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1. The Notion of String-Localized Quantum Fields.

The principle of locality demands that observables be measurable in bounded regions of space-
time, and that observables localized in space-like separated regions be compatible. This principle
is usually implemented by (point-like localized) quantum fields which commute for space-like
separated arguments. In addition to the observables there may be, however, unobservable charge–
carrying fields. In models, these are constructed first and then the observables are constructed from
them, usually selected by a global gauge principle. (For example, the observables in the case of a
charged scalar field ϕ(x) are generated by the currents jµ(x).)

The unobservable fields need, in general, not be localized in bounded regions. In some cases,
the fundamental fields even cannot be localized in bounded regions: For example, if they carry a
so-called “gauge charge” [8], that is a charge which can be determined at space-like infinity by
a version of Gauss’ law. Another instance are fields whose basic excitations are certain “exotic”
particle types, namely Anyons [31] in 2 + 1 dimensions and Wigner’s so-called massless “infinite
spin” particles [30]. The former correspond to irreducible massive positive-energy representations
of the Poincaré group whose spin is not integer or half-integer (which is admitted in two space
dimensions). The work of Doplicher et. al. [10] implies that the corresponding fields cannot be
compactly localized. The latter correspond to irreducible massless representations with infinitely
many polarization degrees of freedom, corresponding to a faithful representation of the little group
E(2). J. Yngvason has shown [32] that fields with such excitations cannot be point-like localized
in the sense of Wightman fields.

On the other hand, the charge carrying fields do have to satisfy some localization proper-
ties since they must generate local observables. If the theory is purely massive, then it has been
shown [9] that the charged fields are localized1 in space-like cones. A space-like cone is a salient
cone in space-time which extends to space-like infinity. Important structural results have been
shown for theories with such localization, like the construction of scattering states [9], analiticity
of the S-matrix [3], the analysis of the superselection charge structure [11], and the Bisognano-
Wichmann and PCT theorems [19]. Similarly, Brunetti et al. [7] have shown the existence of a free
field algebra localized in space-like cones for all (bosonic) particle types, including the massless
“infinite spin” particles.

Steinmann [25], inspired by the ideas of Mandelstam [17], introduced the notion of quantum
fields localized on space-like strings, idealizing a cone. Such “string” is a ray extending from a
point in Minkowski space to infinity in some space-like direction. More precisley, if x is a point in
R

4 and e is a point in the manifold of space-like directions,

H := {e ∈ R
4, e · e = −1}, (1.1)

then the string Sx,e emanating from x in direction e is given by

Sx,e := x+R
+
0 e. (1.2)

1In the case of charged fields, localization means that space-like separated fields have vanishing commutators or
anti-commutators or, in 2+1 dimensions, satisfy more general (braided) commutation relations.
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Steinmann proved the Jost-Schroer theorem for fields with such localization [25]. In [22, 23], we
have elaborated on this concept, introducing the notion of a covariant string–localized quantum
field, as follows.

Definition 1. A covariant string–localized quantum field is an operator valued distribution ϕ(x,e)
on R

4 ×H satisfying
i) String–locality: If S(x,e) and S(x′,e′) are space-like separated, then

[ϕ(x,e),ϕ(x′,e′)] = 0; (1.3)

ii) Covariance: There is a representation U of the Poincaré group P
↑
+ such that

U(a,Λ)ϕ(x,e)U(a,Λ)−1 = ϕ(Λx+a,Λe) (1.4)

holds for all (a,Λ) ∈ P
↑
+.

(We also consider the case where the fields have, in addition, tensor or spinor indices, cf. below.)
Our original aim, motivating the introduction of this concept, was an explicit construction of free
fields for the massless infinite spin particles, improving the existence result of Brunetti et al. [7].
This goal has been reached [22, 23], and the by-products (on other particle types) turned out to be
more interesting than the original object, as I shall try to motivate in section 4.

The next section is meant to sketch the role of modular localization in our construction of free
fields. Section 3 summarizes our results on free fields, and Section 4 gives a speculative outlook
on the construction of interacting string-localized fields.

2. Modular Localization and the Construction of Free String-Localized Fields.

In the point-localized case, covariance of free fields essentially already implies locality. In the
string-localized case, this is not so and there are no guidelines from the usual field theory methods
in implementing locality (1.3). Hence independent ideas are warranted. In the context of algebraic
QFT, there is an appropriate concept, the so-called modular localization. This concept has been
introduced by Brunetti et al. [7] and by Schroer [14]. It is based on the Bisognano-Wichmann
theorem [2, 19], which asserts that for a large class of models, certain algebraic invariants of the
field algebra are fixed by the (ray) representation of the Poincaré group under which the field
transforms, and the S-matrix. These algebraic invariants are the Tomita operators S(O) of the
algebra of fields localized in O , for each space-time region O . The principle of modular localizaton
consists in inverting the argument: Namely, these invariants can be consistently constructed from
the representation of the Poincaré group (and the S-matrix). This has been done by the author
for Anyons in d = 2 + 1 at the single particle level [20]. Moreover, (in the non-Anyon case) the
family of Tomita operators allows for the construction of free local fields. This concept of modular
localizaton has been used by Brunetti et al. in the mentioned existence proof of free fields localized
in space-like cones for every bosonic particle type, including the massless infinite spin particles [7].

As mentioned, the aim of [22, 23] was to achieve more, namely an explicit construction, and
idealization of the space-like cones to strings Sx,e. By the Jost-Schroer theorem for string-localized
fields [25], it suffices to solve the problem on the level of the single particle space, consisting of L2
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functions on the mass shell H+
m with values in the “little Hilbert space” (corresponding to the spin

degrees of freedom). The field ϕ(x,e) must create from the vacuum Ω a single particle state of the
form

〈 p | ϕ(x,e)Ω〉 = eipx u(e, p), p ∈ H+
m , (2.1)

where u(e, p) is a distribution in e ∈ H and a function in p ∈ H+
m with values in the “little Hilbert

space” satisfying certain properties which encode locality and covariance: Firstly, our requirement
of string-locality (1.3) implies that ϕ(x,e)Ω is (after smearing) in the domain of definition of each
Tomita operator pertaining to any space-like cone containing the string Sx,e. The concept of modu-
lar localization then implies that for fixed p, u(e, p) is the boundary value of an analytic function on
the tuboid T+ in the natural complexification of H consisting of those complex e whose imaginary
part is in the open forward light cone. This function is of moderate growth near the real “boundary”
H, in the sense of [4], thereby defining u(e, p) as a distribution on H. Secondly, covariance (1.4)
implies that u satisfies the intertwiner property

D(R(Λ, p))u(Λ−1e,Λ−1 p) = u(e, p) (2.2)

for (e, p) ∈ T+ ×H+
m and Λ ∈ L

↑
+. Here, R(Λ, p) is the Wigner rotation and D is the repesen-

tation of the little group which induces the irreducible (ray) representation of the Poincaré group
corresponding to the particle type at hand. With the intertwiner function u(e, p) one associates a
hermitean field acting in the Fock space over the corresponding one particle space, via

ϕ(x,e) =
∫

H+
m

dµ(p)
{

eip·x u(e, p)◦a∗(p) +e−ip·x u(e, p)◦a(p)
}

. (2.3)

Here, dµ(p) is the Lorentz invariant measure on H+
m , and the circle ◦ denotes (sloppily speaking)

summation/integration over the spin degrees of freedom. (In Equ. (2.3) it has been assumed that
u(e, p) satisfies a certain self-conjugacy property (which can be achieved for all particle types),
yielding a hermitean field.) This field is then in fact covariant in the sense of (1.4) under the second
quantization U of the corresponding irreducible representation, and string-localized in the sense of
Equ. (1.3).

3. Results on Free String-Localized Fields.

Along the indicated lines, we have constructed free covariant string-localized fields for all
bosonic particle types, including the massless infinite spin particles in [23]. (String-localized
fermions can also be constructed; they need an additional spinor index.) Our fields satisfy the
Reeh-Schlieder and Bisognano-Wichmann properties.

We have also found the following uniqueness result. Every covariant string-localized field
is of the form (2.3), and the intertwiner function u is unique up to multiplication with a function
of e · p which is meromorphic on the upper complex half plane. (That is to say, if û is another
intertwiner function, then u(e, p) = F(e · p) û(e, p), where F is a numerical function, meromorphic
on the complex upper half plane.)

Due to the worse localization, our fields have a better short distance behaviour than their point-
like localized counterparts. For example, the Fourier transforms of their propagators2 behave like

2By propagator, we mean time-ordered two-point function.

4



P
o
S
(
I
C
2
0
0
6
)
0
2
8

String–Localized Quantum Fields, Modular Localization, and Gauge Theories Jens Mund

|p|−2 for large p for any of these fields, independent of the spin (corresponding to a |p|0 behaviour
of the on-shell two-point functions). This includes massless particles with helicity ±1 and ±2,
corresponding to photons and gravitons, cf. Equ.s (3.5) and (3.8) below. Note that this behaviour
is a prerequisite for any non-trivial interaction. It is to be contrasted with the point-like case where
the propagators for spin/helicity s behave at best like |p|2s−2, and |p|−2 can only be achieved in the
setting of gauge theory, at the price of an indefinite metric space or loss of covariance.

Some special cases are worth mentioning in more detail.

Massless infinite spin particles. These correspond to representations of the Poincaré group
where the inducing representation of the little group E(2), corresponding to the spin degrees of
freedom, is faithful. Such inducing representation Dκ is infinite dimensional, characterized by a
parameter κ > 0, and acts on L2(R2,δ (k2 −κ2)d2k) as

(Dκ(c,R)ψ)(k) := eic·k ψ(R−1k).

For these particles, we have found intertwiner functions uα characterized by a real parameter α < 0:

uα(e, p)(k) = e−iπα/2
∫

d2ceikc (BpΛcξ · e)α , (3.1)

where Bp is a boost which maps a fixed base point (1,0,0,1)∈ H+
0 to p, Λc is the Lorentz transfor-

mation corresponding to a c–translation in the stability group E(2) of (1,0,0,1), and ξ is a lightlike
vector invariant under the rotation subgroup of the E(2). This intertwiner function gives rise, via
Equ. (2.3), to a quantum field which satisfies all requirements from Definition 1.

The problem which has thus been solved has already been posed by Wigner [30] and has
resisted considerable efforts of several generations of elementary particle physicists [1, 16, 30, 32].
(In the mentioned articles, covariant fields have been constructed, but the issue of localization has
not been solved.)

Vector potentials for photons. For massless particles with finite helicity (ie. finite-dimensional
representation of the little group) the fields must carry, in addition to the string direction e, a vector
index. For photons, we constructed a string-localized vector boson Aµ(x,e), acting in the physical
photon Hilbert space (the second quantization of the direct sum of irreducible representation spaces
for helicity 1 and −1). It transforms as

U(a,Λ)Aµ(x,e)U(a,Λ)−1 = Aν(a+Λx,Λe)Λν
µ (3.2)

and satisfies string-locality in the sense of Eq. (1.3). It is indeed a vector potential for the field
strength Fµν (the unique free Wightman field corresponding to the electromagnetic field strength
and acting in the mentioned Hilbert space) in the sense that its exterior derivative dA coincides with
F , ie. Fµν(x) = ∂µAν(x,e)−∂νAµ(x,e). It also satisfies the Lorentz and axial “gauge” conditions

∂ µAµ(x,e) = 0, eµAµ(x,e) = 0. (3.3)

However, these conditions are satisfied by every free vector field Aµ(x,e) for photons acting in the
physical Hilbert space and transforming as in Eq. (3.2); hence they cannot be regarded as additional
gauge conditions in this context. Our vector potential is completely fixed by the requirements of
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string-locality (1.3), covariance (3.2) and that its exterior derivative is independent of e [23, Prop.
5.1]. (The latter requirement is analogous to gauge independence in the usual formulation. It
implies that dA coincides with the electromagnetic field strength [23, Proof of Prop. 5.1].) It is
buildt as in Equ. (2.3) from the following intertwiner function:

u(e, p)±,µ = lim
ε→0

ê±(p) · e
e · p+ iε

pµ − ê±(p)µ . (3.4)

Here, ê±(p) are the polarization vecors ê±(p) := Bp ê± where ê± := 2−1/2 (0,1,∓i,0) and Bp is the
mentioned boost which maps a (1,0,0,1) to p. The ε-prescription in Equ. (3.4) refers to the fact
that u(e, p)±,µ is a distribution in e for fixed p: First integrate over a test function in e, then take
the limit. Since e · p has positive imaginary part for p ∈ H+

0 and e in the mentioned tuboid T+, this
prescription correponds precisely to the one indicated above, before Equ. (2.2).

The two-point function of the corresponding field is given by

(

Ω,Aµ(x,e)Aν(x′,e′)Ω
)

= i
∫

H+
0

dµ(p) eip·(x′−x) Mµν(p;e,e′), (3.5)

Mµν(p;e,e′) .
= −gµν +

pµ pν

(e · p−iε)(e′ · p+iε ′)
+

eν pµ

e · p−iε
+

e′µ pν

e′ · p+iε ′
.

Recall that in the quantization of the point-like localized vector potential, one has the freedom
of a choice of gauge, with the following two alternatives: A covariant gauge only exists in an
indefinite metric space [26]. In a Hilbert space representation, there are only non-covariant gauges,
among them the axial gauge eµ Aµ(x,e) = 0 where e is a fixed direction. In this gauge, the two-
point function has the same form as in Equ. (3.5) (with e = e′), with two significant disadvantages
compared with our string-localized fields: Firstly, it is not Poincaré invariant since e is fixed; and
secondly, there is no convincing preferred regularization of the singularities e · p [29]. (In our
approach, the factors (e · p + iε)−1 are regular after smearing with a test function in e, and this
regularization is fixed by the same requirements as the field Aµ(x,e) itself.)

Massive vector bosons. There is also a string-localized field for massive vector bosons with
spin one [21]. As in the above massless case, it is fixed by the requirements of covariance (3.2),
string-locality and that dA(x,e) be independent of e. It has the same two-point function as the
massless (photon) counterpart, cf. Equ. (3.5), except that it is concentrated on the positive mass
shell H+

m . This interesting fact might allow for a treatment of the infrared problem (adiabatic limit)
in perturbative QED by starting from massive QED and letting m → 0. The massive analogue of
Equ. (3.5) implies that the propagator of our string-localized massive vector boson behaves like
|p|−2 for large momenta. This is worthwile comparing with the point-like localized counterpart,
whose propagator contains a term ∼ |p|0, indicating that it admits no interesting interactions (unless
one adds ghost degrees of freedom and uses an indefinite metric representation).

Tensor potentials for linearized gravitons. For massless particles with helicity ±2, there is a
string-localized tensor field hµν(x,e) transforming as a “string-tensor”, similar to Equ. (3.2) [21]. It
is a “potential” for the quantized (point-localized) free, ie. linearized, Riemann tensor Rµναβ [24],
in the sense that the classical relation between the linearized Riemann tensor and the perturbation
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of the metric holds:

Rµναβ (x) = 1
2

{

∂µ∂αhνβ (x,e)+∂ν∂β hµα(x,e) (3.6)

−∂ν∂αhµβ (x,e)−∂µ∂β hνα(x,e)
}

. (3.7)

It is well-known that for point-like fields these conditions cannot be satisfied in a Hilbert space
representation with positive energy [27]. The two-point function of our hµν is given by [21]

(

Ω,hµα(x,e)hµ ′α ′(x′,e′)Ω
)

= i
∫

d4 p eip·(x′−x) Mµα,µ ′α ′(p;e,e′), (3.8)

Mµα,µ ′α ′(p;e,e′) .
=

1
(e · p− iε)2(e′ · p+ iε ′)2 MR

µναβ ,µ ′ν ′α ′β ′(p) eνeβ (e′)ν ′
(e′)β ′

.

Here MR
µναβ ,µ ′ν ′α ′β ′(p) is the on-shell two-point function of the free Riemann tensor, which is

known to be a homogenous polynomial in p of degree four, cf. [24]. Consequently, the Fourier
transform of the propagator goes like |p|−2 for large p. (It is also regular for finite p since, as
mentioned above, it is being considered as a distribution in e,e′ so that the factors (e · p± i0)−1 do
not cause singularities).

4. Outlook: Interacting String-Localized Fields.

The specific properties of our string-localized free fields raise the hope that they should be
a good starting point for a perturbative construction of interacting string-localized fields. In con-
trast to the case of point-localized fields, the various construction schemes are not equivalent in the
case at hand. For example, the Yang-Feldman approach does not seem to work for string-localized
fields, for reasons similar to the ones found already in the 70’s in the context of “non-local” inter-
actions [18]: The (string-) localization is lost in higher orders. But there is one perturbative scheme
which seems to work for string-localized fields: The so-called causal construction of Epstein and
Glaser [13], based on ideas of Stueckelberg and Bogoliubov.

We shall briefly sketch this approach (see [5, 24] for a detailed account). One starts with free
fields acting in a Hilbert space, and an “interaction Lagrangean” LI . This is a Wick polynomial in
the free fields, interpreted as the first order of the S-matrix. (However, a Lagrangean formulation of
the theory is not necessary [28]). The interaction Lagrangean determines a specific class of Wick
polynomials, namely its derivatives w.r.t. basic fields. For Wick polynomials Wi in this class, one
defines time-ordered products TW1(x1) · · ·Wn(xn) recursively, requiring that

TW1(x1) · · ·Wn(xn) = TW1(x1) · · ·Wk(xk) TWk+1(xk+1) · · ·Wn(xn) (4.1)

if all of the events x1, . . . ,xk are later than the events xk+1, . . . ,xn in some reference frame. Together
with (translational) covariance, this fixes the time-ordered products up to the point x1 = · · ·= xn = 0.
(Re-) normalization then consists in the extension into this point. Having constructed the time-
ordered products, one defines Bogoliubov’s S-Matrix, depending on a test function of compact
support g and a Wick polynomial W in the mentioned class, as the formal series

S(gW ) :=
∞

∑
n=0

in

n!

∫

dx1 · · ·dxn g(x1) · · ·g(xn) TW (x1) · · ·W (xn). (4.2)
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The interpretation of S(gLI) is that it formally constitutes the S-matrix for the Hamiltonian HI(t)
.
= −

∫

d3xLI(t,x)g(t,x) in the interaction picture. (The infrared problem consists in the so-called
adiabatic limit, g → const.) One then defines for every free field ϕ an interacting field ϕI via
Bogoliubov’s formula:

ϕI( f ) :=
1
i

d
dλ

S(gLI)
−1 S

(

gLI +λϕ( f )
)

|λ=0. (4.3)

Due to the time-ordering prescription (4.1), the S-matrix satisfies the so-called causal factorization
property which in turn implies locality of the interacting fields.

This scheme might be transferred to the string-localized case as follows. The time-ordering
prescription of string-localized Wick products W (x,e) must take the strings Sx,e into account:
Equ. (4.1), with (xi,ei) instead of xi, must hold if all strings Sx1,e1 , . . . ,Sxk,ek are later than the strings
Sxk+1,ek+1 , . . . ,Sxn,en in some reference frame. Bogoliubov’s S-matrix then depends on test functions
g(x,e) living on R

4 ×H, and the multiple integral in Equ. (4.2) extends also over H×n. S(gLI) is
then the formal S-matrix for the interaction Hamiltonian HI(t)

.
=−

∫

x0=t d3x
∫

H dσ(e)LI(x,e)g(x,e)
in the interaction picture, where dσ(e) denotes the Lorentz invariant measure on H. The interact-
ing fields are defined as in Equ. (4.3), with f a test function on R

4 ×H. As in the point-like case,
the time-ordering prescription implies a causal factorization property of the S-matrix which in turn
implies string-locality of the interacting fields in the sense of Equ. (1.3). It is at the moment un-
clear to what extent the time-ordered products are fixed by the mentioned prescription, and which
normalization degrees of freedom one has as compared to the corresponding point-like case.

An indespensible requirement for the programme is that it admits the construction of local
(ie., compactly localized) observables. A possible mechanism achieving this is to imitate gauge
theories, with “gauge dependence” being replaced by “dependence on the string e”. Consider, for
example, the massless or massive vector boson Aµ(x,e). Since the exterior derivative is indepen-
dent of e, Aµ(x,e) and Aµ(x,e′) differ by the derivative of a field Φ(x,e,e′). (In constrast to the
gauge theory case, this field is in the algebra of the Aµ ’s, and needs no new degrees of freedom.)
Therefore, if we take the interaction Lagrangean LI(x,e) = : jµ(x)Aµ(x,e) :, where jµ is the con-
served current of a charged field, we have

LI(x,e′) = LI(x,e)+ i∂µW µ(x;e,e′). (4.4)

This implies that Bogoliubov’s S-matrix is independent of the string e at first order, in the adiabatic
limit. (Independence of e means that S(g⊗hLI), g⊗h ∈ D(R4 ×H), factorizes as

∫

H dσ(e)h(e)
times an operator S(g,LI) which is independent of h.) Independence at higher orders then am-
mounts to a (re-) normalization condition on the time-ordered products analogous to the “pertur-
bative gauge invariance” [24]. If this e-independence of the S-matrix in the adiabatic limit can be
implemented, then the interacting counterpart ϕI(x) of any field ϕ(x) which does not depend on e
also does not depend on e and is point-like localized. This holds in particular for the fields F µν

I (x),
where F = dA, and jµ

I (x). These fields will then generate an observable algebra with point-like
localization.

We conclude with some rather speculative remarks on possible applications of this construc-
tion.
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As indiated, this construction should be attempted to carry through for QED, and for mas-
sive vector bosons. A more speculative possible application is the perturbative construction of
quantum gravity along rather conservative lines. Such construction would start from a family of
string-localized free tensor potentials hµν(x,e) as described above, one for each background met-
ric within a certain class of space-times. Here, the string Sx,e might be defined as the semi-infinite
geodesic curve starting from x in the direction e ∈ TxM. Each hµν would describe the quantum fluc-
tuations around the given classical background. As interaction Lagrangean LI one would take the
corresponding part of the Einstein-Hilbert Lagrangean. The family of resulting interacting fields
for every background should be constructed in such a way that a change of background metric
ammounts to a symmetry of the theory, in the sense explained by Brunetti and Fredenhagen in [6].
As explained there, this would implement independence of the gravitational background.

One might also speculate that the proposed scheme allows for the perturbative construction
of non-Abelian gauge theory analogues, and that it might even admit (renormalizable) interactions
which are not admitted in the gauge theory setting. For example, why should there not be a string-
localized model with self-interacting vector bosons without a Higgs particle? (In the point-like
case, such model would either violate unitarity or renormalizability [15].) In view of the renewed
search for the Higgs particle, such model would be of great interest. Apart from possible new
models, there is an esthetic motivation for these constructions, namely: In the gauge theoretic
approach, the construction detours through a huge realm of unphysical quantities (ghosts and an
indefinite metric space), which one would like to avoid, following Ockham’s razor. Our approach,
on the other hand, works completely in Hilbert space and does not need ghosts (this is in accord
with the well-known fact that in the axial gauge the ghosts decouple).

If these constructions work, it would be interesting to discuss the following question. The work
of Scharf et al. [12] show that the principles of gauge invariance (of the observable quantities) and
renormalizability fix, to a great extent, the possible interactions for a given set of particle types. The
question is if the same holds in our approach, where gauge invariance is replaced by independence
of the string directions e. Since this indendence is equivalent with point-like localization, this
would ultimatively mean the following: The principles of locality and renormalizability fix the
possible interactions. This would be very satisfying, since these principle are, in contrast to the
gauge principle, intrinsic to quantum field theory.
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