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1. Introduction

In recent years we have witnessed an intensive research activity aiming at improving our un-
derstanding of the behaviour of Yang-Mills theories in the low energy (infrared) regime. This is
a rather complicated issue, closely related to the confinement of quarks and gluons. We consider
pure EuclideanSU(N) Yang-Mills theories with action

SYM =
1
4

∫
d4x Fa

µνFa
µν , (1.1)

whereAa
µ , a = 1, ...,N2−1 is the gauge boson field, with associated field strength

Fa
µν = ∂µAa

ν −∂νAa
µ +g fabcAb

µAc
ν . (1.2)

The theory (1.1) is invariant with respect to the local gauge transformations

δAa
µ = Dab

µ ωb , (1.3)

with
Dab

µ = ∂µδ ab−g fabcAc
µ , (1.4)

denoting the adjoint covariant derivative.
Thanks to the asymptotic freedom, the coupling constant of the theory turns out to be small at

very high energies, where perturbation theory then becomes reliable [1, 2]. However, in the infrared
region, the coupling constant grows and nonperturbative effects have to be taken into account.

The introduction of condensates, i.e. the (integrated) vacuum expectation value of certain op-
erators, allows one to parametrize certain nonperturbative effects arising from the infrared sector of
e.g. the theory described by (1.1). Via the Operator Product Expansion (OPE) (viz. short distance
expansion), which is applicable to local operators, one can relate these condensates to power cor-
rections which give nonperturbative information in addition to the perturbatively calculable results.

Possible causes of nonperturbative effects are given by Gribov ambiguities which affect the
Faddeev-Popov quantization procedure and hence the propagators [3], the existence of (topolog-
ically) nontrivial field configurations like instantons [4], etc. These effects are not necessarily
unrelated, as e.g. instantons can contribute to the condensate

〈
αsF2

µν
〉

[4], the Faddeev-Popov
operator has zero modes in an instanton background [5], etc.

Although propagators are not gauge invariant quantities, they are, to some extent, the simplest
Green functions which can be studied from the analytic point of view. As far as four-dimensional
Yang-Mills theory is considered, this task appears to be very difficult for more complicated Green
functions.

During the last decade, there has been an intensive activity from the lattice community in
the study of the gluon and ghost propagators. We can thus compare, at least qualitatively, our
theoretical predictions with the available lattice data.

So far, a certain number of gauges have been considered extensively from the theoretical as
well as from the lattice point of view. This is the case for the Landau, Coulomb and maximal
Abelian gauges. Throughout this paper, we shall mainly be interested in the Landau gauge

∂ µAa
µ = 0 . (1.5)

2



P
o
S
(
I
C
2
0
0
6
)
0
2
6

Infrared behavior of the gluon and ghost propagators in Yang-Mills theories Silvio Paolo Sorella

In particular, we shall focus on the effect of the dimension two condensate
〈
A2

min

〉
on the infrared

behaviour of the gluon propagator, in combination with the effects arising from a treatment of the
Gribov problem.

2. The dimension two condensate

The possible existence and relevance of a gauge condensate of dimension two has been advo-
cated a few years ago by [6, 7]. The idea was put forward that the gauge invariant, dimension two
operatorA2

min, obtained by minimizingA2 along its gauge orbit,

A2
min ≡ min

U∈SU(N)

1
VT

∫
d4x

(
AU

µ
)2

,

AU
µ = UAµU† +U∂µU† , (2.1)

might condense, i.e. 〈
A2

min

〉 6= 0 (2.2)

This nonvanishing condensate might be important for several reasons:

• 〈
A2

min

〉
could serve as an order parameter for the condensation of monopoles, relevant for the

dual Meissner effect in the dual superconductivity picture of color confinement [6, 7]

• it could account for certain power corrections in1
Q2 which have been reported in the study of

two and three point correlation functions, see e.g. [8, 9].

• it could give rise to a dynamical gluon massmg via the OPE [10], which could be relevant for
the dual Meissner effect [11] as well as for obtaining analytic estimates of glueball spectra
[12].

3. A closer look atA2
min

The relevance of the operatorA2
min for Yang-Mills gauge theories is known since many years. It

plays a key role in the study of the Gribov copies and of the geometrical and topological properties
of the space of gauge orbits [13, 14, 15]. It can be expressed as an infinite series of nonlocal terms,
see [16], namely

A2
min =

∫
d4x

[
Aa

µ

(
δµν −

∂µ∂ν

∂ 2

)
Aa

ν −g fabc
(

∂ν

∂ 2 ∂Aa
)(

1
∂ 2 ∂Ab

)
Ac

ν

]
+O(A4) . (3.1)

From this expression, one can also check explicitly order by order in the coupling constant that
A2

min is gauge invariant. However, it is immediately clear thatA2
min is a highly nonlocal expression,

a fact making it very difficult to handle. In general, it also falls beyond the applicability of the OPE,
which refers to local operators.

So far, the only possibility to study the operatorA2
min by analytical tools relied on choosing the

Landau gauge (1.5). Due to the transversality condition, all nonlocal terms drop out, so thatA2
min

reduces to the local operatorA2,

A2
min ≡ A2 in the Landau gauge (3.2)
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3.1 Effective potential for the local composite operator

The operatorA2 is an example of a local composite operator (LCO). In [17], a method was
developed to construct a sensible effective potential for such operators. This so-called LCO method
was later applied to the case ofA2 in the Landau gauge [18]. We couple the operatorA2 to the Yang-
Mills action by means of a sourceJ,

SJ = SYM+
∫

d4x

(
1
2

JAa
µAa

µ −
1
2

ζJ2
)

. (3.3)

The last term, quadratic in the sourceJ, is necessary to kill the divergences in vacuum correlators
like

〈
A2(x)A2(y)

〉
for x→ y, or equivalently in the generating functionalW(J), defined as

e−W(J) =
∫

[fields]e−
∫

d4xSJ . (3.4)

The presence of the LCO parameterζ ensures a homogenous renormalization group equation for
W(J). Its arbitrariness can be overcome by making it a functionζ (g2) of the strong coupling
constantg2, allowing one to fixζ (g2) order by order in perturbation theory in accordance with the
renormalization group equation [17, 18].

In order to recover an energy interpretation, the term∝ J2 can be removed by employing a
Hubbard-Stratonovich transformation

1 =
∫

σe−
1

2ζ ( σ
g + 1

2A2−ζJ)2

, (3.5)

leading to the action

S = SYM+Sσ ,

Sσ =
∫

d4x

(
σ2

2g2ζ
+

1
2g2ζ

gσA2 +
1

8ζ
(A2)2

)
. (3.6)

A key ingredient for the LCO method is the renormalizability of the operatorA2. It was proven in
[19] thatA2 is renormalizable to all orders of perturbation theory, making use of the Ward identities
in the presence of the operatorA2. In addition, an interesting identity was proven concerning the
anomalous dimensionγA2 of the operatorA2, first noticed in [20]. It can be shown thatγA2 can be
expressed as a linear combination of the gauge beta functionβ and of the anomalous dimensionγA

of the gauge fieldA, according to the relationship [19]

γA2(a) =−
(

β (a)
a

+ γA(a)
)

, a≡ g2

16π2 . (3.7)

Starting from (3.6) it is possible to calculate the effective potentialV(σ). The correspondence
〈σ〉 = −g

〈
A2

〉
consequently provides evidence for a nonvanishing dimension two gluon conden-

sate using an effective potential approach, if〈σ〉 6= 0. It is clear from (3.6) that〈σ〉 6= 0 also induces
an effective gluon mass.V(σ) was calculated to two loop order in [18, 21], and a nonvanishing
condensate is favoured as it lowers the vacuum energy. The ensuing effective gluon mass was found
to be a few hundred MeV.
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3.2 Restriction to the Gribov horizon

In the Landau gauge, it is necessary to restrict the domain of integration in the Feynman path
integral at least to the so-called Gribov regionΩ, whose boundary∂Ω is the first Gribov horizon,
where the first vanishing eigenvalue of the Faddeev-Popov operator,

M ab =−∂µ

(
∂µδ ab+g facbAc

µ

)
, (3.8)

appears. This restriction is necessary due to the existence of the Gribov copies, which implies that
the Landau condition (1.5) does not uniquely fix the gauge [3].

It has been discussed in [22, 23] how this restriction can be accomplished at the Lagrangian
level. More precisely, the starting Yang-Mills measure in the Landau gauge is given by

dµγ = DAδ (∂µAa
µ)det(M )e−(SYM +γ4H) , (3.9)

where
H =

∫
d4xh(x) = g2

∫
d4x fabcAb

µ
(
M−1)ad

f decAe
µ , (3.10)

is the so-called horizon function, which implements the restriction to the Gribov regionΩ. Notice
thatH is nonlocal. The parameterγ, known as the Gribov parameter, has the dimension of a mass
and is not free, being determined by the horizon condition

〈h(x)〉= 4
(
N2−1

)
, (3.11)

where the expectation value〈h(x)〉 has to be evaluated with the measuredµγ . To the first order, the
horizon condition (3.11) reads, ind dimensions,

1 =
N(d−1)

4
g2

∫
ddk

(2π)d

1
k4 +2Ng2γ4 . (3.12)

This equation coincides with the original gap equation derived by Gribov for the parameterγ [3].

Albeit nonlocal, the horizon functionH can be localized through the introduction of a suitable
set of additional fields. The final action reads

S = S0− γ2g
∫

ddx
(

f abcAa
µϕbc

µ + f abcAa
µϕbc

µ −d(N2−1)γ4
)

,

S0 = SYM +
∫

ddx
(
ba∂µAa

µ +ca∂µ
(
Dµc

)a)

+
∫

ddx
(

ϕac
µ ∂ν

(
∂νϕac

µ +g fabmAb
νϕmc

µ

)
−ωac

µ ∂ν

(
∂νωac

µ +g fabmAb
νωmc

µ

)

−g
(
∂νωac

µ
)

f abm(Dνc)b ϕmc
µ

)
. (3.13)

The fields
(

ϕac
µ ,ϕac

µ

)
are a pair of complex conjugate bosonic fields. Similarly, the fields

(
ωac

µ ,ωac
µ

)

are anticommuting. The horizon condition is equivalent with the demand that the quantum effective
actionΓ obeys

∂Γ
∂γ2 = 0 (3.14)
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Gauge LOperator

linear covariant 1
2Aa

µAa
µ

Curci-Ferrari 1
2Aa

µAa
µ +αcaca

maximal Abelian 1
2Aβ

µAβ
µ +αcβ cβ

Table 1: Gauges and their renormalizable dimension two operator

As shown in [22, 23, 24], the resulting local action turns out to be renormalizable to all orders of
perturbation theory. Remarkably, we have been able to prove that this feature is preserved when
the local operatorA2

µ is coupled to the Zwanziger action [26]. This allows for a simultaneous study
of the effects of the Gribov parameter and condensate

〈
A2

〉
.

A main consequence of the restriction of the domain of integration to the Gribov region is the
fact that the ghost propagator gets enhanced in the infrared region. Using the gap equation arising
from the horizon condition, one finds that [3, 22, 23, 25, 26, 27]

〈
cacb

〉
p
∼ δ ab

p4 for p2 → 0 (3.15)

This enhancement remains valid in the presence of
〈
A2

〉
[25, 26]. The infrared enhancement of the

ghost propagator in the Landau gauge has also been observed from lattice simulations [29, 28] or
solutions of the Schwinger-Dyson equations [30, 31, 32].

The Gribov restriction and
〈
A2

〉
also affect the gluon propagator in a nontrivial fashion, more

precisely one finds [25, 26]

〈
Aa

µAb
ν

〉
p
= δ ab

(
δµν −

pµ pν

p2

)
p2

p4 +m2p2 +2g2Nγ4 (3.16)

It is worth noticing that a propagator like (3.16) is not new, as it has been considered already some
time ago by Stingl in order to solve the Schwinger-Dyson equations [33]. It induces an infrared
suppressed gluon propagator, a fact in qualitative agreement with lattice [29] and Schwinger-Dyson
results [30, 31, 32]. Let us also mention that (3.16) violates spectral positivity, giving an indication
that the gauge bosons are unphysical particles [26]

4. Beyond the Landau gauge

It is unclear what the role ofA2
min might be in other gauges. This is a very difficult ques-

tion, without any answer at the moment. Due to the severe nonlocality in the expression (3.1), it
seems that explicit calculations outside the Landau gauge are almost prohibitive, as a localization
procedure looks quite hopeless.

Nevertheless, in several other gauges, we have shown that other dimension two, renormal-
izable, local operators exist. We generalized the LCO method and showed that these operators
condense and give rise to a dynamical gluon mass, see Table 1 and [34, 35, 36]. In the maximal
Abelian gauge, it was found that only the off-diagonal gluonsAβ

µ acquire a dynamical mass, a fact
qualitatively consistent with the lattice results from [37, 38].

6
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We have been able to make some connection between the various gauges and their dimension
two operators by constructing renormalizable interpolating gauges and operators [34, 39]. How-
ever, these operators are explicitly gauge dependent, hence there does not seem to exist a clear
relation with the gauge invariant operatorA2

min.
Recently, the issue of Gribov copies has also been addressed in the maximal Abelian gauge

[40, 41].

5. Another gauge invariant dimension two operator

Recently, we have considered the fact that, perhaps, another gauge invariant dimension two
operator might be of some relevance. We took a look at

O ≡ 1
VT

∫
d4xFa

µν

[(
D2)−1

]ab
Fb

µν . (5.1)

This operator was already introduced by Jackiw and Pi during their analysis of a dynamical mass
generation in 3-dimensional gauge theories [42].

We can add the operator (5.1) to the Yang-Mills action as a mass term via

SYM+SO , (5.2)

with

SO =−m2

4

∫
d4xFa

µν

[(
D2)−1

]ab
Fb

µν . (5.3)

As we have discussed in [43], the action (5.2) can be localized by introducing a pair of complex
bosonic antisymmetric tensor fields,

(
Ba

µν ,B
a
µν

)
, and a pair of complex anticommuting antisym-

metric tensor fields,
(
G

a
µν ,Ga

µν
)
, belonging to the adjoint representation, according to which

e−SO =
∫

DBDBDGDGexp

[
−

(
1
4

∫
d4xB

a
µνDab

σ Dbc
σ Bc

µν

− 1
4

∫
d4xG

a
µνDab

σ Dbc
σ Gc

µν +
im
4

∫
d4x

(
B−B

)a
µν Fa

µν

)]
. (5.4)

Doing so, we obtain a classical local action which reads

SYM+SBG+Sm , (5.5)

where

SBG =
1
4

∫
d4x

(
B

a
µνDab

σ Dbc
σ Bc

µν −G
a
µνDab

σ Dbc
σ Gc

µν

)
,

Sm =
im
4

∫
d4x

(
B−B

)a
µν Fa

µν , (5.6)

which is left invariant by the gauge transformations

δAa
µ = −Dab

µ ωb ,

δBa
µν = g fabcωbBc

µν , δB
a
µν = g fabcωbB

c
µν ,

δGa
µν = g fabcωbGc

µν , δG
a
µν = g fabcωbG

c
µν . (5.7)

7
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In order to discuss the renormalizability of (5.5), we relied on the method introduced by Zwanziger
in [22, 23] to discuss the renormalizability of the nonlocal horizon function (3.10). Instead of
using (5.5) with mcoupled to the composite operatorsBa

µνFa
µν andBa

µνFa
µν , we introduce 2 suitable

external sourcesVρσ µν andVρσ µν and replaceSm by

1
4

∫
d4x

(
VσρµνB

a
σρFa

µν −VσρµνBa
σρFa

µν

)
. (5.8)

At the end, the sourcesVσρµν(x), Vσρµν(x) are required to attain their physical value, namely

Vσρµν

∣∣∣
phys

= Vσρµν

∣∣∣
phys

=− im
2

(
δσ µδρν −δσνδρµ

)
, (5.9)

so that (5.8) reduces toSm in the physical limit.
We assume the linear covariant gauge fixing, implemented through

Sg f =
∫

d4x
(α

2
baba +ba∂µAa

µ +ca∂µDab
µ cb

)
, (5.10)

In [43], we wrote down a list of symmetries enjoyed by the action

SYM+SBG+Sg f , (5.11)

i.e. in absence of the sources. Let us only mention here the BRST symmetry, generated by the
nilpotent transformationsgiven by

sAa
µ = −Dab

µ cb , sca =
g
2

f abccacb ,

sBa
µν = g fabccbBc

µν +Ga
µν , sB

a
µν = g fabccbB

c
µν ,

sGa
µν = g fabccbGc

µν , sG
a
µν = g fabccbG

c
µν +B

a
µν ,

sca = ba , sba = 0 , s2 = 0 . (5.12)

It turns out that one can introduce all the necessary external sources in a way consistent with
the starting symmetries. This allows to write down several Ward identities by which the most
general counterterm is restricted using the algebraic renormalization formalism [43]. After a very
cumbersome analysis, it turns out that the action (5.5) must be modified to

Sphys = Scl +Sg f , (5.13)

with

Scl =
∫

d4x

[
1
4

Fa
µνFa

µν +
im
4

(B−B)a
µνFa

µν +
1
4

(
B

a
µνDab

σ Dbc
σ Bc

µν −G
a
µνDab

σ Dbc
σ Gc

µν

)

− 3
8

m2λ1
(
B

a
µνBa

µν −G
a
µνGa

µν
)
+m2 λ3

32

(
B

a
µν −Ba

µν
)2

+
λ abcd

16

(
B

a
µνBb

µν −G
a
µνGb

µν

)(
B

c
ρσ Bd

ρσ −G
c
ρσ Gd

ρσ

)]
, (5.14)

in order to have renormalizability to all orders of perturbation theory. We notice that we had to
introduce a new invariant quartic tensor couplingλ abcd, subject to the generalized Jacobi identity

f manλ mbcd+ f mbnλ amcd+ f mcnλ abmd+ f mdnλ abcm= 0, (5.15)

8
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and the symmetry constraints

λ abcd = λ cdab ,

λ abcd = λ bacd , (5.16)

as well as two new mass couplingsλ1 and λ3. Without the new couplings, i.e. whenλ1 ≡ 0,
λ3 ≡ 0, λ abcd≡ 0, the previous action would not be renormalizable. We refer to [43, 44] for all
the details. We also notice that the novel fieldsBa

µν , B
a
µν , Ga

µν andG
a
µν are no longer appearing at

most quadratically. As it should be expected, the classical actionScl is still gauge invariant w.r.t.
(5.7).

The BRST transformation (5.12) no longer generates a symmetry of the gauge fixed action
Sphys. However, we are able to define a natural generalization of the usual BRST symmetry that
does constitute an invariance of the gauge fixed action (5.13). Indeed, after inspection, one shall
find that

s̃Sphys = 0 ,

s̃2 = 0 , (5.17)

with

s̃Aa
µ = −Dab

µ cb , s̃ca =
g
2

f abccacb ,

s̃Ba
µν = g fabccbBc

µν , s̃B
a
µν = g fabccbB

c
µν ,

s̃Ga
µν = g fabccbGc

µν , s̃G
a
µν = g fabccbG

c
µν ,

s̃ca = ba , s̃ba = 0 . (5.18)

In [43, 44], we also calculated explicitly various renormalization group equations to two loop
order, confirming the renormalizability at the practical level. Various consistency checks are at our
disposal in order to establish the reliability of these results, e.g. the gauge parameter independence
of the anomalous dimension of gauge invariant quantities or the equality of others, in accordance
with the output of the Ward identities in [43]. Furthermore, we proved in [44] the equivalence of
the model (5.13) with the ordinary Yang-Mills theory in the case thatm≡ 0, making use of the
nilpotent transformation

δsB
a
µν = Ga

µν , δsG
a
µν = 0 ,

δsG
a
µν = B

a
µν , δsB

a
µν = 0 ,

δs(rest) = 0 , (5.19)

which generates a “supersymmetry” of the actionSm≡0
phys.
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