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1. Introduction

The local conformal symmetry of matter fields in curved space and prapeityg always
attracted a great interest. It is not our aim to list the main publications on thecsutor the
main lines of research related to it. So, let us start by mentioning a receewvrgy] where one
can find some relevant references to start. In our article we shall etvate on those aspects
of the conformal theory in four dimensions, which are relevant for th@iegtions, especially to
cosmology. We shall pay special attention to the quantum theory and dismfesmal anomaly
and anomaly-induced effective action of gravity. Many other issues wiktth aside, some of them
may be eventually considered in the extended version of this review article.

In order to understand the reason to introduce a local conformal symneting start from a
very simple example discussed in [2]. Consider a massive scalar fieldvacdcapace-time. The
minimal action has the form

s=3 [ V=8(o" D06 + P2 4 ERY?) LD

whereé = 0. However, the minimal theory is inconsistent at quantum level if we intreduter-
actions with other fields or scalar self-interaction. In principle, one hagép khe non-minimal
parametet arbitrary to provide the multiplicative renormalizability of the theory. At the same
time the valueg = 1/6 is very special, for in the massless case- O it corresponds to the local
conformal symmetry

Ouv — g;w = gweza(X) o — ¢ = ¢efa(x) ) (1.2)

Now, let us consider the massless limit of the theory from another point wf \Basing on fun-
damental principles of quantum theory, one is expecting to meet cormspos between the field
and particle description of the matter. It is well known that, for the classandigtes, the massless
limit corresponds to the vanishing trace of the energy-momentum tensor

Tﬁ:—\/zjggw(gi:o. (1.3)
However, this identity can be achieved, in the field description (1.1), oml§heoconformal value
& = 1/6 of the non-minimal parameter (of course, the relation (1.3) holds only anaiss shell for
the scalar field or for the corresponding particles). Therefore, antjormal theory can provide
a correct particle-field correspondence in the massless limit. One caresdieetitonformal value
¢ =1/6 does provide certain advantage at this level. The next question is witethpossible
to maintain the conformal value of and, in general, local conformal symmetry, at the quantum
level, when the loop corrections are taken into account. This issue is the ulgéictsof the present
review.

The paper is organized as follows. In the next section we shall list kmonformal theories
in n = 4 and after that consider the quantum theory, where the local confamaiance always
breaks down. Section 3 is devoted to the brief description of the anomalgliséless the main dif-
ference between global and local conformal symmetries at quantum liesgiction 4 we present,
in more details than usual, the derivation of the anomaly-induced effeatiienaof vacuum. In
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section 5 we come back to anomaly and describe its ambiguities in relation to tbigveféection.
Section 6 contains a brief description of the situation in conformal quantaritgr Finally, in
section 7 we draw our conclusions.

2. Particular examples of conformal theories

Consider a general metric-scalar theory [3]

s— [ d'xv=g {A(9) (09 +B(@R+C(9)} . 1)

and perform the local conformal transformationggf, plus an arbitrary scalar reparametrizations
(thus, generalizing the eq. (1.2)). In order to make things simpler, wefsiarthe action without
kinetic term for the scalar field [4] and transform it to (2.1)

SZ/H&V@{W¢+v«m}, O = €@, O =d(g). 2.2)
Simple calculation leads to the relation
A(@) = 667190 [dagy + Dijoy,  B(g) = D(9)e® (2.3)

where B; = dB/dg etc. One can see that the absence of the kinetic term in the action (2.2)does n
mean that this field is not dynamical. The dynamics of the scalar field is due ta¢hadtion with
the scalar mode of the metric. For instance, the free minimal scalar field plesa&elativity
(GR) is the particular case of the action (2.1) and is conformally equivelggt2).

The conformal symmetry of the action corresponds to pured@R,const Then

dB

3B _dB
= do’

A=_—  C=AB? where B=B(¢), C=C(¢), B;

282’ (2.4)

The well-known particular case of the theory satisfying the constrainty i€(4.1) with m= 0,
¢ =1/6 and with an additional self-interaction term. One can rewrite it in the form

S— % /d4x\/fg ( _(pAz(erlich"’), where A, = O-R/6. (2.5)

All models which satisfy (2.4) are linked by conformal transformation of thérimelus scalar
reparametrization [3].
Other conventional examples of conformal fields include massless spidaeator

i _ _
Sye = 5 [ A%V { Y Oup — Cul Yy} 26)
&:_i/&xgaﬁW, 2.7)
with the transformation rules

O — Gy =0 €, A=A =Ay, Y-y =ype32 g g =yge3? (28)
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Let us notice that the difference between conformal weight and dimefmidhe vector field is
due to the vector field definition in curved space-ttme

A=A, &€nw=0gn, &g =n. (2.9)

The importance of this observation is that it shows a direct relation betweahdnd global con-
formal symmetries. The generalization to the non-Abelian case is straighatirw

The interactions between usual vectors, scalars and fermions agsalarsformal if the corre-
sponding coupling constants have zero mass dimension. Hence gakgeayandg® interaction
terms are conformal whilep® is not.

The last conventional example is the conformal (Weyl) gravity, which ireduchly metric
field

1
(n—1)(n-2)
wheren is the space-time dimension. The main difference between the Weyl gravityl (2otig)
and GR is that the former does not produce the correct Newton limit. Thiscisurée natural be-
cause the coupling constant in this theory is dimensionless and therefadeliéional mechanism
is needed in order to produce a dimensional parameter such as NewstantorThe most nat-
ural option is to consider the Weyl gravity and the conformal scalar fieletkag. In this case the
quantum effects lead to the complicated effective potential for the scdldr Tibis may produce
a dimensional transmutation and eventually lead to induced GR with induced wdlbeth New-
ton and cosmological constants. A general review on the induced gragtpach can be found
in [5]. There are several possible mechanism of how this method cangliecfo the initially
conformal theory [6, 7, 8]. We will not discuss this aspect of the conéd theory in what follows,
because this review is of a short kind. Instead, we shall concentrateramre basic phenomenon
(conformal anomaly) in the next section.

The main difference between the conformal scalar, fermion and ve®tes gaiesented above
and the last example of Weyl gravity is that it is a fourth derivative thedmfeathe matter fields
cases are all described by lower derivative theories. Howeverameanstruct also examples of
conformal higher derivative scalars and fermions (and perhagergedespite this has not been
done yet) which possess the local conformal invariance.

Let us start with scalars and consider two alternative different modéls.fdurth derivative
scalar of the first kind has an action [9, 10]

S = [d%/gen, (2.11)
1
3

The conformal transformation law for this scalargs— ¢’. The importance of the model (2.11) is
based on its use for integrating conformal anomaly. We shall discuss thismpthe next section.

The fourth derivative scalar of the second kind can be presenteid, tgparametrization of
scalar x = x(¢), inthe form [11]

/d4x\ﬁ—g {(972020)* ~apnop—bo* +cC?+dE}, (2.13)

1} am grateful to Joan Sola, who called my attention to this point.

R?, (2.10)

Sw = /d4X gC2(4)7 Cz(n) = R;zlvaB - anR‘ZN—i_

2
where  Aq = D2+2R“"DHDV—§RD+ Ry OM. (2.12)
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where a,b,c,d are some constants. This model is a direct higher derivative generalizdtibe
usual conformal scalar theory (2.5) and the transformation laws for nagtdscalar are of course
identical. The complete form of the parametrization-invariant higher demvaction, similar to
(2.1) with the constraints (2.3) satisfied, has been constructed in [12¢. c@m notice that the
above two theories represent very particular cases of the genersh fterivative metric-scalar
model formulated in [13]. This general model involves 12 arbitrary fumstiof the scalar (in fact
11, because one may be always included into scalar parametrization) pathilenodels presented
above have no such functions.

Let us remark that both fourth derivative scalar models (2.11) and)(2alBbe generalized to
an arbitrary dimensiom # 2. For the case of (2.11) this task has been completed in [12] and for
the case of (2.13) the procedure is obvious due to the known prescriptitiie usual conformal
scalar (2.5).

The next example is a third derivative spinor field. In this case, agaicptifermal invariance
is provided by introducing the higher derivatives, changing the tramsftion law for the field and
adjusting the parameters of the higher order differential operator gl4The action of the model
is

i _ _
S =5 [ d%G{ BT - 2By Y} (2.14)
where the self-adjoint third order operator has the form
2,=0,04+R DV—ERD —i(D R) (2.15)
H— =l UV 12 M 12 MY - :

The transformation law for the spinap is
Y-y =ye??  gog=ge?  og=0(x.

The natural question is whether is it possible to construct more examplegfoimal fields?
Obviously, those can be vectors, scalars or spinors with greater nafnibenivatives (see, e.g. [16,
17] for the works in this direction.). Furthermore it can be spi2-8eld with higher derivatives,
etc. In all cases the construction of symmetric actions can be performedan described in [15]
for the theory (2.14).

3. Conformal anomaly in the semiclassical theory

In this section we shall consider the anomalous violation of the local confaymanetry in
the case of quantum matter on classical curved background. This tkedsp known as semiclas-
sical gravity, because it shares many features with quantum theonawfygrThe semiclassical
approach is very important independent whether we consider it osrast approximation to quan-
tum gravity. The reason is that the quantum fields on curved backgbefindtely exist in nature
while the reality of quantum gravity is under question. It might occur, aftettaat the gravity
should not be quantized and, instead, it is an interaction induced byseperjstring theory in the
low-energy limit.

The first step is to consistently formulate the action on classical curvedyimaokd. The
standard criteria for the action of external metric field are (see, e.g. H)8bcality of the vacuum
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action, b) renormalizability and c) what one can call simplicity, e.g. we assume there are no
[m‘l] parameters or, in other words, we include the minimal set of terms which saliafd b)
conditions.

The action of vacuum which satisfies these necessary conditions hasrthe f

Svac = SEH + S‘iDa (3-1)

where Sy is the Einstein-Hilbert action with cosmological term and

Sip = /d“ng {@1C? + ayE + ag0R+ a4R2} . (3.2)
Here and below we use the following notations
E=R, ;4R +R. (3.3)

is the Gauss-Bonnet term (Euler densitynia= 4). We avoid using the lettelG to denote this
guantity because it may be confused with the Newton constant.

In the case of conformal theory at the one-loop level it is sufficient tsicker the simplified
vacuum action

Let us emphasize that it is nohpossibleto add the Einstein-Hilbert action, cosmological con-
stant or the [\/—gR® term here. The statement is that these termsnataeally necessarspt
the one-loop level. In fact, beyond the one-loop approximation tRé—gR? terms becomes also
necessary, this means the conformal theory is not consistent beyeriddam In case of broken
symmetry and generated masses of the matter fields (e.g. through the Coleimduend/ mecha-
nism), other mentioned terms may also become necessary.

Now we are in a position to consider the conformal anomaly. We assume thg thelodes
the metricgy, as a background field and also quantized matter f@ldé/e denote, furthermore,
ke the conformal weight of the field.

The Noether identity for the local conformal symmetry

o o
[_Zguvég“v‘F kq;CDéq)] SQuv, P) =0 (3.5)
producesT/}' = 0 on shell (1.3).
At quantum levelS,ac(guv) has to be replaced by the effective action of vacutyg(guy ).
For the free fields only 1-loop order is relevant and (see [18] for ttreduction and further refer-

ences)
Caiy = % / d*%/g{BiC?+ B:E + BR} , (3.6)

where ¢ is the regularization parameter. For instance, itsis= u"~4/(n—4) in dimensional
regularization. In the case of global conformal symmetry, the renormalizgtioup method or
{-regularization tell us [19, 20, 18]

<T} >= {B.C*+ BE +d0OR} , (3.7)
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wherea’ = ;. However, in the case of local conformal invariance there is an ambiguityein
parametera’ [21, 22, 23].

One can derive the anomaly in many different ways, which mainly differ byegularization
choice [24, 25] (see, e.g. [21] for the list of results in some regularizgtioRecently, we have
analyzed the source of the ambiguity in full details [23, 26] and, in partichiéase shown that the
ambiguity is always related to the local terms in the anomaly-induced effediimnaf vacuum
(see the next section) which have different form from the terms in theickgconformal invariant)
action. It turns out that the dimensional regularization does not enabl¢oorontrol these local
terms and therefore the corresponding terms in the anomaly (which argsai@tal derivatives)
remain arbitrary. On the other hand, in other regularizations such asgpditiiang one, there is
no apparent freedom and it seems that the ambiguity is not there. The saoeifsone derives
the local term in the anomaly via the heat-kernel solution for the effectitierdd28] or makes a
massless limit in the effective action of massive fields [23]. Finally, in thertavaPauli-Villars
regularization one can observe the same ambiguity (in a somehow reduegdafal thus confirm
the validity of the situation discovered in the dimensional regularization apprdse consider the
mentioned ambiguity in some details in section 5.

Let us consider, as an example, the derivation of anomaly through theerpistit method of
dimensional regularization [24]. The theory of matter includes the follona@bmassless fields:
No scalars (spin-0)\; /> spinors (Dirac, spin-1/2) and; Abelian vectors (spin-1). AlN's indicate
a number of fields (not multiplets) in curved space-time, taking conformalorefor scalars. We
are interested in the vacuum effects and therefore, at one-loop oedferestrict consideration by
the free fields case. Using the well-known results (see, e.g. [21, EYrrive at the expression
for divergences (3.6) with

PR LT L
1T T (am2\120 20 T 10

No | Ny N1>’

P = (4711)2 <3[\|?Oo+ 12232 3118l\(|)1)’
=~ (130" 30~ 20) @9
The renormalized one-loop effective action has the form
MR=S+T +AS, (3.9)

where T = Igiy+ Cfin is the naive quantum correction to the classical actionZ®é a coun-
terterm. The classical action iS = Syatter+ Svac, Where S,ac has the form (3.1). Indeed, only
conformal invariant part of the vacuum action must be used in (3.9).

ASin (3.9) is an infinite local counterterm which is called to cancel the divergart of I
(3.8). IndeedASis the only source of the noninvariance of the effective action, sinaes rfaut
divergent) contributions of quantum matter fields are conformal. The doosaace is therefore

2| et us notice that the solution for the anomaly-induced effective actiesemted in the next section agrees with
the one obtained from the heat-lernel method, despite this is not easy[Rviee
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equal to

2 olR 2 0AS
. v—9 H Oduv |p_q v—9 H O0uv |p_qg
The calculation of this expression can be done, in a most simple way, asgoll@tvus change the
parametrization of the metric to

gIJV — g_uv . e207 (311)
wheregy,y is the fiducial metric with fixed determinant. There is a useful relation

2, OAgwl 1 40 SAGw e

J— g —_—
v—9 H O duv v—g oo
At that point we need a transformation laws for the structures present&d6n They can be
found, for instance, in [29], so we will not reproduce these formu&s hit is sufficient to show a
single relation between the expression depending on the original ngtyicand the transformed
one

(3.12)

Ouv—0uv,0—0

Gy = Qv €7, /\/—g’C’z(n) = /\/—g’e(”*“)"cz(n). (3.13)

All other expressions of our interest have the same faetor’? and, on the top of that, some
extra terms with derivatives af(x). For all terms which are not total derivatives, these terms are
irrelevant due to the limit procedure in eq. (3.12).

In the simplest case of global conformal factoe= A = constwe immediately arrive at the ex-
pression (3.7) witl®’ = 35. However in the local case = g (x) the situation is more complicated.
It is worth mentioning that the left hand side in (3.12) gives zero when apithe integral of the
total derivative term [ ,/—gCOR. We shall come back to discuss this term and the corresponding
ambiguity in section 5.

4. Anomaly-induced action of vacuum

One can use conformal anomaly to construct the equation for the finiteofp#re 1-loop
correction to the effective action (we change notations here for theofaamvenience)

V=91 égu  (4m)2
The solution of this equation is straightforward [10] (see also generalizatar the theory with
torsion [30] and with a scalar field [31]). The simplest possibility is to paraeeetnetric as in

(3.13), separating the conformal factor(x) and rewrite the eq. (4.1) using (3.12). The solution
for the effective action is

(aC?+bE+cOR) . (4.1)

M= S[0u] + (471T)2 /d“x\/—g{aoC? +bo(E — %ﬁﬁ) 1+ 2baAgo—

1 2 .=
— o5 (c+ SDR-6(00)*— (T0))} (4.2)
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where&:[guv] = &[0uv] is an unknown functional of the metric, which serves as an integration
constant for the eq. (4.1).

The solution (4.2) has the merit of being simple, but an important disadvaisttu it is not
covariant or, in other words, it is not expressed in terms of original mgfic In order to obtain
the non-local covariant solution and after represent it in the local fsimg auxiliary fields, we
shall follow [10, 32].

First one has to establish the following relations [10] (see also [29] fiaildg

\/jgcz = ﬁ&7 @54 = \/ng47 (43)
V—o(E— ng) = /—g(E— §E§+ 47,0) (4.4)

and also introduce the Green function for the operator (2.13) G(x,y) = &(x,y). Using these
formulas and (3.12) we find, for ay= A(Quyv,0), the relation

Xv/—g(x) A (E—%DR) = 4/=gMA=4/—gM4A. (4.5)

Ouv=0uv

In particular, we obtain

1 2
Woa Gy (E-5R) | =
— [ /=80 84(x) Glx.y) aC(x) = a /=g C2(y). (4.6)

Hence the term in the effective action, which produtes: —aC?, is
/d“ xv/—g /d4y\/ ¥)C2(%) G(x,y) (E :%DR) @.7)
Similarly one can check that the variation (3.12) produ@gs- b(E — %DR) if

:g/d“x\/T(x)/d“y\/T(y)(E—ng)xG(va)(E_ng)y (4.8)

Finally, the third constituent of the induced action is the local expression

S L / xy/—g(0) R(x 4.9)

12( 471

The covariant solution of eq. (4.1) is a sum of (4.7),(4.8) and (4.9).

Our next task is to rewrite the nonlocal expressions obtained abovessimgauxiliary scalar
fields. Let us notice that there are two distinct ways of doing that, leadingetsligihtly different
results. The first option is to introduce the auxiliary fields as a quantumtsbmach that, after
Gaussian integration over them, we should come back to the non-locassxpreescribed above.
Another possibility® is to consider auxiliary fields as purely classical objects. After using the

3Author is grateful to Roberto Balbinot for discussion concerning thistpoin
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classical equations of motion for these fields and replacing them back t@tibe ave come to
the original non-local expressions. The difference between the twmagphes is that, in the first
case, one has to account for the contributions of the auxiliary fields totimaaly. As a result, the
coefficientsa, b, cin (4.1) get modified [10]. In this article we will not account for this modificatio
and follow the second approach.

As a first step the remaining terms can be rewritten in the symmetric form

o = [ /=909 [ d'yy/~G(E - SORRGY) | 367 g(E- S0R)
y
= 2 [ dxty /g0 [(E—me—zcz] Gixy) (- 50R)- ‘;‘c]y
-, / d*xdy+/g(y <CZ>XG(x7y) (M)CZ) (4.10)

The last two terms are appropriate objects for rewriting them using the ayik#ds. In this way
we arrive at the following final expression for the anomaly generafedtefe action of gravity.

b
= Sl g g [ A%V I0R+ [ a0 {5 60 — 5 ey
vb 2 a
v | E-20R - 5/5C +7 } (4.11)

Some remarks are in order.

1) The local covariant form (4.11) is dynamically equivalent to the naaleovariant form.
The complete definition of the Cauchy problem in the theory with the non-latairarequires
defining the boundary conditions for the Green functidd&, y), which shows up independently
in the two terms (4.7) and (4.8). The same can be achieved, in the localndrgionposing the
boundary conditions on the two auxiliary fieldsand .

2) The kinetic term for the auxiliary field is positive while foro it was negative. Foy the
kinetic term has negative sign. The wrong sign does not lead to problemddeeause both fields
are auxiliary and do not propagate independently.

3) We introduced the new structur_ﬁCXZG(x,y)Cﬁ into the action, despite it was not directly
produced by anomaly. This term is indeed conformal invariant and threréé emergence may be
viewed as a simple redefinition of the conformal invariant functicfd,v]. On the other hand,
writing the non-conformal terms in the symmetric form (4.10), we have modifiedatr point
function in a very essential way. Therefore, introducing the mentionatbomal term we have
just restored the basic structure of the terms generated by anomaly. Ferathis, the emergence
of the second auxiliary scalar [32] is not an artificial procedure huiasents a necessary element
of writing the induced action in a local fofin

4) The second scalar also proved useful for applications. In pantjitéavacuum states of the
black hole (Boulware, Hartle-Hawking and Unruh) can be classifieautin the choice of initial
conditions for the two auxiliary fields [34]. Let us stress that this can eoadcomplished by

4The effective action (reffinaction) has been introduced in the pagér (Rualitatively similar manner of introduc-
ing second scalar has been suggested later on in [33].

10
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using only one fieldp. Therefore the correspondence with other approaches to Hawldradica
indicates that our considerations about the correctness of introdu@mggttond auxiliary scalar
are correct.

5) Another important application of the anomaly-induced action is the modeharhaly-
induced inflation [2, 31], or Modified Starobinsky Model. In this case thieaviour of conformal
factor of the metric is not affected by the presence of the second auxilcatgr. However, for
investigating the evolution of gravitational waves specifying the initial databfiih scalars is
essential and the situation is close to the one in the black hole case.

5. Ambiguity of local/surface anomalous terms

The ambiguity of the local anomalous terrfi,/—gR in the effective action and the corre-
sponding term IR in the anomaly can be observed either in dimensional or in covariant Pauli-
Villars regularization [23].

Let us start from the dimensional regularization and come back to the re(&ibd). As
we have already mentioned in section 3, the countertgrii—gCIR does not contribute to the
anomaly of local conformal symmetry. Hence the anomaly comes from fthé—gC?(d)-type
counterterm. However, the requirements of finiteness of renormalizedtieé# and the locality
leave us the freedom in choosing the parameételf we take d = n+y- [n—4], where y is an
arbitrary parameter, we meet ~ y and therefore the coefficierd is arbitrary. It is easy to see
that this arbitrariness is equivalent to addifigR?-term to the classical action.

The same result can be achieved in the covariant Pauli-Villars regulanzatfere one has
to introduce a set of massive “regulator” fields. For example, in the desenassless conformal
scalar ¢ we have to start from the action

N
Sreg:.Z)/d4xx/§{(5¢i)2+(fiR+mz)¢i2}- (5.1)

The physical scalar fiel¢ = ¢o is conformalé = 1/6, my = 0 and bosonicy = 1, while PV
regulatorsp; are massiven, = ;M and can be bosoni = 1 or fermionics = —2.

The UV limit M — o produces the vacuum Eff. Action. The calculation is based on our result
for the EA of the massive scalar. We assume that the Pauli-Villars regutatyrdhave conformal
& = 1/6 or non-conformal couplings; # 1/6.

The regularized effective action is

_ N
ey = im 3 sF1Y (m. &) (5.2)
i=
where A is an auxiliary momentum cut-off. It is important that we possess the expligieezion

of the 0(R?) effective action of massive fields derived in [35]. The conformaiaaly is [23]

T:(4711)2 %)E—%OCZJF(Q —1—;0>DR}, 5:i§s<fi—2)2|nuﬁ7 (5.3)

Exactly as in the dimensional regularization case, the ambiguity is equivaléme toeedom of
adding the finite/ ,/—gR2 term and can be fixed only by imposing the renormalization condition

11
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for this term. The qualitative result is that the definition of the local finite pathe quantum

corrections is ambiguous, even if the corresponding term is not priesttd classical action and
is not renormalized. In order to fix the ambiguity one has to use renormalizaimatition and for

that it is necessary to introduce the non-conformal local term into theicdhsgtion. As a result
the theory is not conformal anymore. This consideration can be gersetditiz the case of more
general (non purely metric) backgrounds [26], where the situation is sialilait somehow more
complicated.

6. Weyl quantum gravity

Finally, let us consider the problem of anomalous violation of local confbaymmetry in
the conformal Weyl quantum gravity. The action of the theory has the form

1 1
4 2
= —C*——E+10R A
Sw /dx\@{z)\c P +7T }, (6.1)
The action (6.1) is conformal invariant in a sense it satisfies the confdtoether identity

2 oSy

\/7_—9 Guv m =0 (6.2)

The conformal theory (6.1) may be an interesting model of quantum graetyd7, 18], while
General Relativity may be induced at quantum level if the Weyl gravity ipleslto a conformal
scalar [6, 7, 8].

The theory (6.1) is the patrticular case of the general higher derivagtigatum gravity which
is know to be renormalizable [38, 39]. At the same time the properties of moafdheory may
be quite different from the general one. One can formulate two main questimncerning the
properties of the conformal theory at quantum level.

1) Whether the one-loop and/or higher loop infinite renormalization of thigyheconformal
invariant. In other words, whether the conformal theory is multiplicativelprealizable.

2) Whether the anomalous violation of local conformal symmetry occurs inrfte fiart of
the effective action. If so, we need to know whether the corresporatimgjguities, similar to the
ones discussed in the previous section, take place here.

The derivation of the one-loop divergences in the conformal theosyblean performed in
[36, 40, 41]. The result obtained in [41] with the method including rigid autantntrol of the
calculations fits with the previous ones and has the form

-t fasmo{ e 1902} 6
In n= 4, the dependence on the Gauss-Bonnet term is absent, as it was sedieigdier [36, 40].
At the same time this dependence is essential for the renormalization graujpmedimensions,
producing a number of new nontrivial fixed points, some of them UV staldesame IR stable.
There is no real need to calculate the remainifigR-type counterterm, because it is gauge fixing
dependent [36, 32]. According to (6.3), there is no need for fr#x,/—gR-type counterterm
and, correspondingly, no need to use the so-called special confoemadarization [42, 36]. At
one loop the theory is multiplicatively renormalizable in the usual sense.
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The derivation of anomaly may proceed in exactly the same way as in the sesici@ldlseory.
In particular, the anomaly associated to the divergences (6.3) is welededimd the corresponding
non-local terms in the induced action can be obtained in a unique way. Aathe ttme, the local
[ /—gR-term is plagued by double ambiguity: due to the gauge dependence oftasmanding
OR-type divergence and because of the renormalization-scheme degpendginally, the only
way to arrive at the well defined quantum corrections is to violate the coafcsymmetry at the
classical level already. In case this violation is weak, the quantum ¢immecowill respect the
corresponding hierarchy.

7. Conclusions

We have reviewed some important aspects of local conformal symmetry goadtioular its
violation at the quantum level by anomaly. There is a variety of theories withl kmanformal
symmetry inn = 4. Along with the conventional scalar, spinor and vector cases, thediféarent
higher derivative conformal models with higher derivatives.

In the semiclassical theory local conformal symmetry is violated by the trammaly. There
are both local and non-local terms in the effective action behind the angooaiire local terms are
plagued by ambiguities, indicating certain inconsistency in the quantum tiongcFor conformal
guantum gravity similar ambiguities produce total inconsistency of the thegondethe one loop
level, because at higher loops the emergence of the non-symmetric ¢cetmgeiooks unavoidable.
So, we can conclude that, in general, conformal invariant theoriesoareonsistent at quantum
level. In fact, the local conformal symmetry may be only approximate, despgaivery useful
tool for calculating quantum corrections.
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