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1. Motivations for an alternative approach to QFT

Looking at the present particle physics scene one may get the impression that besides string
theory and loop quantum gravity there are no other worthwhile fundamentalalternatives for a post
standard model particle physics.

There exist however ofa third waywhose pursuit neither requires to wait for the moment when
new experimental data resolve a theoretical impasse ( in the present situationthe problems around
the Higgs particle and the fate of supersymmetry), nor does it involve the risks of getting lost in the
blue yonder of highly speculative ideas.

This third way consists in expanding the conceptual basis of QFT in order toexplore other
directions. Although one has a good knowledge of the underlying principles and of its conceptual
and mathematical setting, QFT in contrast to QM remains a hugely unfinished project. The rapid
progress particle physics enjoyed during several decades of the lastcentury has left huge gaps of
knowledge with many important problems having been left on the wayside. In fact it is surprising
that by only knowing a perturbative approach, whose conceptual status is still shrouded in doubts
as a result of arguments pointing to the divergence of the perturbative series, one nevertheless was
able to find the standard model whose descriptive precision (after observationally fixing its many
free parameters) leaves nearly nothing to be desired. This third way was always available, but in
good times of the past, when ideas supported by the standard Lagrangian computational methods
led to a lot of progress, there was no strong motivation to explore the intrinsic logic of QFT and to
look for alternative directions. Our knowledge has mainly been obtained bycanonical or functional
integral quantization of classical objects, i.e. by a parallelism to a world of classical field theory,
or in the words of one of the the protagonists of field quantization Pascual Jordan, with the help of
"classical crutches" [1].

The research of some dedicated individuals over several decades gradually led to an au-
tonomous setting of QFT which is generally referred to as algebraic QFT (AQFT) or local quan-
tum physics (LQP) [2]. It was quite successful in obtaining various observable properties from a
few fundamental principles and to get a conceptually consistent finite formulation of perturbative
renormalization [3]. But on the whole its main role was more that of a critical corrective than of a
catalyzer for new discoveries. The present crisis in particle physics, inparticular the stagnation in
attempts in understanding the problems which the standard model (SM) left behind after its impres-
sive initial success, ask for a fresh look at an alternative conceptualsetting of QFT. It seems that the
formulation of QFT which was instrumental in its discovery, namely that in terms ofLagrangians
and gauge symmetries, is not well suited to address the many new problems which arose from its
perturbative exploration.

Since there are growing doubts about the existence of an autonomous "gauge principle" in QFT
(the use of gauge invariance as a technical tool in perturbative renormalization remains unaffected),
it is important to know whether the locality principle in conjunction with renormalizability requires
interacting massive vectormesons to be accompanied by scalar particles. Clearly the Lagrangian
setting is not a good point of departure for investigating fundamental problems of this kind; the
best one can do in the standard setting is to start with coupledmassivevectormesons and verify
that without introducing additional scalar particles (the Higgs field, but without its characteristic
vacuum expectation) the BRST gauge formalism would not work i.e. the cohomological descend
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to a ghostfree covariant Hilbert space description would fail [4]. But astructural argument based on
a formalism which relies on unphysical and nonobservable concepts as ghosts is not trustworthy;
If we want to heed Heisenberg’s message about the importance of stayingwith observables in
fundamental arguments of QT, we are forced to look at an alternative ghostfree implementation of
interactions for particles of spin≥ 1.

The Wigner representation theoretical approach for the Poincaré group turned out to be a good
starting point for a ghostfree description. Among the positive energy representations in d=3+1
there are two zero mass families whose associated QFT cannot be described in terms of pointlike
covariant fields. One family is associated with the so-called continuous spin representations which
are characterized by a continuous-valued invariant of the Wigner "little group" of a lightray; the
second is the finite helicity family to which the photon and the (still elusive) graviton belong. To
be more precise, in the finite helicity case it is not the field strength (electromagnetic field strength,
the linearized Riemann tensor field strength,...) which forces one to go beyondpoint-like localized
fields, but rather the "potentials" of these field strengths. One knows from the experience with
QED that one needs the potentials for the formulation of interactions and thereare even intrinsic
theoretical reasons for their introduction [5]. As a consequence of a well-known representation
theoretical no-go theorem concerning covariant point-like localized vectorpotentials in the physi-
cal representation space, one is forced to relax the localization aspect. One finds that the best one
can do in a Wigner-Fock space is to construct covariant fieldsAµ(x,e) which are localized on a
semi-infinite stringx+R+e (wheree is a spacelike unit vector) [5]. Their commutator is "string-
local" i.e. vanishes only if the two strings do not enter their respective causal influence regions.
These string-like localized potentials transform covariant under the unitary Wigner representation
of the Poincaré group. This field fluctuates simultaneously inx and in the space-like directione,
i.e. e is not an additional parameter with a fixed value, but rather behaves like a localization point
in a d=2+1 de Sitter spacetime. Apart from its participation in the Poincaré transformations, the
e are reminiscent of the axial gauge. But whereas the interpretation ofe as a gauge causes nasty
infrared problems, taking into account its singular fluctuating nature (distribution in e) leads to
informations of how to treat this dependence properly. Since part of the vacuum fluctuations are
transferred toe, the short distance dimension inx is reduced to 1, i.e. the string-localized potential
has the same short distance behavior as the point-like potential in the BRST ghost setting. This
idea of constructing short-distance improved string-localized free fields works also in the case of
massive vectormesons when there is no representation theoretical reason for their introduction. If it
would be possible to formulate a renormalized perturbation theory for string-like localized massive
vectormesons, one would have a conceptually clear starting point to clarifythe possible necessity
for additional physical degrees of freedom of the Higgs type. Thee-independence would then play
the role of the gauge invariance in the BRST formalism; but sincee-independence means locality,
the gauge principle would be replaced by the more fundamental locality principle and the discus-
sion about the necessity of Higgs degrees of freedom would be shifted toa more conceptual level
than that obtained from the setting of Lagrangians and functional integrals. More remarks on the
use of string-localization can be found in the contribution by J. Mund to this conference. In the
present context it only served to illustrate that there are important problemsfor which the represen-
tation theoretic or algebraic setting opens new avenues which are not available with Lagrangians
and functional integrals.
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The most impressive illustration of the power of alternative conceptual ideas originating from
AQFT comes from the recent solution of the old problem of how to incorporate quantum matter
into general relativity, more precisely how to extend Einstein’s principle of local covariance to
QFT in curved space time (CST). Since the obstruction against local diffeomorphism covariance
comes from the inherent global aspects of quantum states, the important step was to find a way to
separate the construction of the operator-algebraic aspects from that of states. Clearly the standard
functional integral formalism which aims at correlation functions, i.e. at expectation values of
operators in a globally invariant vacuum states, is not a good starting point for theories in which
local diffeomorphismsplay a role. The search for a better formulation started with the problem of
defining the correct locally covariant Wick-products of free fields in curved spacetime, in particular
with the search for a quantum energy-momentum tensor which only dependson the spacetime in the
neighborhood of its point of definition [7]. The standard “split point” methodof taking the product
of free fields at different points and subtracting its expectation in a suitablestate before taking the
limit of coalescing points did not work since every state introduces an undesired dependence on
global properties of spacetime.

After more than one decade of conceptional innovative mathematical work,a highly satisfac-
tory framework was finally found. Its solution requires to take a new view about the basics of QFT
[6]. Whereas in the algebraic setting of QFT as originally proposed by Haag and elaborated over
several decades by many authors [2] the starting point was a system of operator algebras indexed
by subregions of a fixed spacetime, the quantum implementation of local covariance requires to
do this simultaneously on all physically admissible spacetimes. This is because Einstein’s local
covariance principle demands that the physics of two admissible isometric diffeomorphic patches
on two different globally hyperbolic Lorentz manifolds is isomorphic; by onlyallowing operations
restricted to those patches one cannot decide in which world one is living. In this way QFT in
curved spacetime becomes a functorial concept between a suitable category of Lorentz manifolds
and a category of suitably defined operator algebras. As it should be, the old setting of AQFT in
Minkowski spacetime is a special case; in mathematical terms, the Haag-Kastleraxioms re-emerge
from the new functorial setting.

One would expect that such an important discovery should rapidly becomepart of the general
scientific discourse, but in this case this did not (yet?) happen. Perhapsit is one aspect of the
present crisis that the euclidean setting which is important for making mathematicalsense of func-
tional integral has gained prominence among physicists inspite of its limited physical applicability;
many particle physicists who are familiar with euclidean methods (and use them even outside their
range of applicability in theories involving gravity) have only a very rudimentary knowledge of
those operator algebraic structures as they are used in the formulation of the new local covariance
principle. But there can be no doubt that this new algebraic setting which implements the local
covariance principle is the most important paradigmatic change within QFT afterthe theoretical
discovery of black hole radiation. In [10] the reader finds interesting remarks how to get from
local covariance to diffeomorphism invariance (background independence) which is believed to be
a characteristic property of quantum gravity. These observations raisequestions about the valid-
ity of claim that gravity is incompatible with the principles of quantum theory, whichis the main
motivational argument for string- and loop- gravity.

In the next section I will present some aspects of recent work on a related subject namely
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algebraic holography and localization-entropy which may be relevant forblack hole physics.

2. Remarks on lightfront holography

In the algebraic setting of QFT the concept ofholographic projectionon null-surfaces means
the replacement of the system of subalgebras, which are associated with subregions in the bulk, by
a new system of subalgebras which are indexed with respect to subregions of its causal horizon.
Hence If one, following Leibniz, considers spacetime as an ordering device for (quantum) matter,
holography amounts to a change of the ordering device while maintaining the material substrate.

The best studied case is the lightfront holography [8] which starts from the geometric fact that
the light frontLF is the linear extension of the upper horizon of a fixed wedgeW region (all regions
are open). Thex0− x3 wedge is defined as the regionW = {|x0| < x3} with the transverse spatial
coordinates remaining unrestricted. The aim is to construct a system of subalgebras indexed by
subregions on its (always upper) boundary∂W. The concept which mediates between the bulk in
W and its holographic projection on∂W is thecausal shadow propertyof the algebraic approach.
It states that an operator algebra associated with a regionO is equal to that associated with the
(generally larger) causally completed regionO ′′ (taking twice the causal disjoint). SinceW is
the (past) causal shadow of∂W (every signal which passes through∂W must have traversedW),
one identifies the algebra belonging to the characteristic surface∂W with that ofW i.e. A (∂W) ≡

A (W). The linear extension of∂W is a lightfrontLF with A (LF) = A (M) since its causal shadow
is the full algebra of Minkowski spacetime. The only smaller regions inLF which cast an ambient
causal shadow are horizons of wedges i.e. of those wedges which have their horizon onLF. The aim
of hologaphy onLF is to construct a coherent system of subalgebrasA (O) ⊂ A (∂W) ⊂ A (LF)

whereO ⊂ ∂W ⊂ LF are regions which do not cast causal shadows; the important tool is the
formation of intersections of algebras, starting from the wedge algebras inthe bulk.

The symmetry groupG of LF is a 7-parametrig subgroup of the 10-parametric Poincaré group,
consisting of lightray translations, dilations (theLF projections of the W-preserving boost), linear
transformations of the coordinate directions in the transverse spaceR

2 ⊂ LF (resulting from the
LF projection of the 3-parameter Wigner little group which leaves the lightray invariant) as well as
transverse translations. The local subalgebrasA (O), O ⊂ LF of the holographic projection onLF
are obtained by successive steps involving intersections of wedge algebras obtained fromW by the
application ofG .

Let us briefly look how this is done. LetW be thex0 − x3 wedge which is invariant under
x0− x3 boosts. Consider a family of wedgesWa which are obtained by sliding theW along the
x+ = x0 +x3 lightray by a lightlike distancea > 0 into itself. The region onLF consisting of those
points on∂Wa which are spacelike to the interior ofWb for b > a is denoted by∂Wa,b and consists
of pointsx0 = x3, x+ ∈ (a,b) with an unlimited transverse partx⊥ ∈ R2. These regions are slabs
on LF with the full R

2 transverse extension. To get to regions of finite transverse size one first
transforms this slabs by the action of the 2-parametric subgroupG2 of G which is the restriction to
LF of the two “translations” in the Wigner little group (the subgroup fixing the lightray in LF) and
afterwards intersects the transformed slab with∂Wa,b

∂Wa,b∩g(∂Wa,b), g∈ G2 (2.1)
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By forming intersections and unions one can get to finite convex regionsO of a more general
shape. An alternative method for obtaining holographically projected compactly localized subal-
gebrasA (O),O ⊂ LF, which does not make use of transverse symmetries, consists in intersecting
A (∂Wa) with suitable algebras in the bulk which are localized in a tubular neighborhoodof O [9].

The main problem is now to show the nontriviality of the algebras associated to those regions.
Since any region on∂W which does not extend to infinity in thex+ lightray direction also does not
cast any causal shadow, we cannot base the nontriviality of algebrasA(∂Wa,b) on the causal shadow
property. If this intersected algebra would be trivial (i.e. consist of multiples of the identity), the
idea of holographic projections would be useless.

It has been customary to add structural properties concerning intersections to the list of alge-
braic requirements if they can be established in the algebraic reformulation offree fields. Since
one knows very little about the existence of interacting QFT, this is a reasonable procedure. It is
interesting to note that very recently nontriviality proofs for algebraic intersection of wedge alge-
bras of special interacting models have been found which led to the first existence proofs of the
associated 2-dim. QFT models [12]. These wedge algebras have generators with rather simple
vacuum polarization properties [11].

Returning to free fields it is well-known that a nontrivial system of localizedoperator algebras
A (O),O ⊂ LF exists [13]; in fact these algebras onLF have simple pointlike generatorsALF

which are identical to the fields which appeared in the “lightcone quantization”(or p→ ∞ frame)
formalism

ALF(x+,x⊥) =
1

(2π)3/2

∫

(

ei(p−(θ)x+a∗(θ , p⊥)
dθ
2

dp⊥ +h.c.

)

, p−(θ) = meθ (2.2)

〈

∂x+ALF(x+,x⊥)∂x′+ALF(x′+,x′⊥)
〉

≃
1

(x+−x′+ + iε)2 ·δ (x⊥−x′⊥)

[

∂x+ALF(x+,x⊥),∂x′+ALF(x′+,x′⊥)
]

≃ δ ′(x+−x′+)δ (x+−x′⊥)

Here all unimportant constants are left out and the derivative is used in order to avoid the techni-
calities related to infrared aspects of logarithmic zero mass correlations. TheALF field is different
from the original free field; the only physical purpose of this auxiliary field is to generate the sys-
tem of local operator algebras onLF . The operator algebrasA (O) ⊂ A (LF) are constructed by
first smearingALF with O-localized testfunctions onLF and then passing to generating bounded
operators ofA (O) using the Weyl exponentiation [13]; the construction is completely analogous
to the way one passes from free fields to their associated spacetime localizedoperator algebras with
the only difference being that the Minkowski spacetime is replaced byLF.

The factorization of theALF correlation into a lightlike and a transverse part reveals two im-
portant properties. The transverse quantum mechanical delta function shows that there are no
transverse vacuum fluctuation. All vacuum fluctuations have been compressed into the lightlike
direction with the result of an increase of lightlike symmetry. Whereas the lightray translation was
part of the original Poincaré symmetry and the dilation onLF results from theW-preserving boost,
the chiral rotation (which together with the translation and the dilation generate the Moebius group)
is a new symmetry.

These observations pose the question whether absence of transversevacuum fluctuations and
the appearance of chiral symmetries in the lightray direction are general properties of holographic
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lightfront projection. The appearance of stronger short-distance singularity in the presence of in-
teractions prevents a direct definition ofALF fields via restriction of bulk fields toLF, and one is
forced to follow the afore-mentioned more abstract algebraic path. One ofthe “magic” aspects of
the algebraic approach is that certain positions of operator algebras relative to each other (acting
in the same Hilbert space) may lead to additional geometric symmetries. For the case at hand it
is the fact that the algebrasA (∂Wa), A (∂Wb) and their relative commutantA (∂Wa,b) define a
standard modular inclusionand that this property characterizes chiral theories [14]. The existence
of a vacuum-preserving unitary implementation of the rotation on the compactifiedlightray in the
general setting is a consequence of the algebraic properties of theLF holography.

The chiral part of theALF correlation function admits a much larger unitarily implemented
symmetry group namely the diffeomorphism group of the circle. The transformations beyond the
Moebius group do not leave the vacuum invariant and hence are not Wigner symmetries. It is not
clear whether this Diff(S1) also exists in the interacting case. The standard argument for its validity
is based on the existence of an energy-momentum tensor and unlike chiral theories which originate
from two-dimensional conformal theories, this argument is not available for chiral theories associ-
ated with holographic projections. As the vacuum preserving chiral rotation results from algebraic
properties of the holographic projection, it is conceivable that one findsalso operator-algebra prop-
erties which lead to the higher diffeomorphism symmetries. An extension to localdiffeomorphisms
would be very much in the spirit of the new setting of QFT based on the implementation of local
covariance [6]. Note that the unitary implementers of symmetries which originatefrom holography
are also well-defind in the bulk theory since they act in the same Hilbert space; however their action
on the bulk is not geometric, i.e. they are not symmetries in the sense of the Noether theorem of
the bulk.

The important aspect of holography is theabsence of transverse vacuum polarization. This is
a consequence of the fact that the lightlike translation, different from space- or time- like transla-
tions, fulfills two properties simultaneously: its generator has positive spectrum and the lightlike
translation fulfills a cluster property for large lightlike distances. LetOi , i = 1,2 be two regions
on LF whose transverse projections do not overlap i.e.(O1)⊥ ∩ (O2)⊥ = /0, then the following
factorization holds1

〈Ω |AB|Ω〉 = 〈Ω |A|Ω〉〈Ω|B|Ω〉 , A∈ A (O1),B∈ A (O2) (2.3)

Note that since the regions are open, this factorization even holds in case the two regions touch on
their boundaries. In view of the fact that this never happens in the bulk, this is quite surprising; in
fact the simplification in terms of vacuum fluctuations is the main raison d’être forholography in
the sense of the present work. We remind the reader that even for a finitespacelike separation of
two localization regions in the bulk there can be no factorization on the vacuumvectorΩ; in order
to construct state vectors which lead to tensor-factorization in the bulk one has to invoke thesplit
propertywhich is known to break down in the case that the two regions touch [2].

It is precisely this absence of transverse vacuum polarization in the holographic projection
which simplifies the description of thermal manifestations of localization. It compresses the vac-
uum fluctuations into the lightlike direction and the relevant Hamiltonian for the thermal properties

1Locality in both directions shows that the lightlike translates〈Ω |AU(a)B|Ω〉 are boundary values of entire func-
tions and the cluster property together with Liouville’s theorem gives the factorization [13].
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of localization is the lightlike dilation generator which leaves∂W invariant and whose properties
can be studied by methods of chiral QFT. The transverse decoupling impliestransverse additivity
of extensive quantities and hence imposes an area proportionality on entropy and energy caused
by the vacuum fluctuations on the horizon in the lightray direction at thex+ = 0 boundary of∂W.

Since one expects this area density to diverge in the limit of a sharpx+ = 0 boundary, the strat-
egy will be to introduce an “attenuation length”ε for the vacuum fluctuations and then study the
limiting behavior forε → 0.

The computation of the leadingε-divergence is based on a theorem [8] which states that a
chiral system in a vacuum stateΩ, localized on a halflineR+, can be unitarily mapped to the full
chiral algebra onR in a KMS thermal stateΩ2π at temperature 2π

(A (R+),Ω) ≃ (A (R),Ω2π) (2.4)

with the unitary equivalence being given in terms of a conformal map which intertwines the dilation
of the R+-restricted system with the translation of the unrestricted KMS thermal system. This
“inverse Unruh effect” for chiral theories (i.e. a heat bath system is interpreted as a spacetime-
restricted vacuum system) is the key to the calculation of localization-entropy.Using the standard
wisdom of statistical mechanics we would conjecture that the entropy diverges proportional to the
length asl · s2π wheres2π is the density per length. The conformal equivalence map intertwines
the translation of the heat bath system with the dilation of the localized system so that the sizel is
transformed intoε according toε = e−l and the area density of the equivalent dilational system on
the half-space behaves as

sarea = |lnε|s2π + f inite, ε → 0

The correctness of this idea can be checked by approximating the linear system by a sequence of
finite systems using an “invariant” box approximation [8] in which the divergent partition function
of the translative system is approximated by a sequence of rotational system in the limit of infinite
temperature (interpreted as an infinite radius whose size is related tol ) associated with the partition
function of the Virasoro generatorL0. The calculation can be completed by the use of the chiral
temperature duality for the partition function ofL̂0 = L0−

c
24 where thec is the Virasoro constant.

It is precisely this shift inL0 which gives the divergentl factor and identifies the constant according
to s2π = c

12 [8].
As mentioned before chiral theories which originate from the chiral decomposition of confor-

mal two-dimensional theories come with an energy momentum tensor whose strength defines the
Virasoro constantc, but this is not necessarily the case for Moebius covariant chiral theories which
arise in holographic lightfront projection. The fact that the vacuum shiftto L̂0 which is necessary
for the formulation of temperature duality also leads to the expected largel behavior may be taken
as an indication that the Virasoro structure continues to hold for chiral theories which are associated
with holographic projections. At the same time it gives an apparently new thermal interpretation to
the Virasoro constantc in terms of properties of a lightlike thermal system at KMS temperature 2π.
This “inverse Unruh effect” in combination with the simplification from the holographic projection
makes localization-entropy a really useful concept.

It is an interesting question to what extend such entropy considerations apply to other null-
surfaces in Minkowski spacetime as e.g. the upper horizon of double cones which are conformally
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equivalent to wedges. Since the thermal phenomenon under consideration is caused by vacuum
fluctuations near the boundary, one expects that the localization-entropyhas an area behavior with
the same leadingε-divergence. Whereas for conformally invariant bulk theories one can use the
global conformal equivalence of the wedge with a double cone, there are presently no results for
massive theories on null-surfaces of double cones. Such null-surfaces are quite interesting because
the geometry in the limit of large double cones is expected to make contact with the classical Bondi-
Metzner-Sachs symmetry. Whereas the quantum symmetries of holography are always defined
through their unitaries in the full Hilbert space, the classical BMS symmetry is only defined as an
asymptotic transformation.

The difference to previous entropy calculations based on counting eigenstates of the standard
time translation Hamiltonian [15] (after modifying the local model by a momentum space cutoff)
is that those calculations do not reveal the local origin of the of the area proportionality. There are
general reasons which cast serious doubts on global calculations of vacuum entropy and energy
[16] which count the contribution from the occupation of globalized energy using the standard
time translation Hamiltonian and using a cutoff in momentum space. Such calculations violate
the recently formulated principle of local covariance of QFT in curved spacetime [6]. The present
calculation does better on this issue, since the Hamiltonian is the same as the one responsible for
the Hawking-Unruh effect i.e. adapted to the invariance of the localization region and its horizon.
In addition the theory is not modified by momentum space cutoffs; one rather looks at a family of
localization entropies for the holographically projected matter with a fuzzy boundary of lightlike
extensionε at the edge of the horizon which is interpreted as an attenuation length. In particular this
approach shows that the rather universal behavior of vacuum polarization clouds near boundaries
should not to be blamed on the ultraviolet behavior of particular pointlike fields, but is rather a
generic physical consequence of the principle of causal localizability. Localized operator algebras
are von Neumann factor algebras of hyperfinite type III1; this unique operator algebra (modulo
isomorphisms) which peculiar properties (related to localization and thermal aspects) which easily
escape the quantum mechanical intuition since the algebras one meets in QM at zero temperature
are of type I [17]. Some of the problems black hole physics seems to have withthe foundations of
QT may find their explanation in these peculiarities.

It has been known for some time that curved spacetimes with a bifurcated Killinghorizon
(bKh) is analogous to wedges in Minkowski spacetime. A presentation in the setting of operator
algebras in curved space time in a form which is most suitable for the calculationof localization-
entropy has been given in [9], following prior work in [18][19]. The main difference to the
Minkowski situation is that at the beginning one only has a Killing symmetry together with some
assumptions about the way it acts geometrically which guaranty the existence of a bKh. As an
analog for the vacuum state one needs a state vectorΩ which is invariant under the action of the
Killing symmetry. For the Schwarzschild-Kruskal black-hole spacetime this would be the Hartle-
Hawking state [7]. This Killing symmetry is analogous to the wedge-preservingL-boost and its
projection onto the bKh is the candidate for a dilation. It comes as quite as a surprise that it is
possible to extend this symmetry to a full Moebius group, including a positive energy lightlike
translation [9]. Again the implementing unitary operators are defined on the whole Hilbert space,
but their geometric action as a Moebius symmetry is restricted to the horizon. Thedefinition of
the net of algebras on the horizon is similar to the Minkowski case in that the wedge regionsW
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possess a bKh analog; instead of the Wigner little group (which was used to resolve the transverse
locality structure on∂Wa,b) one intersectsA (∂Wa,b) with bulk algebras whose localization region
contains the subregion of∂Wab with a specified transverse extension (tubular neighborhoods). The
subtle part of is the construction of the positive energy translation from algebraic properties of the
bKh holography. For this and other related details we refer to [9] which is the most authoritative
account of this matter. Having arrived at a chiral Moebius symmetry on the horizon, the calcula-
tion of localization-entropy is analogous and leads also to the logarithmic divergence in terms of a
length scale which is adjusted to dilations.

Equating this entropy density with Bekenstein’s classical area density relates the attenuation
sizeε of the vacuum polarization cloud to the Planck length. The present purely structural approach
does not resolve the question whether different content of bulk matter gives different c-values and
which c-values are belonging to which bulk matter. But in case that the holographically projected
matter does admit more than one value ofc this could lead to a problematization with the matter-
independent pure gravity-based Bekenstein density which is usually interpreted as including the
contribution coming from quantum matter. In view of the fact that the state of black hole radiation
of a collapsing star [20][21] is not really an equilibrium state, the recent operator algebra concept of
anentropy flux[22] for stationary states which are not equilibrium states may be more appropriate.

Finally it is important to stress that the notion of holography which is in widespread use in the
literature (originally introduced by ’t Hooft) is not the same as the one in the present work. The
main difference is that the former is thought of as leading to a complete holographic image from
which the full bulk theory can be recovered. Such an invertible “duality” relation between bulk and
its holographic image, if possible at all, is expected to arise from the still elusive quantum gravity
and serves as a postulate whose consequences are to be studied. The present notion of holography
onto null-surfaces lacks this uniqueness of inversion. For example it is not possible to reconstruct
the localization structure within a wedgeW solely from that of its horizon∂W, the reconstruction
is limited to those semi-infinite regions which arise as a causal shadow from regions on∂W; the
finer substructure e.g. the double cone algebras inside theW bulk are certainly not reconstructible
only from subalgebras on∂W. Adding the knowledge about actions of Poincaré transformations
outside the 7-parametric subgroupG of LF (e.g. a lightlike translation moving outside ofLF) the
full net of bulk algebras and their pointlike generators may be recovered. Since in the presence
of interactions there is no direct local connection between bulk fields and holographic generators,
the intervention of operator algebras is an essential aspect of holography of interacting systems.
Apart from the structural results used in the present work, the theory of operator algebras as one
needs it the physical setting is very much in its infancy and there is presently no good intuitive
understanding of how geometric-physical properties in spacetime are related to the positioning of
isomorphic copies of the hyperfinite type III1 factor algebra in a common Hilbert space, although
it can be shown that any QFT in Minkowski spacetime, including its Poincaré symmetries, can be
encoded in this way [23].

The relation of the conjectured quantum gravitational holography on null-surfaces to the one
in this paper is similar to that of the conjectured Maldacena [24] to Rehren’s algebraic AdS-CFT
correspondence [25]. The full invertibility (which justifies the use of the word correspondence) of
Rehren’s algebraic correspondence results from the exceptional fact that the causal shadows cast
by the regions in a conformal brane boundary lead to a complete net of algebras in AdS (related to
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the shared maximal symmetry of bulk and boundary); it has nothing to do with quantum gravity.
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