we have been able to prove that this feature is preserved when
the local operatoA,% is coupled to the Zwanziger actic®€]. This allows for a simultaneous study
of the effects of the Gribov parameter and condenéate.

A main consequence of the restriction of the domain of integration to the Gribov region is the
fact that the ghost propagator gets enhanced in the infrared region. Using the gap equation arising
from the horizon condition, one finds th&; 22,123, 125,126, 27]

<cacb> o 0 (3.15)
ot P '

This enhancement remains valid in the presenc(é\%} [25,126]. The infrared enhancement of the
ghost propagator in the Landau gauge has also been observed from lattice simUeg;i@8kqgr
solutions of the Schwinger-Dyson equatiofi§,[31, 32].

The Gribov restriction an(iA2> also affect the gluon propagator in a nontrivial fashion, more
precisely one finds25, 26]

(Aad) =& 5y — Puby P (3.16)
WY/ o ) pr 4 mRp?+ 202Ny

It is worth noticing that a propagator lik&.(L€) is not new, as it has been considered already some
time ago by Stingl in order to solve the Schwinger-Dyson equati8gs [t induces an infrared
suppressed gluon propagator, a fact in qualitative agreement with 128jcd Schwinger-Dyson
results BQ,31,'32]. Let us also mention thaB(1€) violates spectral positivity, giving an indication
that the gauge bosons are unphysical parti@€f [

4. Beyond the Landau gauge

It is unclear what the role oAfmn might be in other gauges. This is a very difficult ques-
tion, without any answer at the moment. Due to the severe nonlocality in the expré&d)oiit (
seems that explicit calculations outside the Landau gauge are almost prohibitive, as a localization
procedure looks quite hopeless.

Nevertheless, in several other gauges, we have shown that other dimension two, renormal-
izable, local operators exist. We generalized the LCO method and showed that these operators
condense and give rise to a dynamical gluon mass, see Table B4I85[36]. In the maximal
Abelian gauge, it was found that only the off-diagonal quAﬁsacquire a dynamical mass, a fact
qualitatively consistent with the lattice results frog7[38].
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We have been able to make some connection between the various gauges and their dimension
two operators by constructing renormalizable interpolating gauges and opeB,088][ How-
ever, these operators are explicitly gauge dependent, hence there does not seem to exist a clear
relation with the gauge invariant operaf, ..

Recently, the issue of Gribov copies has also been addressed in the maximal Abelian gauge
[40, 41).

5. Another gauge invariant dimension two operator

Recently, we have considered the fact that, perhaps, another gauge invariant dimension two
operator might be of some relevance. We took a look at

1ab
/ a*xrs, [(09) ] R, (5.1)

This operator was already introduced by Jackiw and Pi during their analysis of a dynamical mass
generation in 3-dimensional gauge theor#3.[
We can add the operatd.() to the Yang-Mills action as a mass term via

with X
S = ——/d“xFa [ComiN (5.3)

As we have discussed idJ], the action[6.2) can be localized by introducing a pair of complex
bosonic antisymmetric tensor fleldéBuvfw) and a pair of complex anticommuting antisym-

metric tensor flelds(G“\,, »), belonging to the adjoint representation, according to which

_ _ 1
e = | DBDBDGDGexp[— ( | 48, DB},
1
- 21/d“xcs DabD?fow—i——/d“ (8-B)°, W)} . (5.4)
Doing so, we obtain a classical local action which reads

Srm+ 86+ Sn, (5.5)
where

1
S = = / d'x (B}, DDBY, — Gy DEDYGE, )

im
S — /d“ (B-B)2,Fa,. (5.6)
which is left invariant by the gauge transformations
beob |
5Aﬁ = —D"’l
o83, = gfabc beN, 6B, = gf* "B}, ,
3G, = gf*w’GS, 5G“V:gfab° "G,y - (5.7)
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In order to discuss the renormalizability &), we relied on the method introduced by Zwanziger
in [22, 23] to discuss the renormalizability of the nonlocal horizon functi8riL(). Instead of
using ©6.5) with mcoupled to the composite operat@, 7, andBf, F2,, we introduce 2 suitable
external source¥,q v andV gy and replac&y, by

1 _ _
Z/d“x(Vgp“VB?,pFﬁv—Vgpr?,pFﬁv> . (5.8)

At the end, the sourcé;, v (X), Vapuv (X) are required to attain their physical value, namely

_im
phys 2

(5au5pv - 5av5pu) ) (5.9)

Vopuv| . =Vopuv ‘

phys
so thatb.8) reduces t&y, in the physical limit.
We assume the linear covariant gauge fixing, implemented through

a
Syt = / d4x(§baba+ b0, AL+, Dzbcb) , (5.10)
In [43], we wrote down a list of symmetries enjoyed by the action

Srv+ SBe+ Syt (5.11)

i.e. in absence of the sources. Let us only mention here the BRST symmetry, generated by the
nilpotent transformatios given by

a ab.b 79 abc~ab
sAﬂ_—D“c,sc"‘_zf cic’,
c

SB?N — gfabchBﬁv+Ga Sgiv _ gfabccbguv ’

uv >
abc.br~c ~a abc.b~C B
sG";‘,V:gf Gy, Gy, =gf¥Cc’G,, +B,y

<@ =b?, s=0, £=0. (5.12)

It turns out that one can introduce all the necessary external sources in a way consistent with
the starting symmetries. This allows to write down several Ward identities by which the most
general counterterm is restricted using the algebraic renormalization formdlBpnAfter a very
cumbersome analysis, it turns out that the act®B)(must be modified to

Sohys = S+ St (5.13)
with
1 im = 1/ —
S = / d*x LF‘?V fv -+ (B—B)RFa + 5 (BlyDIDYB;, — G, DYDIG, )
3 =a ~a A3 =a 2
= "1 (BuBly — G Glly) + 35 (Buy —Bly)
/\abcd - . - .
+ "5 (BlBhw — G Ghy) (BZUBgG—GZGGgU)} 7 (5.14)

in order to have renormalizability to all orders of perturbation theory. We notice that we had to
introduce a new invariant quartic tensor coupld®yd, subject to the generalized Jacobi identity

fmany mbcd_|_ fmbn)\ amcd+ gmeny abmd+ fmdn)\ abem _ 0, (5_15)
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and the symmetry constraints

p) abed _ Acdab’
A abed _ A bacd , (516)

as well as two new mass couplings and A3. Without the new couplings, i.e. wheh = 0,
A3 =0, A3cd = 0, the previous action would not be renormalizable. We refed8)44] for all
the details. We also notice that the novel fieRjs, EZV, Goy andé‘zv are no longer appearing at
most quadratically. As it should be expected, the classical a&jas still gauge invariant w.r.t.
(5.9).

The BRST transformatiorb(12) no longer generates a symmetry of the gauge fixed action
Sohys However, we are able to define a natural generalization of the usual BRST symmetry that
does constitute an invariance of the gauge fixed achold). Indeed, after inspection, one shall

find that

§S)hys =0 >
£=0, (5.17)
with
SA, = —D2°, 5 = gfabccacb,
§B?1v _ gfabchBfw 7 §§ZV _ gfabccbgzv 7
§sz _ gfabcchZV ’ ﬁﬂv _ gfabCCbGZV ’
¥ =b?, SF=0. (5.18)

In [43, 144], we also calculated explicitly various renormalization group equations to two loop
order, confirming the renormalizability at the practical level. Various consistency checks are at our
disposal in order to establish the reliability of these results, e.g. the gauge parameter independence
of the anomalous dimension of gauge invariant quantities or the equality of others, in accordance
with the output of the Ward identities i@8]. Furthermore, we proved irfl] the equivalence of

the model 5.13 with the ordinary Yang-Mills theory in the case that= 0, making use of the
nilpotent transformation

6SBTJV = G?lv ) 6SGTJV =0,
—a _ _
&G,y =By,  &Bp, =0,
A(resh = 0, (5.19)

which generates a “supersymmetry” of the acﬁgﬁ@%.
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