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1. Introduction

The General Theory of Relativity (GR) constitutes one of the major scieatifitevements
of Science, and so far it has passed quite well in all experimental tessicaBg GR establishes
a system of ten nonlinear and coupled partial differential equations tivatigs the dynamics of
the gravitational field represented by the symmetric tegggr a,3 = 0,1,2,3. The nonlinear
nature of the field equations is the main obstacle to obtain exact solutions daltheduations un-
less, of course, perturbative approaches are assumed so thatitieres|become linear, or under
the assumption of idealized symmetries. Therefore, in order to study thenibgaf the gravita-
tional field in more general situations the use of numerical techniques sedmthi® only possible
strategy to circumvent the difficulty posed by the nonlinearities of the fieldtémns. Numerical
relativity has become a very fertile and at the same time challenging field @frofsas recently
covered by several interesting reviews[1], where the improvemepisaific numerical techniques
adapted to relativistic problems along with the growth of computational ressdigure as the
factors for the advance of numerical relativity. However, the completeratanding of impor-
tant problems in relativistic astrophysics such as non-spherical coldajpsaonlinear regimes of
emission of gravitational waves is still not complete.

A promising approach in treating numerically nonlinear problems is providedego-called
spectral methods[2, 3, 4]. The spectral methods adopt a distinct stibbegnpared with the finite
difference scheme. For instance, considering a funat{bsx) satisfying a given one dimensional
partial differential equation, it will be approximate as a series of theyftex) = SR, a(t) gk (t),
where the basis or trial functiong(x) are known analytical polynomials such as Fourier, Legen-
dre, Chebysheyv, etc. In general, by increasing the truncation drdeg(t,x) approaches of the
exact solution of the problem. There are distinct types of spectral me#modsg which we list the
Galerkin method[5], the collocation method and the Tau-method. These métiaslan attractive
feature which is to transform any partial differential equation into a finit@tserdinary differen-
tial equations, or simply a dynamical system whose dimension is dictated by tiwatian order
N. Another important robust feature is the high accuracy achieved with lhtsnmecation order, or
equivalently using a moderate or low computational resources. The catohiiod such features
can be understood as the low dimensional dynamical system approactyapplied in problems
of turbulence of fluids[6]. On the other hand, applications of this aggiraaspecific problems of
Cosmology[7] and Gravitation[2, 3, 8, 9, 10, 11] has been done tigcen

In this paper our objective is to apply the Galerkin method to the problem ofairitize-
nomena in gravitational collapse of a scalar field[12]. As a matter of faitigadirphenomena
in gravitational collapse has opened a new venue of investigation of theysjravitational field
regime, and has been investigated intensively until now. Choptuik origirtalliyesl the spherically
symmetric collapse of massless scalar field and found a series of intriguinteatures typical
of a system described in statistical physics under phase transition. igheabresults refer to the
collapse of initial data families of massless scalar field whose strength isctdrézad be some
parametep. Essentially, there exists a critical valpésuch that the solution of the field equations
are divided into three classes: (i) the subcritical solutions for wipich p*, and the collapsing
matter eventually disperses leaving behind flat spacetime; (ii) critical solutiathavep = p*
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and exhibits self-similar echoing in the neighborhood of a central singularity (iii) supercritical
solutions characterized lfy> p*, and the scalar field collapses to form a black hole. In particular
for marginally supercritical evolutions, the masses of the black holes okefplibwing scaling
law

Mg O |p—p*|", (1.1)

wherey =~ 0.37 is independent of the initial data. Several authors have recoverse finoperties
considering the collapse of distinct matter field and symmetries[13], but stidrare some open
questions such as the generality of critical phenomena, or the underlyysicp responsible for
the amazing similarity with the usual critical phenomena described in Statisticdldvims.

The paper is organized as follows. In Section 2 the basic equationshilega self gravitat-
ing spherically symmetric scalar field are exhibited. The linearized field eqsadi® presented in
Section 3 as a test for the Galekrin method, where the approximate andsekaains are com-
pared. Sections 4 and 5 are devoted to the application of the Galerkin mettiadftdl nonlinear
field equations; the dynamical system is obtained for several truncatiensoalong with the pre-
sentation of the numerical results. Finally, in Section 6 we conclude. Tgbrthe paper we
assume 8G=c=1.

2. The basic equations
We consider the general spherically symmetric line element written as

dszz—ezﬁ\?/duz—ZezﬁdudHrdez, (2.1)

whereB = B(u,r),V =V(u,r) anddQ? = d62 4 sin82d¢?; uis the usual retarded null coordinate.
The massless scalar fiefgl= ¢(u,r) is the only source of curvature, such that the relevant field
eguations are

r
Br =49 (2:2)
V, — & (2:3)
1
r(p7ur+(p7u = E(I’V(Qr)J (24)

The first two equations are constraint equations relating the metric fungdians) andV (u,r)
with the scalar field; the third is the Klein-Gordon equation. This equation altovesolve the
scalar field once the initial datg(up, r) specified at the initial null hypersurface= up.

As we are going to see, the boundary conditions are of fundamental impertar the im-
plementation of the Galerkin method. Accordingly, assuming the asymptoticalgpfatetimes, it
must be guaranteed that

—0, B—0,V —r, (2.5)

at the spatial infinity — co. In this case, the scalar field has the asymptotic expansion
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=AY XU (2.6)

where Q(u) is the scalar monopole an@(u) is the Newman-Penrose constant for the scalar
field[14]. The boundary conditions for the metric functions at the origin O are expressed as
follows

B~ 02, Ver40(rd), (2.7)

together with the assumption @fbeing finite at the origin. These are the Bondi conditions for the
regularity of the spacetime at the origin. Alsé®e=V /r = 1 atr = 0, corresponds to seleatas
the proper time at = 0 central world line.

Another important quantity to be introduced is the mass functign,r),

veh

2 o

v
1 — = gt
which is interpreted as the effective gravitational mass inside the 2-spheadiusr, and agrees
with the Bondi and ADM masses in the asymptotic flat spacetimes.
For the sake of convenience we follow Goméz and Winicour[15] and int@dhe auxiliary

field ®(u,r) defined as

d=ro. (2.9)
The boundary conditions are(u,0) = 0 and®(u, ) = Q(u).

3. The weak field limit: linear theory

We begin studying the linearized field equations or the evolution of weak fikldsis approx-
imation Egs. (2.2) and (2.3) yiel@ ~ 0 andV = r respectively, therefore reducing the problem
to the dynamics of the Klein-Gordon equation in Minkowski spacetime. In tefrtteecauxiliary
field @(u,r), the evolution equation has the form

2q37ur - q)7rr — 0, (31)

whose general exact solution that satisfies the boundary condition atigineis

Pexact= F(u+2r) —F(u), (3.2)

whereF is an arbitrary function. The above exact solution will be used to test tlexkKiamethod
as described below.

The cornerstone of the Galerkin method is the choice of a set of basisofuscor trial func-
tions, for which the the fiel@® is approximated in the following way

N

CD(U,I’) = Z ak(u)'-pk(r)v (3.3)

k=0
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whereag(u) are the unknown modal coefficients ahNdis the order of truncationyx(r), k =
0,1,..,N are known trial functions defined in the intervakr < 0. By an appropriate choice of
the trial functions the convergence of the decomposition (3.3) to the éxicguaranteed a¥ is
made arbitrarily large. As demanded by the Galerkin prescription the triatifums must satisfy
the boundary conditions imposed f@u, r), namely,i(0) = 0 andyi(e) being finite for anyk.

The next step is to substitute the decomposition (3.3) into the Klein-Gordoti@uyalding
what is known as theesidual equation

N N
Requ,r) = Zk; Ay (U) () —k; (U Yk (). (3.4)

Here dot and prime means derivative with respeatl &ndr, respectively. Next we project the
residual equation into each trial functign(r), n=0,1,..,N, which is in general defined as

(Resu, ), gn(r)) :/Om Regu,r) gn(r)w(r)dr. (3.5)

wherew(r) is the weight function associated to the selected basis the trial functionsrdiog
to the Galerkin method the wave equation (3.1) is reduced to a finite set ohordiifferential
equations for the modal coefficierdg(u) by imposing

(Requvr)vwrl(r» =0, (3.6)

foralln=0,1,..,N. In general these equations can be cast in the following form

aj(u>:gj<aoaala"aaN)7 J :0717"7N7 (37)

where.7|(ag, &y, ..,an) are linear functions of the modal coefficients.

The set of trial functionsli(r) must satisfy the boundary conditions imposed for the field
®(u,r). In this vein, the following combination of rational Chebyshev functionk[I&(r), was
chosen

Wi(r) = Thga(r) + T L(r). (3.8)

The rational Chebyshev functions are defined in the semi-infinite inferaadi the weight function
is given byw(r) = r=1/2/(1+r). Notice that by constructiogi(0) = 0 for anyk, and the scalar
charge is now given by

N
Qu) = k;] 2ay(u), (3.9)

providing the correct asymptotic form of the scalar field at the spatial infagtording to Eq.
(2.6).

We are now in conditions of confronting the exact solution for the auxiliatg fb(u,r) with
its evolution computed using the Galerkin method. The starting point is to selaaitthkprofile

1The rational Chebyshev functions are obtained using the transformatiofr —1)/(r + 1), where—1 < x < 1
and 0<r < o
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®(up,r) = Po(r) that determines the initial values for the modal coefficients through the decom-
position®g(r) = TN, a(Uo) Yk(r). Two examples of the one parameter set of initial data will be
considered[15]:

(i) Po(r) =Ar/(1+r), (i) Po(r) = A tanhr),

whereA is the initial scalar charge of the distribution. Once the initial conditions arefgmbthe
evolution of each modal coefficient is determined from the system (3.d),ana consequence,
the overall dynamics o®(u,r) through the decomposition (3.3) is known. In particular as a con-
sequence of the first initial data the modal coefficients are givea®) = 0,k=1,2,...,N and
ap(0) = A /2, producing an exact fitting. In Fig. 1(a) we illustrate the evolution of theahoo-
efficientsay, ay, ..,a5 for N = 5. Since the first initial data is taken into account their initial values
are all zero, moreover it can be noticed that at each instantap > .. > as, implying in the
convergence of the Galerkin decomposition. The same aspect is verifiad ificreased.

In order to provide a quantitative measure of the error between the>apgte solution cor-
responding to a given truncation ordéiand the exact solution we evaluate theerror, or the rms
error, defined as

N 2
Dexaci U, X) — Z a(U(x) | dx (3.10)
K=0

1
L, = /
0

Notice that a new radial coordinatewas introduced via — X =r/(1+r) to compactify the
spatial domain. By plotting the rms error at each instant for both initial data famile can
envisage that a satisfactory accuracy is achieved even if the truncatieni®relatively low. Also,

the effect of increasing the truncation ord¢demonstrates the rapid convergence of the Galerkin
decomposition (3.3). In Fig. 1(b) we have depicted the evolution of the emosidering the
second initial data family.

Figure 1: (a) Evolution of the modal coefficients, ay, ..., as (upper to lower curves) for the first initial data
family with A = 1. (b) Lo-error evaluated at each instant for distinct truncatialtecs, where it is clear the
convergence aN is increased. In these experiments we have considereddbedaitial data family.
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4. The nonlinear case

In order to apply the Galerkin method to the system formed by Egs. (2.2),a2d3(2.4) the
same procedure as outlined in the last Section will be performed. We asserdedbmposition
(3.3) for the auxiliar field®(u,r) as the fundamental piece to implement the Galerkin method,
and therefore the dynamical system for the modal coefficients. The metratidn 3(u,r) can
determined after integrating Eq. (2.2) as

r N n?
B(u,r) = 411/0 r !kzo a(u) (Wkr(f)> ] dr. (4.1)

This integral can be evaluated exactly for any truncation okegsulting in an expression which
is quadratic with respect to the modal coefficients. Next, the fun&tienr) is obtained from (2.3)
through

V(u,r) = /Or ePlungr. (4.2)

To integrate this expression in a closed form an additional approximatiosusasl. The integrand
may be expanded as €@B) = 1+ 2B +2B%+.. ~ 1+ zﬂzl(ZB)k/k!. For instance, the linear
approximation studied previously is equivalent to @Xp~: 1, which impliesV (u,r) ~r. The next
approximation, ex{2f3) ~ 1+ 23, will be namedquasilinear since despite being linear B is
guadratic in the modal coefficients. In obtaining the dynamical system fantital coefficients
we shall take into account the effect of increasing the truncation d&tdes well asl. Using this
procedure it will be instructive to exhibit the expressionsfiéu,r) andV (u,r) near the origin, or

B(u,r) = <;a(2,—7a0a1+...> 4., V(ur)=r+ <;a(2,—]:'aoa1+...> 4.  (4.3)

which is in agreement with the boundary conditions (2.7).

Once a suitable expression fgfu,r) is established, we substitute it into the Klein-Gordon
equation (2.4) for the auxiliar variabl® along with the decomposition (3.3). In this case, we
obtain the following residual equation for the nonlinear problem

=l
N
= 1<
~——
X

N \Vj N
Resur) = 5 AU a0+ (1-7 ) 5 A -
N

kzo [ () (r ¢ (r) — (). (4.4)
Note that the first term on the rhs of the residual equation describes tlae Viae equation (cf.
Eq. (3.4)), while the remaining terms correspond to the nonlinearities. Tiwtégsof the Galerkin
method consists in to impose that the projection of the residual equation intdasishfunction
Yn(r),n=0,1,2,..,N vanishes. Thesd + 1 resulting relations can be solved for eaghesulting
in a dynamical system that has the form
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an(u):ﬁnNL(a&alv“vaN)v n:0717"7N7 (45)

where.Z N are nonlinear functions of the modal coefficients. Therefore, EqR)-(2.4) describ-

ing the evolution of a scalar field in spherically symmetric spacetimes are ktlueenonlinear

(N + 1)—dimensional dynamical system in the phase space of the modal coeffigi¢nts To
integrate the system (4.5) we need to supply the initial condiég(®) evaluated from the initial
datado(r) = TR, a(0)yk(r). In what follows we have obtained dynamical systems for the quasi-
linear approach, i. eJ = 1 and withN varying from 6 to 12; also considering= 2, N was made

to vary from 3to 7.

a2

Q(u)

-0 a4

—0.2

-0.3

04 1 2 3 0 1 2 3 2 5 6

Figure 2: Evolution of the modal coefficient(u),asz(u) andas(u) for the second initial data family for
which A = 5.6 showing that asymptotically all modal coefficients vaniShe behavior of the scalar charge
Q(u) also indicates that the asymptotic configuration is the Mmki spacetime.

The numerical experiments were performed using the initial data families Qiwé€.10). In
both cases the basic features of the dynamics depend on the paramdtieh is associated to the
initial strength of the scalar field, and not to a particular forndefr). For the sake of simplicity in
most of the numerical experiments the initial conditions for the modal coeffgcieitl correspond
to the first initial data family. Also, our numerical experiments have indicatedhlesstructure of
all solutions in phase space seems to be independent of particular chioi¢esdd > 1.

The dynamics in the phase space of modal coefficients is described assfoBasically we
have found two main classes of solutions that form basins of attraction in phase spackhe first
class corresponds to sufficiently small values\dbr which the origin of phase space is a stable
critical point, or simply an attractor. Hence, asymptoticallju) — 0 implying that exp23) — 1,

V — r and the scalar field approach to zero; or equivalently the Minkowskiiealis attained.
According to previous studies on gravitational collapse of scalar fields,stt of solutions is
known assubcritical In Fig. 2 we have illustrated such a class of solution depicting the evolution of
some modal coefficients and the scalar ch&@e = lim_... 5 ax(u) i (r) belonging to a Galerkin
decomposition ofb(u,r) with N = 9 and corresponding to the second initial data family. Notice
that although some modal coefficients exhibit an initial stage of growth, thegteally tend to
zero and, consequently the same outcome is observed for the scatgr Qhay.
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Figure 3: Evolution ofag(u) (left panel) and the scalar fietg{u,r = 0) (right panel). We have choséh=9
andA = 7.3 for the first initial data family.

On the other hand, for sufficiently large values\ahe generated orbit starts to explore regions
of phase space not close to the origin, and asymptotically tends to the infgjiiby i@ phase space
characterized by} ;a2 = . This can be understood as an indication that the scalar field has
enough strength to hold the collapse until the formation of a black hole, siaeceritually happens
that at some point for whichrg/r = 1—Ve~2# /r — 1 which signalizes the formation of an apparent
horizon, and therefore a black hole. These solutions are known ascstiigal and the black hole
formation constitutes the second basin of attraction present in the phase $pha behavior of the
first modal coefficientg(u) and the scalar fieldp(u,r) = S a(u)yx(r)/r evaluated at the origin
are shown in Fig. 3. Note the oscillatory regime before the orbit escapes tofthity region in
phase space suggesting the presence of a periodic structure internhedeten both basins of
attraction.

Probably the most interesting aspect of the dynamics provided by the (Bateekhod is the
existence of a boundary that separates both subcritical and supataitisses of solution. This
boundary corresponds to a periodic orbit, dimait cycle, in the modal phase space and obtained
by fine tuning the parametdrthat, as we have seen, controls the initial strength of the scalar field.
The more precisd is adjusted to approach the actual critical valethe longer is the time in
which the modal coefficients oscillate periodically. Eventually, one of the tave described
outcomes will be reached since the limit cycle is unstable. It is also worth mergidmai the
same limit cycle is attained if the second initial data family is taken into account, stiggé¢hat
this structure is unique in phase space. In Fig. 4(b) the evolution the muoeffiteentas(u) versus
time corresponding to an orbit for which= 6.7675813202945 is presented. Fig. 4(b) shows the
approach of this orbit to the limit cycle by projecting it a 3-dimensional suétyaof phase space
spanned byds, a7, a4). The effect of all modal coefficients acting together during the pericalic
be seen by evolving the scalar field evaluated at the orig(in,0) = lim,_o ®(u,r)/r and shown
in Fig. (c). In this case the period4si ~ 0.05.

A strong numerical indication that the limit cycle is not an artefact of the m®oétruncation
is shown in Figs. 5, where (a) the limit cycle is projected in the plgme 1,an) for several
values ofN and (b) the corresponding valuesXfis plotted in function of the truncation ordhi.
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As a matter of fact, these results suggest that the Galerkin method conyeoy&ling a reliable
approach to the exact limit cycle as far as the truncation order is increased

5. Is the boundary fractal?

Based on the above results the phase space contains two basins of aftnaatiely, the
subcritical and the supercritical basins for which the solutions tendecésgly, to the Minkowski
spacetime and to form a black hole. The boundary between both basinsdstite solution
represented by a limit cycle in phase space, and an interesting issue veotlld determination
if the basin boundary is fractal or not. In order to accomplish such a taskhave applied a box
counting method[17] with the uncertainty code defined by black hole/dismecerresponding
to the supercritical and subcritical basins, respectively. Briefly, the adetionsists in first, to
choose a suitable sét of initial conditions close to the basin boundary. Second, let us consider a
given initial conditionP(ax(0)) belonging toZ, and perturb it by a very small radigsproducing
two other initial conditions schematically denoted By(ax(0) + €). If the outcomes of and
P. are distinct, therP is considered an uncertain initial condition @f on the other hand if the
outcomes are the sanfeis a certain initial condition. Third, we plot the fractidnof uncertain
initial conditions versus the radius for which the relationf 0 €9 is satisfied, witha being the
uncertainty exponent. It can be shown thatrit= 1, then the basin boundary is smooth or not
fractal; on the other hand for @ a < 1, the fractal dimensiod of the basin boundary is given
by d = D — a, whereD is the dimension of the phase space. In Fig. 6 the log-log pldt of is
depicted for the casd = 9 andJ = 1, where we have considerednd for each small radius a set
of 15,000 initial conditions was taken into account. The best fit of the liregaon corresponds to
o =~ 0.86 indicating that the boundary is fractal.

6. Further perspectives

In this paper we have studied the spherical collapse of massless sddlasiig the Galerkin
method. The set of nonlinear partial differential equations (2.2), (218)(2.4) was transformed
into a finite set of ordinary differential equations or simply a dynamical sysWe have discussed
briefly the issue of accuracy by considering the linear problem, whoserkexact solution pro-
vided the necessary test for the method. As an attractive feature of thedrettelatively low
truncation order of the Galerkin decomposition is able to attain a reasonaileaag

The next step consisted in considering the nonlinear problem descuylibd Einstein-Klein-
Gordon equations. The resulting dynamical system dictates, no matter is tioatiom order,
the presence of three well defined classes of solutions determined byitthkesimength of the
scalar field. In fact this is in agreement with the previous analytical and ncethevorks. Using
a dynamical system terminology the phase space is constituted by two basitisaofion: the
subcritical basin for which the end configuration is the Minkowski spacetme the supercritical
basin that indicated the formation of a black hole. The boundary betwesa the basins of
attraction is the critical solution represented by a limit cycle in phase space.

Finally, as a consequence of this overall scenario the natural que$twimether or not the
boundary between both basins of attraction is fractal deserves mooeigindy investigation. As

10
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we have shown there is a strong indication that the boundary is fractatefdhe, an interesting
investigation would be naturally to increase the truncation order and imprevadtiitional ap-
proximation (see for instance [18]), and to seek a relation between tttalfdimension and the
critical exponent that appears in the scaling law of black hole formatiorfXcf)).
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Figure 4: (a) Behavior ofag(u) for A = A... (b) Orbit approaching the limit cycle projected in the samin
fold (as,as,a7) of phase space. (c) The scalar field at the orign, 0) for the (almost) critical solution.
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Figure 5: Projection of the limit cycle in the plare_1,an for the several truncation orders. The approach
of the exact limit cycle is accomplished by increasing thua¢ation order. In the graph at right the critical
values ofA are plotted versus the truncation order indicating the emgence of the results.
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Figure 6: Log-log plot of the scaling law = fpe® for N =9 andJ = 1.
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