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1. Motivationsfor an alternative approach to QFT

Looking at the present particle physics scene one may get the impresatdretlides string
theory and loop quantum gravity there are no other worthwhile fundamateahatives for a post
standard model particle physics.

There exist however & third waywhose pursuit neither requires to wait for the moment when
new experimental data resolve a theoretical impasse ( in the present sithatjpmoblems around
the Higgs particle and the fate of supersymmetry), nor does it involve theafgietting lost in the
blue yonder of highly speculative ideas.

This third way consists in expanding the conceptual basis of QFT in ordexgiore other
directions. Although one has a good knowledge of the underlying prirscgoid of its conceptual
and mathematical setting, QFT in contrast to QM remains a hugely unfinishgttprohe rapid
progress patrticle physics enjoyed during several decades of theetasiry has left huge gaps of
knowledge with many important problems having been left on the waysidectntfis surprising
that by only knowing a perturbative approach, whose conceptuakstasiill shrouded in doubts
as a result of arguments pointing to the divergence of the perturbaties,sene nevertheless was
able to find the standard model whose descriptive precision (aftenatiegrally fixing its many
free parameters) leaves nearly nothing to be desired. This third waylwagsaavailable, but in
good times of the past, when ideas supported by the standard Lagrangigntational methods
led to a lot of progress, there was no strong motivation to explore the intrirggicdd QFT and to
look for alternative directions. Our knowledge has mainly been obtainedrgnical or functional
integral quantization of classical objects, i.e. by a parallelism to a world e$icial field theory,
or in the words of one of the the protagonists of field quantization Pasotddrd, with the help of
"classical crutches'[]1].

The research of some dedicated individuals over several decaaddsafly led to an au-
tonomous setting of QFT which is generally referred to as algebraic QFF{AQr local quan-
tum physics (LQP)[J2]. It was quite successful in obtaining variouenlable properties from a
few fundamental principles and to get a conceptually consistent finite fatiow of perturbative
renormalization[[3]. But on the whole its main role was more that of a criticakctive than of a
catalyzer for new discoveries. The present crisis in particle physigariicular the stagnation in
attempts in understanding the problems which the standard model (SM) laftltzdter its impres-
sive initial success, ask for a fresh look at an alternative concegttalg of QFT. It seems that the
formulation of QFT which was instrumental in its discovery, namely that in ternisagfangians
and gauge symmetries, is not well suited to address the many new problenhsardse from its
perturbative exploration.

Since there are growing doubts about the existence of an autonomage'[ganciple” in QFT
(the use of gauge invariance as a technical tool in perturbative rehpatien remains unaffected),
itis important to know whether the locality principle in conjunction with renormaligisequires
interacting massive vectormesons to be accompanied by scalar particlesly @le Lagrangian
setting is not a good point of departure for investigating fundamentalgrabof this kind; the
best one can do in the standard setting is to start with coupbsbsivevectormesons and verify
that without introducing additional scalar particles (the Higgs field, but witlits characteristic
vacuum expectation) the BRST gauge formalism would not work i.e. thencologiical descend
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to a ghostfree covariant Hilbert space description would ffil [4]. Baitactural argument based on
a formalism which relies on unphysical and nonobservable conceptsoassgs not trustworthy;
If we want to heed Heisenberg’s message about the importance of staigmgbservables in
fundamental arguments of QT, we are forced to look at an alternativefgb® implementation of
interactions for particles of spin 1.

The Wigner representation theoretical approach for the Poincarg grmed out to be a good
starting point for a ghostfree description. Among the positive energieseptations in d=3+1
there are two zero mass families whose associated QFT cannot be dggtridens of pointlike
covariant fields. One family is associated with the so-called continuousegpiesentations which
are characterized by a continuous-valued invariant of the Wigner "litdagjrof a lightray; the
second is the finite helicity family to which the photon and the (still elusive) gnablong. To
be more precise, in the finite helicity case it is not the field strength (electratiadield strength,
the linearized Riemann tensor field strength,...) which forces one to go bpganteike localized
fields, but rather the "potentials” of these field strengths. One knows fin@ experience with
QED that one needs the potentials for the formulation of interactions andaterren intrinsic
theoretical reasons for their introductidp [5]. As a consequence dflakwown representation
theoretical no-go theorem concerning covariant point-like localizetbygatentials in the physi-
cal representation space, one is forced to relax the localization aspeefin@s that the best one
can do in a Wigner-Fock space is to construct covariant fidjgs, e) which are localized on a
semi-infinite stringk+ R_.e (wheree is a spacelike unit vector)][5]. Their commutator is "string-
local" i.e. vanishes only if the two strings do not enter their respectiveat@nffuence regions.
These string-like localized potentials transform covariant under the yMiagner representation
of the Poincaré group. This field fluctuates simultaneously amd in the space-like directios
i.e. eis not an additional parameter with a fixed value, but rather behaves likaalkzation point
in a d=2+1 de Sitter spacetime. Apart from its participation in the Poincarédrametions, the
e are reminiscent of the axial gauge. But whereas the interpretatier®fa gauge causes nasty
infrared problems, taking into account its singular fluctuating nature (digiwib in €) leads to
informations of how to treat this dependence properly. Since part ofabewn fluctuations are
transferred te, the short distance dimensionins reduced to 1, i.e. the string-localized potential
has the same short distance behavior as the point-like potential in the BRST ggitting. This
idea of constructing short-distance improved string-localized free fietdksaalso in the case of
massive vectormesons when there is no representation theoretical feabeir introduction. If it
would be possible to formulate a renormalized perturbation theory for dtkiadpcalized massive
vectormesons, one would have a conceptually clear starting point to dlagifyossible necessity
for additional physical degrees of freedom of the Higgs type. &melependence would then play
the role of the gauge invariance in the BRST formalism; but seaicelependence means locality,
the gauge principle would be replaced by the more fundamental locality deranipl the discus-
sion about the necessity of Higgs degrees of freedom would be shifeechtire conceptual level
than that obtained from the setting of Lagrangians and functional intedvilee remarks on the
use of string-localization can be found in the contribution by J. Mund to thidecence. In the
present context it only served to illustrate that there are important proliéemhich the represen-
tation theoretic or algebraic setting opens new avenues which are notbéevaiigh Lagrangians
and functional integrals.
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The most impressive illustration of the power of alternative conceptuas ioleginating from
AQFT comes from the recent solution of the old problem of how to incotpagaantum matter
into general relativity, more precisely how to extend Einstein’s principle clleovariance to
QFT in curved space time (CST). Since the obstruction against local whiffgahism covariance
comes from the inherent global aspects of quantum states, the imporfantasteo find a way to
separate the construction of the operator-algebraic aspects fronf shates. Clearly the standard
functional integral formalism which aims at correlation functions, i.e. aeetqgiion values of
operators in a globally invariant vacuum states, is not a good starting oititdories in which
local diffeomorphismglay a role. The search for a better formulation started with the problem of
defining the correct locally covariant Wick-products of free fields irved spacetime, in particular
with the search for a quantum energy-momentum tensor which only depetigs spacetime in the
neighborhood of its point of definitiof][7]. The standard “split point” metbbthking the product
of free fields at different points and subtracting its expectation in a suithdle before taking the
limit of coalescing points did not work since every state introduces an uadedependence on
global properties of spacetime.

After more than one decade of conceptional innovative mathematical ednighly satisfac-
tory framework was finally found. Its solution requires to take a new viesuathe basics of QFT
[A]- Whereas in the algebraic setting of QFT as originally proposed by tdad elaborated over
several decades by many authdts [2] the starting point was a systeperaftor algebras indexed
by subregions of a fixed spacetime, the quantum implementation of localiaosamrequires to
do this simultaneously on all physically admissible spacetimes. This is becawgeiiEglocal
covariance principle demands that the physics of two admissible isometriordiffphic patches
on two different globally hyperbolic Lorentz manifolds is isomorphic; by adlgwing operations
restricted to those patches one cannot decide in which world one is livinthid way QFT in
curved spacetime becomes a functorial concept between a suitablergaiEborentz manifolds
and a category of suitably defined operator algebras. As it shouldde]dlsetting of AQFT in
Minkowski spacetime is a special case; in mathematical terms, the Haag-Kedbiers re-emerge
from the new functorial setting.

One would expect that such an important discovery should rapidly beparef the general
scientific discourse, but in this case this did not (yet?) happen. Peithigpsne aspect of the
present crisis that the euclidean setting which is important for making mathensatics of func-
tional integral has gained prominence among physicists inspite of its limited phggpiglicability;
many particle physicists who are familiar with euclidean methods (and use tlmoatside their
range of applicability in theories involving gravity) have only a very rudimgniaowledge of
those operator algebraic structures as they are used in the formulatianrehthlocal covariance
principle. But there can be no doubt that this new algebraic setting which rimeples the local
covariance principle is the most important paradigmatic change within QFTth&édheoretical
discovery of black hole radiation. 1f JIL0] the reader finds interestimgar&s how to get from
local covariance to diffeomorphism invariance (background indegase) which is believed to be
a characteristic property of quantum gravity. These observationsqaestions about the valid-
ity of claim that gravity is incompatible with the principles of quantum theory, wisde main
motivational argument for string- and loop- gravity.

In the next section | will present some aspects of recent work on a detatgect namely
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algebraic holography and localization-entropy which may be relevafildgk hole physics.

2. Remarkson lightfront holography

In the algebraic setting of QFT the concepthalographic projectioron null-surfaces means
the replacement of the system of subalgebras, which are associatedbvithisns in the bulk, by
a new system of subalgebras which are indexed with respect to sutsetgfiits causal horizon.
Hence If one, following Leibniz, considers spacetime as an orderingaléy (quantum) matter,
holography amounts to a change of the ordering device while maintaining theahsisstrate.

The best studied case is the lightfront holograghy [8] which starts frengélometric fact that
the light frontLF is the linear extension of the upper horizon of a fixed wadigegion (all regions
are open)The Xy — X3 wedge is defined as the regigh= {|xo| < x3} with the transverse spatial
coordinates remaining unrestricted. The aim is to construct a system alfjebbas indexed by
subregions on its (always upper) bound@i. The concept which mediates between the bulk in
W and its holographic projection a?W is thecausal shadow propertyf the algebraic approach.
It states that an operator algebra associated with a regitequal to that associated with the
(generally larger) causally completed regiét (taking twice the causal disjointBinceW is
the (past) causal shadow @¥V (every signal which passes throug must have traversed/),
one identifies the algebra belonging to the characteristic sugftwith that ofW i.e. o7 (W) =
</ (W). The linear extension @W is a lightfrontLF with .7 (LF) = ./ (M) since its causal shadow
is the full algebra of Minkowski spacetime. The only smaller regiorisinwhich cast an ambient
causal shadow are horizons of wedgesi.e. of those wedges whielthe@whorizon olLF. The aim
of hologaphy orLF is to construct a coherent system of subalgebrdg’) C 7 (0W) C <7/ (LF)
where & C 0W C LF are regions which do not cast causal shadows; the important tool is the
formation of intersections of algebras, starting from the wedge algebths ulk.

The symmetry grouf of LF is a 7-parametrig subgroup of the 10-parametric Poincaré group,
consisting of lightray translations, dilations (thE projections of the W-preserving boost), linear
transformations of the coordinate directions in the transverse $aceLF (resulting from the
LF projection of the 3-parameter Wigner little group which leaves the lightrayismvgras well as
transverse translations. The local subalgebya®’), ¢ C LF of the holographic projection doF
are obtained by successive steps involving intersections of wedgeadgeitained frorV by the
application of¥.

Let us briefly look how this is done. L&V be thexy — x3 wedge which is invariant under
Xo — X3 boosts. Consider a family of wedg#g, which are obtained by sliding th& along the
X. = X + Xg lightray by a lightlike distanca > 0 into itself. The region olF consisting of those
points ondW, which are spacelike to the interior 8§, for b > ais denoted byW;, and consists
of pointsxg = X3, X; € (a,b) with an unlimited transverse patt € R?. These regions are slabs
on LF with the full R? transverse extension. To get to regions of finite transverse size ehe fir
transforms this slabs by the action of the 2-parametric subgéeub ¢ which is the restriction to
LF of the two “translations” in the Wigner little group (the subgroup fixing the lightreLF) and
afterwards intersects the transformed slab Wit



Algebraic QFT and the area law for entropy of localized quentmatter Bert Schroer

By forming intersections and unions one can get to finite convex regivn$ a more general
shape. An alternative method for obtaining holographically projected ccitydacalized subal-
gebrase/ (), ¢ C LF, which does not make use of transverse symmetries, consists in intersecting
2/ (0W5) with suitable algebras in the bulk which are localized in a tubular neighborbioadp].

The main problem is now to show the nontriviality of the algebras associatedge thgions.
Since any region odW which does not extend to infinity in the_ lightray direction also does not
cast any causal shadow, we cannot base the nontriviality of algatdsé,,) on the causal shadow
property. If this intersected algebra would be trivial (i.e. consist of muKiplethe identity), the
idea of holographic projections would be useless.

It has been customary to add structural properties concerning inierseto the list of alge-
braic requirements if they can be established in the algebraic reformulatioeeofields. Since
one knows very little about the existence of interacting QFT, this is a rebopeocedure. It is
interesting to note that very recently nontriviality proofs for algebraic sgetion of wedge alge-
bras of special interacting models have been found which led to the fisteeze proofs of the
associated 2-dim. QFT models J12]. These wedge algebras have esevith rather simple
vacuum polarization propertiefs J11].

Returning to free fields it is well-known that a nontrivial system of localiagdrator algebras
4 (0),0 C LF exists [1B]; in fact these algebras &f have simple pointlike generatofs ¢
which are identical to the fields which appeared in the “lightcone quantizafrnd — o frame)
formalism

ALE(Xe,X) ) = (2711)3/2/ <ei<p(9)X+a*(6,pL)d26dpL+h.c.>, p_(0)=mé (2.2

1
(B, ALE (%, X1 )8, AR (X, X)) =

(xy =X, +ig)?
[ax+ALF (X4,X1), 00, ALF (X,+7XIJ_)] ~ &' (xy =X, )O(xy — X))

Here all unimportant constants are left out and the derivative is usediér o avoid the techni-
calities related to infrared aspects of logarithmic zero mass correlationdd FHeeld is different
from the original free field; the only physical purpose of this auxiliaridfis to generate the sys-
tem of local operator algebras &fr. The operator algebras’ (&) C <7 (LF) are constructed by
first smearingA r with ¢-localized testfunctions ohF and then passing to generating bounded
operators ofe (¢) using the Weyl exponentiatiof J13]; the construction is completely analogous
to the way one passes from free fields to their associated spacetime locgleratbr algebras with
the only difference being that the Minkowski spacetime is replaceddry

The factorization of thé\ ¢ correlation into a lightlike and a transverse part reveals two im-
portant properties. The transverse quantum mechanical delta funbimovs ghat there are no
transverse vacuum fluctuation. All vacuum fluctuations have been essgul into the lightlike
direction with the result of an increase of lightlike symmetry. Whereas the lightraslation was
part of the original Poincaré symmetry and the dilatiorL&nresults from th&V-preserving boost,
the chiral rotation (which together with the translation and the dilation geneehdhkbius group)
IS a new symmetry.

These observations pose the question whether absence of transaaram fluctuations and
the appearance of chiral symmetries in the lightray direction are geneganies of holographic

-O(xL — X))
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lightfront projection. The appearance of stronger short-distanceilsirity in the presence of in-
teractions prevents a direct definition Afr fields via restriction of bulk fields taF, and one is
forced to follow the afore-mentioned more abstract algebraic path. Otle 6fagic” aspects of
the algebraic approach is that certain positions of operator algebrégseétaecach other (acting

in the same Hilbert space) may lead to additional geometric symmetries. For thatdaasnd it

is the fact that the algebrag' (dW,), <7 (dW,) and their relative commutan¥ (dW, ) define a
standard modular inclusioand that this property characterizes chiral theofigls [14]. The existenc
of a vacuum-preserving unitary implementation of the rotation on the compaditfigchy in the
general setting is a consequence of the algebraic properties lofFthelography.

The chiral part of theA_ g correlation function admits a much larger unitarily implemented
symmetry group namely the diffeomorphism group of the circle. The tramsfioons beyond the
Moebius group do not leave the vacuum invariant and hence are noeYWsgmmetries. It is not
clear whether this Diff(§ also exists in the interacting case. The standard argument for its validity
is based on the existence of an energy-momentum tensor and unlike ohinaéthwhich originate
from two-dimensional conformal theories, this argument is not availablehioal theories associ-
ated with holographic projections. As the vacuum preserving chiral rateggults from algebraic
properties of the holographic projection, it is conceivable that one &stsoperator-algebra prop-
erties which lead to the higher diffeomorphism symmetries. An extension todiisadmorphisms
would be very much in the spirit of the new setting of QFT based on the implemantitlocal
covariance[[6]. Note that the unitary implementers of symmetries which oridiaieholography
are also well-defind in the bulk theory since they act in the same Hilbert Spawever their action
on the bulk is not geometric, i.e. they are not symmetries in the sense of theeNdethrem of
the bulk.

The important aspect of holography is thiesence of transverse vacuum polarizatidhis is
a consequence of the fact that the lightlike translation, different fraamespor time- like transla-
tions, fulfills two properties simultaneously: its generator has positive speand the lightlike
translation fulfills a cluster property for large lightlike distances. &gt = 1,2 be two regions
on LF whose transverse projections do not overlap {€,), N (&,), = 0, then the following
factorization hold

(Q|AB|Q) = (Q|A|Q) (Q|B|Q), Ac o (61),BE o (02) (2.3)

Note that since the regions are open, this factorization even holds in eatvectihegions touch on
their boundaries. In view of the fact that this never happens in the buskistquite surprising; in
fact the simplification in terms of vacuum fluctuations is the main raison d'étredimgraphy in
the sense of the present work. We remind the reader that even for aspaitelike separation of
two localization regions in the bulk there can be no factorization on the vaweatarQ; in order
to construct state vectors which lead to tensor-factorization in the bulk améotinvoke thesplit
propertywhich is known to break down in the case that the two regions tdiich [2].

It is precisely this absence of transverse vacuum polarization in the faploig projection
which simplifies the description of thermal manifestations of localization. It cesgas the vac-
uum fluctuations into the lightlike direction and the relevant Hamiltonian for therthlgoroperties

1L ocality in both directions shows that the lightlike translat@4AU (a)B| Q) are boundary values of entire func-
tions and the cluster property together with Liouville’s theorem gives therfiaation ].
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of localization is the lightlike dilation generator which leaw®4 invariant and whose properties
can be studied by methods of chiral QFT. The transverse decoupling invaliesverse additivity
of extensive quantities and hence imposes an area proportionality opyeainrd energy caused
by the vacuum fluctuations on the horizon in the lightray direction akthe 0 boundary oBW.
Since one expects this area density to diverge in the limit of a shagp 0 boundary, the strat-
egy will be to introduce an “attenuation lengtb’for the vacuum fluctuations and then study the
limiting behavior fore — O.

The computation of the leadingrdivergence is based on a theordr [8] which states that a
chiral system in a vacuum staf localized on a halflinR ., can be unitarily mapped to the full
chiral algebra oR in a KMS thermal stat€,,; at temperature 2

(@ (R),Q) ~ (o (R), Qzn) (2.4)

with the unitary equivalence being given in terms of a conformal map whictwitees the dilation
of the R, -restricted system with the translation of the unrestricted KMS thermal systdns. T
“inverse Unruh effect” for chiral theories (i.e. a heat bath system ispnééed as a spacetime-
restricted vacuum system) is the key to the calculation of localization-entegigg the standard
wisdom of statistical mechanics we would conjecture that the entropy ésengportional to the
length ad - s, wheres;; is the density per length. The conformal equivalence map intertwines
the translation of the heat bath system with the dilation of the localized systeratdbetsizéd is
transformed inte according tee = e ! and the area density of the equivalent dilational system on
the half-space behaves as

Sarea = |In€| o+ finite, € — 0

The correctness of this idea can be checked by approximating the lirsganspy a sequence of
finite systems using an “invariant” box approximatiph [8] in which the divetgartition function

of the translative system is approximated by a sequence of rotationaisiystise limit of infinite
temperature (interpreted as an infinite radius whose size is relatedssociated with the partition
function of the Virasoro generatdyp. The calculation can be completed by the use of the chiral
temperature duality for the partition function iof = Lo — 3 Where thec is the Virasoro constant.
Itis precisely this shift in.g which gives the divergentfactor and identifies the constant according
to sor = 35 [Bl-

As mentioned before chiral theories which originate from the chiral deositipn of confor-
mal two-dimensional theories come with an energy momentum tensor whosgtistdefines the
Virasoro constant, but this is not necessarily the case for Moebius covariant chiral trewtiech
arise in holographic lightfront projection. The fact that the vacuum shitl which is necessary
for the formulation of temperature duality also leads to the expectedlldgavior may be taken
as an indication that the Virasoro structure continues to hold for chiralidsawhich are associated
with holographic projections. Atthe same time it gives an apparently new thenepretation to
the Virasoro constarttin terms of properties of a lightlike thermal system at KMS temperatore 2
This “inverse Unruh effect” in combination with the simplification from the ho&gadic projection
makes localization-entropy a really useful concept.

It is an interesting question to what extend such entropy consideratighg tapother null-
surfaces in Minkowski spacetime as e.g. the upper horizon of doubésaghich are conformally
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equivalent to wedges. Since the thermal phenomenon under considasatiaused by vacuum
fluctuations near the boundary, one expects that the localization-ertagmn area behavior with
the same leading-divergence. Whereas for conformally invariant bulk theories omeusz the
global conformal equivalence of the wedge with a double cone, therprasently no results for
massive theories on null-surfaces of double cones. Such null-esréae quite interesting because
the geometry in the limit of large double cones is expected to make contact withdsécal Bondi-
Metzner-Sachs symmetry. Whereas the quantum symmetries of hologregphynways defined
through their unitaries in the full Hilbert space, the classical BMS symmetrglisdefined as an
asymptotic transformation.

The difference to previous entropy calculations based on countingstéges of the standard
time translation Hamiltoniar{ [15] (after modifying the local model by a momentumespaioff)
is that those calculations do not reveal the local origin of the of the aogmpronality. There are
general reasons which cast serious doubts on global calculatiorscofim entropy and energy
[Ld] which count the contribution from the occupation of globalized epaiging the standard
time translation Hamiltonian and using a cutoff in momentum space. Such calculatbbaiz v
the recently formulated principle of local covariance of QFT in curvedspae [f]. The present
calculation does better on this issue, since the Hamiltonian is the same as themoresitele for
the Hawking-Unruh effect i.e. adapted to the invariance of the localizagigiom and its horizon.
In addition the theory is not modified by momentum space cutoffs; one ratbles & a family of
localization entropies for the holographically projected matter with a fuzzyndany of lightlike
extensiore at the edge of the horizon which is interpreted as an attenuation lengthrtibufs this
approach shows that the rather universal behavior of vacuumizaiian clouds near boundaries
should not to be blamed on the ultraviolet behavior of particular pointlike fidldsis rather a
generic physical consequence of the principle of causal localizabilityalized operator algebras
are von Neumann factor algebras of hyperfinite typg Ithis unique operator algebra (modulo
isomorphisms) which peculiar properties (related to localization and therpetts3 which easily
escape the quantum mechanical intuition since the algebras one meets in &d tgtraperature
are of type | [1]f]. Some of the problems black hole physics seems to havéheitbundations of
QT may find their explanation in these peculiarities.

It has been known for some time that curved spacetimes with a bifurcated Kildirigon
(bKh) is analogous to wedges in Minkowski spacetime. A presentation irettiags of operator
algebras in curved space time in a form which is most suitable for the calcutdtlonalization-
entropy has been given iff] [9], following prior work ifi J1B][19]. The imalifference to the
Minkowski situation is that at the beginning one only has a Killing symmetry togettie some
assumptions about the way it acts geometrically which guaranty the existeackekd. As an
analog for the vacuum state one needs a state vectehich is invariant under the action of the
Killing symmetry. For the Schwarzschild-Kruskal black-hole spacetime thidavioe the Hartle-
Hawking state[[7]. This Killing symmetry is analogous to the wedge-preseivibgost and its
projection onto the bKh is the candidate for a dilation. It comes as quite apessuthat it is
possible to extend this symmetry to a full Moebius group, including a positieeggrightlike
translation [P]. Again the implementing unitary operators are defined on tbéewtilbert space,
but their geometric action as a Moebius symmetry is restricted to the horizondéefimition of
the net of algebras on the horizon is similar to the Minkowski case in that tdgevesgiondV
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possess a bKh analog; instead of the Wigner little group (which was useddlve the transverse
locality structure oW, ) one intersectsy (dW, ) with bulk algebras whose localization region
contains the subregion af\,, with a specified transverse extension (tubular neighborhoods). The
subtle part of is the construction of the positive energy translation froebedic properties of the
bKh holography. For this and other related details we refef]to [9] whicheigithst authoritative
account of this matter. Having arrived at a chiral Moebius symmetry ondhiedn, the calcula-

tion of localization-entropy is analogous and leads also to the logarithmigeivee in terms of a
length scale which is adjusted to dilations.

Equating this entropy density with Bekenstein's classical area densitysétsattenuation
sizee of the vacuum polarization cloud to the Planck length. The present purettwal approach
does not resolve the question whether different content of bulk mates different c-values and
which c-values are belonging to which bulk matter. But in case that the tagdbgrally projected
matter does admit more than one valuedtiis could lead to a problematization with the matter-
independent pure gravity-based Bekenstein density which is usuallprieted as including the
contribution coming from quantum matter. In view of the fact that the state oklhlale radiation
of a collapsing staf[20[[21] is not really an equilibrium state, the recpetator algebra concept of
anentropy flu{P?] for stationary states which are not equilibrium states may be more @

Finally it is important to stress that the notion of holography which is in widespuse in the
literature (originally introduced by 't Hooft) is not the same as the one in thegmt work. The
main difference is that the former is thought of as leading to a complete hpligremage from
which the full bulk theory can be recovered. Such an invertible “dualiéitron between bulk and
its holographic image, if possible at all, is expected to arise from the still €agimntum gravity
and serves as a postulate whose consequences are to be studiegesene motion of holography
onto null-surfaces lacks this uniqueness of inversion. For example it igassible to reconstruct
the localization structure within a wedy¢ solely from that of its horizo@W, the reconstruction
is limited to those semi-infinite regions which arise as a causal shadow fraamsegndW; the
finer substructure e.g. the double cone algebras insidé&/thelk are certainly not reconstructible
only from subalgebras odW. Adding the knowledge about actions of Poincaré transformations
outside the 7-parametric subgro@pof LF (e.g. a lightlike translation moving outside lof) the
full net of bulk algebras and their pointlike generators may be recovesatte in the presence
of interactions there is no direct local connection between bulk fields alogjtaphic generators,
the intervention of operator algebras is an essential aspect of hofygoénteracting systems.
Apart from the structural results used in the present work, the thdfasperator algebras as one
needs it the physical setting is very much in its infancy and there is presentipad intuitive
understanding of how geometric-physical properties in spacetime atedétathe positioning of
isomorphic copies of the hyperfinite typeslfiactor algebra in a common Hilbert space, although
it can be shown that any QFT in Minkowski spacetime, including its Poinganéngtries, can be
encoded in this way[[23].

The relation of the conjectured quantum gravitational holography on atfkees to the one
in this paper is similar to that of the conjectured Maldacénh [24] to Rehrégeébmic AdS-CFT
correspondenc¢ [P5]. The full invertibility (which justifies the use of thoedicorrespondence) of
Rehren’s algebraic correspondence results from the exceptiatdhéd the causal shadows cast
by the regions in a conformal brane boundary lead to a complete net tfratgie AdS (related to
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the shared maximal symmetry of bulk and boundary); it has nothing to do wathtgon gravity.
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