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We discuss the building of Standard-like models from configurations of stacks of orientifold
planes and D-branes on an internal space with the structure(Gepner model)c=3n×T2(3−n)/ZN,
for n= 1,2,3. In particular we concentrate in the, interesting,n= 2 case, which would correspond
to orbifolds of aK3 six dimensional manifold times a two dimensional torus.
Such constructions are performed in two steps. In a first step, we considerD = 6 Type II B
orientifolds on Gepner points, in the diagonal invariant case and for both, odd and even, affine
levels. We build up the explicit expressions for B-type boundary states and crosscaps and obtain
the amplitudes among them. From such amplitudes we read the corresponding spectra and the
tadpole cancellation equations. In a second step we furthercompactify on aT2 torus, by simul-
taneously orbifolding the Gepner and the torus internal sectors. The embedding of the orbifold
action in the brane sector breaks the original gauge groups and leads toN = 1 supersymmetric
chiral spectra. Whenever even orbifold action on the torus is considered, new branes, with world-
volume transverse to torus coordinates, must be included. Interestingly enough, large transverse
extra dimensions can be used to lower the string scale.

As an illustration we present a 3 generations Left-Right symmetric model that can be further

broken to a MSSM model.
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1. Introduction

The quest of the Standard Model like vacua, from open string interacting conformal field the-
ories, received considerable attention in last years. In particular, much progress has been achieved
in the context of orientifolds of Type II string compactifiedon Gepner models [1, 2, 3, 4, 5, 6, 7]
Gepner models [8] are special points of Calabi Yau manifolds, at string scale, that allow for a de-
scription in terms of an exactly solvable rational CFT. Preliminary works in heterotic string theories
and Type II orientifolds on Gepner points were presented [9,10].

The rules for computing spectra and the tadpole cancellation equations have been derived
for generic situations. Nevertheless, even if concise and rather simple generic expressions can be
obtained, the computation of spectra for specific models canbecome rather cumbersome due to
the, generically, huge number of open string states involved. Only solving the tadpole consistency
equations can represent a difficult task even for a fast computer. Therefore a systematics is needed
in order to be able to extract any useful information. In thissense a remarkable computing search
for models with Sandard like model spectra was performed in [5] by restricting the scan to four
stacks of SM branes, by following the ideas advanced in [11] in the context of intersecting brane
models [13] on toroidal like manifolds. In fact, thousands of SM like models were found. It
is worth mentioning that even the simplest of these models requires to introduce a huge number
of projections and to solve several tadpole equations. In Ref. [6] a hybrid Type IIB orientifold
construction was proposed where the internal sector is built up from a Gepner sector times a torus.
By choosing a torus invariant under some of the knownZN phase symmetries of Gepner models, an
orbifold by such symmetries was then performed. Thus, schematically, in D = 4+2n the internal
sector is given by(Gepner model)cint=9−3n×T2n/ZN (wherecint is the internal central charge).
The orbifold action is simultaneously embedded as a twist onChan Paton factors on the open
string sector resulting in a breaking of the startingD dimensional Gepner orientifold gauge groups.
In particular, such constructions lead toN = 1 D = 4 chiral models. Further elaboration on this
idea was advanced in Ref. [7].

Hybrid Gepner-torus models have some interesting features. An important, practical, obser-
vation [6] is that the number of Gepner models (see [10]) involved, 3 in D = 8 or 16 inD = 6,
is remarkably lower than the 168 models inD = 4 (without including moddings) and so it is the
number of internal states. Also, many features can be studied analytically without the need of com-
puters. From the phenomenological point of view, the possibility of having large extra dimensions,
in the torus directions, could be an appealing feature allowing for some control over the string
scale.

In this talk we discuss this hybrid models proposal, mainly based on the work of Ref. [7],
where the internal sector is built up fromD = 6 Gepner models times a two torus. From expressions
for B-type boundary states and crosscaps we read the tadpolecancellation equations and the rules
for reading the spectra. An explicit example (the 6620 model) is developed in detail. We further
compactify on aT2 torus by simultaneously orbifolding the Gepner and the torus internal sectors
and by embedding the orbifold action on the brane sector. Detailed rules for obtaining theD = 4
model spectra and tadpole equations are shown. We conclude with an illustration of how to obtain
a 3 generations Left-Right symmetric model (which can be further broken into a MSSM model)
from aZ4 orbifold of the,D = 6, 6620 diagonal Gepner model times a torus.
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2. Type II orientifolds, crosscaps and boundary states

Essentially, an orientifold model is obtained by dividing out the orientation reversal symmetry
of Type II string theory (see for instance [15, 3]). Schematically, Type IIB torus partition function
is defined as

ZT(τ , τ̄) = ∑
a,b

χa(τ)N abχ̄b(τ̄) (2.1)

where the charactersχa(τ) = TrH aqL0− c
24 , with q = e2iπτ , span a representation of the modular

group of the torus generated byS: τ → − 1
τ andT: τ → τ + 1 transformations.Ha is the Hilbert

space of a conformal field theory with central chargec = 15, generated from a conformal primary
stateφa (similarly for the right moving algebra). In particularχa(− 1

τ ) = Saa′χa′(τ) and modular
invariance requireSN S−1 = N (for left -right symmetric theoriesN ab = N ba). Generically,
the characters can be split into a spacetime piece, contributing with cst = c̄st =

3
2D and an internal

sector withcint = c̄int = 3
2(10−D).

Let Ω be the reversing order (orientifolding) operator permuting right and left movers. Mod-
ding by order reversal symmetry is then implemented by introducing the projection operator1

2(1+

Ω) into the torus partition function. The resulting vacuum amplitude reads

ZΩ(τ , τ̄) = ZT(τ , τ̄)+ZK(τ − τ̄). (2.2)

The first term is just the symmetrization (or anti-symmetrization in case states anticommute) of left
and right sector contributions indicating that two states differing in a left-right ordering must be
counted only once. The second term is the Klein bottle contribution and takes into account states
that are exactly the same in both sectors. In such case, the operatore2iπτL0e−2iπτ̄ L̄0, when acting on
the same states, becomese2iπ2itK L0 with τ − τ̄ = 2itK and thus

ZK(2itK) =
1
2 ∑

a
K

aχa(2itK), (2.3)

where|K a| = N aa. The Klein bottle amplitude in thetransverse channelis obtained by perform-
ing anS modular transformation such that

Z̃K(il ) =
1
2 ∑

a
O2

aχa(il ) (2.4)

with l = 1
2tK

and

(Oa)2 = 2D
K

bSba (2.5)

This notation for the closed channel coefficients highlights the fact that the Klein bottle transverse
channel represents a closed string propagating between twocrosscaps (orientifold planes) states.
Namely, a quantum state|C〉, describing the crosscap can be found such that the KB amplitude can
be expressed as

Z̃K(il ) =
1
2
〈C|q1

2Hcl |C〉. (2.6)

with Hcl = L0− L̃0− c
12.
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Indeed, crosscap states can be formally expanded in terms ofIshibashi states [16] such that

|C〉 = Oa|a〉〉C (2.7)

with

C〈〈b|q
1
2Hcl |a〉〉C = δa,bχa(q̃) , (2.8)

andq̃ = e2iπ l .
When integrated over the tube length, such amplitude leads,for massless states, to tadpole like

divergences. In particular, for RR massless states, such tadpoles must be cancelled for the theory
to be consistent. Notice that, for such fields,Oa represents the charge of the orientifold plane
(crosscap) under them and, therefore, inclusion of an open string sector with D-branes carrying
−Oa RR charge provides a way for having a consistent theory [17] with net vanishing charge.

Therefore, we introduce stacks of boundary states|α〉 (referred to as “brane-α")

|α〉 = ∑
a

Da
α |a〉〉B (2.9)

such that the amplitude, describing propagation of stringsbetween "intersecting" stacksα and
β can be written as

Z̃β ,α(il ) = 〈β |q1
2Hcl |α〉 = ∑

a
Da

αDa
β χa(l) = ∑

b

Cb
β ,α χb(t/2) (2.10)

where in the last step we have perform anSmodular transformation to direct channel.
Here

Cb
β ,α = ∑

a
Da

β Da
αSab (2.11)

is the multiplicity of open string states contained inχa. Namely, it counts open string sector states
of the form

|Φa;β ,α〉 (2.12)

whereΦa is a world sheet conformal field andα ,β label the type of “branes" where the string
endpoints must be attached to.Ca

β ,α are positive integers (actuallyCa
β ,α = 0,1,2 [3]) generated

when the trace over open states|Φa;β ,α〉 is computed.
The full cylinder partition function is obtained when summing over all possible stacks ofnα

branes, namely
Z̃C(il ) = ∑

a
Da

2χa(l) (2.13)

with Da = ∑α nαDa
α .

In a similar manner, strings propagating between branes andorbifold planes give rise to
Möbius strip amplitude

Z̃M(il ) = 2DaOaχ̂a(l +
1
2
) (2.14)

By modular transforming to direct channel we obtain multiplicities of open string states be-
tween a brane and its orientifold image

Oa(nα Db
α)Pba = Ma = Mb

αnα (2.15)
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where we have used the fact that characters in the direct and transverse channels of the Möbius
strip are related by the transformation [18]P: itM + 1

2 → i
4tM

+ 1
2 generated from the modular trans-

formationsS andT asP = TST
2
S.

For indicesa representing massless RR fieldsDa is the D-brane RR charge. Therefore zero
net RR charge requires the

Oa+nαDa
α = 0 (2.16)

tadpole cancellation equations.

3. Orientifolds of D = 6 Gepner models

In Gepner models [8], inD space time dimensions, the internal sector is given by a tensor
product ofr copies ofN = 2 superconformal minimal models with levelsk j , j = 1, ..., r and central
charge

c j =
3k j

k j +2
, k j = 1,2, ... (3.1)

such that internal central chargecint = ∑r
j=1cint

j = 12−3(D−2)/2.

Unitary representations ofN = 2 minimal models are encoded in primary fields labelled by
three integers(l ,m,s) such thatl = 0,1, ...,k; l + m+ s= 0 mod 2. These fields belong to the NS
or R sector whenl + m is even or odd respectively The primary field information of the complete
theory can be conveniently collected in the vectorsλ andµ [7]. Thus, the indexa in the previous
section amounts here fora = (λ ,µ) in Gepner’s case. Spacetime supersymmetry and modular
invariance are implemented by keeping in the spectrum only states for which the totalU(1) charge
is an odd integer.

In six dimensionscint = 6 and 16 different possible Gepner models exist, which are associated
to K3 surfaces [10, 19] i.e.k = (1,1,1,1,1,1), k = (2,2,2,2), k = (0,2,6,6), etc.

Notice that, in some cases,k = 0 blocks have been added. Even if such terms are irrelevant
in a closed string theory (for instance the central charge remains invariant), they have been shown
to have a non trivial (K-theory) effect when open string sector is included. In fact, an even (odd)
number of internal minimal blocks is required (see for instance [4, 14]) inD = 6 (D = 4) for
consistency. Actually, for the sake of simplicity we will consider the case where the internal sector
is a tensor product ofr = 6 conformal blocks. This will allow us to simultaneously consider cases
with 3, 4, 5, and 6 conformal blocks such as(6)2(2), (2)4, 14 or (1)6 by adding, if necessary,
conformal blocks with levelk = 0.

The Klein bottle amplitude is determined from that of the torus up to signs representing differ-
ent ways of “dressing” the world-sheet parityΩ [6, 2]). We denote the dressed orientifold operator
asΩB

∆,ω j
.

From the Klein bottle amplitude in the transverse channel wecan read the expression for the
crosscap state up to signs that can be fixed from the Möbius strip amplitude. The result is that the
crosscap state is given by1

1For explicit expressions for modular matricesPl ′,l andSl ′,l see [6, 2].
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|C〉NS
B =

1
κc

∑
λ ′,µ ′

ev
K
2 −1

∑
ν0=0

1

∑
ν j ,ν̃1=0

1

∑
ε j=0

(

∏
k<l

(−1)νkνl

)

(−1)ν0 (−1)∑ j ν j (3.2)

(−1)∑ ω j Λ′
0/2e

2π iν0 ∑
∆ j

kj +2 δ (4)
Λ′

0,2+2ν0+2ν̃1+2∑ν j+2∑ω j
δ (4)

Λ′
1,2ν0+2ν̃1

r

∏
j=1

(

σ(l ′j ,m
′
j ,s

′
j )

Pl ′j ,ε j kj
√

Sl ′j ,0

δ (2kj +4)

m′
j ,2ν0+(1−ε j+ω j )(kj+2)δ

(4)
s′j ,2ν0+2ν j+2(1−ε j )

(−1)ε j
(m′

j +s′j )
2

)

|λ ′,µ ′〉〉c|

The normalization is chosen so that the overlap of the crosscap with itself yields the transverse
Klein amplitude 2.6. Here

∆ = H
r

∑
i=1

∆i

ki +2
, ω =

r

∑
i=1

ωi (3.3)

with H = lcm{ki +2}, K = lcm(4,2k j +4) and∆,ωi denote the “dressings".
In order to cancel tadpole-like divergences, boundary states must be introduced. We consider

the B-type RS-boundary states [20]

|α〉B = |S0, S̃1;(L j ,M j ,Sj)
r
j=1〉B =

1
κB

α
∑

λ ′,µ ′

β ,b
(−1)

Λ2
0

2 e−iπΛ′
0

S0
2 e−iπΛ′

1
S̃1
2 (3.4)

r

∏
j=1

Sl ′j ,L j
√

Sl ′j ,0

e
iπ

m′
j Mj

kj +2 e−iπ
s′j Sj

2 |λ ′,µ ′〉〉

where "b" in the summatory indicates thatmj = b mod(k j +2). In fact, due to supersymmetry and
field identifications these B-type boundary states only depend onL = (L1, . . . ,Lr) with Li ≤ ki/2,
M = H ∑ Mi

ki+2 andS= ∑Si . However, whenever a labelLi reacheski/2, extra copies of the gauge
field may appear propagating on the brane world-volume. In this case, it is necessary to resolve
the branes into elementary branes such that only a single gauge field is propagating on the world-
volume. The details depend on the values of|S| counting the number ofi such thatLi = ki/2. It
can be shown [4] that when|S| is an odd integer the elementary branes are given by

|αele〉B =
1

2
|S|−1

2

|α〉B (3.5)

Instead, if|S| is even there is an extraZ2-valued labelψ taking values± so that the elementary
boundary states are now labelled byL,M,S,ψ . The original boundary states can be written in terms
of the elementary ones as

|α〉B =
1

2|S|
{|α+〉B + |α−〉B} (3.6)

whereα stands for all labels different fromψ . The two boundary states|α±〉B contain new states
from the twisted(c,c) RR sector. Explicit expressions for such states are given in[7].

The massless fields in the 6D spacetime theory are the vector field (2,0)(0,0,0)6 and the
hypermultiplets(0,0)∏ j(l j , l j ,0) with ∑ j

l j

kj+2 = 1. They are contained in the cylinder and Möbius

6
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amplitude which we present next. The bosonic and massless part of the cylinder amplitude between
two D-branes|L,M〉 and|L′,M′〉 is generally given by

1
2

1
NS

1
NS′

sr

∑
λ ,µ

1

∑
ε1,...,εr =0

(

r

∏
i=1

N
|ε jkj−l j |
L j ,L′

j

)

δ (2)

∑i εi=1+
s0
2

χλ
µ (3.7)

whereNl
L1,L2

are theSU(2) fusion coefficients ( [21, 22]) and

NS =

{

2|S|/2 if |S| even
2[|S|−1]/2 if |S| odd

eliminates any extra counting when some of the D-branes are short. Besides, we have defined an
extra labels0 = Λ0 +Λ1 mod 4 (see Appendix A) taking the values 0,2 whenever the fields are in
the scalar and vector representations, respectively (Notethat in six dimensional spacetimes0 = 0,2
also for the spinor representations, so this definition strictly makes sense when we restrict ourselves
to bosonic representations). When the amplitude between two short-orbit branes|L,ψ〉 and|L′,ψ ′〉
such thatS = S′ and|S| ∈ 2Z+ is considered, an additional projection must be taken into account,
due to theψ labels, leading to

1

2|S|

sr

∑
λ ,µ

1

∑
ε1,...,εr =0

(

r

∏
i=1

N
|ε j kj−l j |
L j ,L̃ j

)

δ (2)

∑i∈S εi=
1
2(1−ψψ ′)

δ (2)

∑i εi=1+
s0
2

χλ
µ (3.8)

On the other hand, the massless states in the bosonic Möbius strip amplitude are given by

− 1
2NS

∏
k<l

(−1)ρkρl δ (2)

∑ρ j+1+
s0
2 ,∑ω j

(−1)∑ ω j
s0
2 ei π

2 ∑ j ω j (mj−2L j+ε j (kj+2))(−1)ε j N
|ε j kj−l j |
L jL j

χ̂λ
µ (3.9)

whereρ j = s0
2 +1+ ε j + ∑ω j .

In particular, we see the vector (s0 = 2) has the sign

− 1
NS

(−1)∑ ω j (−1)∑ω j L j

1

∑
ε1,...,εr =0

∏
k<l

(−1)εkεl ∏(−1)ω j ε j
kj +2

2 δ
ε j L j ,ε j

kj
2

δ∑ε j ,∑ω j (3.10)

A plus (minus) sign indicates a symplectic (orthogonal) gauge group while a zero leads to a
unitary gauge group. In a similar manner, the gauge group representations in which matter states
transform, can be identified (an example is given in next section).

The tadpole cancellation conditions can be easily read fromthe expressions for the crosscap
(3.2) and boundary states (3.4). They take the general form TadD(λ ,µ)− 8TadO(λ ,µ) = 0. For
the massless fields(2,0)(0,0,0)6 and(0,0)∏ j(l j , l j ,0) the NS-NS tadpoles of the orientifold plane
read

TadO(λ ,µ)B =

K
2 −1

∑
ν0=0

1

∑
ε1,...,εr=0

(

∏
k<l

(−1)εkεl

)

(−1)ν0 ∑ε j δ (2)
s0/2,1+∑ε j+∑ω j

(−1)∑ω j (s0/2)(−1)∆ j (1−ε j )

r

∏
j=1

(

sin

[

1
2
(l j ,ε jk j)

]

δ (2)
l j+(1−ε j )kj ,0

δ (2kj+4)

m′
j ,2ν0+(1−ε j+ω j )(kj+2)

(−1)ε j
mj
2

)

. (3.11)

7
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Also, collecting all terms from the boundary states and their Ω∆ j ,ω ,ωα images, we obtain, for
their massless tadpoles

TadD(λ ,µ) =
N

∑
a=1

Na

NS
cos

[

π ∑
j

mj(Ma
j −∆ j)

k j +2

]

∏
j

sin(l j ,L
a
j ). (3.12)

These expressions are valid up to common phases. We have alsorenormalized the tadpole
equations by introducing the factorNS so that the Chan-Paton factorsNa truly represent the multi-
plicity of elementary D-branes.

3.1 (6)2(2)(03) model

We exemplify the construction presented in the preceeding section for the specific Gepner
model(6)2(2)(03). We will later consider this example to discuss model building in four dimen-
sions.

The gauge groups and massless spectrum is obtained from Eqs.(3.8) and (3.9). For instance,
we see that braneL10 = 33103 is short, with|S|= 6. Thus, for the vector (s0 = 2), a non vanishing
contribution in (3.8) impliesδ (2)

∑i εi
1
2(1−ψψ ′)

δ (2)
∑i εi=0 6= 0, namelyψ = ψ ′. Moreover, for such choice

of ε ′
i swe see that (3.9) vanishes thus leading to the unitary group.In a similar way, for the scalars

(s0 = 0) the states propagating between a boundary state and its orientifold image are selected,
ψ = −ψ ′. Möbius amplitude (3.9) is non vanishing in this case and produces a minus sign thus
leading to antisymmetric representations.

The tadpole equations (3.11,3.12) for this set of branes reads

N2+2N3+N4+N5+2N6+N7+2N8+N9+2N10+N11+3N12 = 16 (3.13)

N1+2N2+2N3 +2N4+N5+3N6+2N8+2N9+2N10+2N11+4N12 = 24

States propagating between branes can be easily computed from (3.7) and (3.8). Two tensor
multiplets are found in the internal sector (see for instance [3]). It can be checked that all gauge
and gravitational anomalies cancel.

At this point it may be instructive and useful for our subsequent calculations to illustrate this
in a detailed example containing only(L1,L6,L10) states.

The tadpole equations for the reduced set of D-branes lead to

N10 = 8−N6 = N1 (3.14)

The gauge group isSp(N1)×Sp(N6)×U(N10) with matter hypermultiplets in

3[(1,1, )+ (1,1, )̄]+7(1, ,1)+ (1, ,1) (3.15)

+ (N1,N6,1)+ (N1,1,N10)+ (N1,1,N̄10)+3[(1,N6,N10)+ (1,N6,N̄10)]

It is easy to check that this spectrum (plus a closed sector containing two tensor multiplets
and nineteen hypermultiplets) leads to vanishing of gauge and gravitational anomalies if tadpole
equations (3.14) are satisfied.

8
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4. Orbifolding (Gepner model)c=6×T2

Orbifolds of Gepner models are also easily implemented in the language of boundary and
crosscap states. The internal sector described by(Gepner model)c=6×T2 has a discrete symmetry
acting on fields in the following way

g : Z → e2π iv Z g : Φli
misi

→ e2π i
mi γi
ki+2 Φli

misi
i = 1, . . . , r (4.1)

whereZ = X4 + iX5 denotes the complex coordinate onT2 and(v;γi) are labels for the gen-
eratorĝ∈ G. For a torus with symmetryZN we haveNv∈ Z. The labels(v;γi) are conveniently
encoded in terms of a simple current vectorj

j = (0,v;2γ1, . . . ,2γr ;0, . . . ,0). (4.2)

which satisfies 2β0 • j ∈ Z or in components

−v
2

+∑ γi

ki +2
= 0 modZ. (4.3)

As it is well known, twisted sectors must be included in orderto ensure the modular invariance
of the torus partition function. As a consequence, new tadpoles are expected to appear, in the
transverse channel, due to RR fields propagating in the twisted sectors. Thus, the boundary states
required to cancel the tadpoles include the RR fields in the twisted sector of the theory.

Interestingly enough, it is possible to rewrite the projection by simple currents in such a way
that its relation to the usual orbifolds of toroidal manifolds is much more evident. To see this we
recall that open string states formally read

|Φk; i, j〉λ k
ji (4.4)

whereλ k encodes the gauge group representation into which the stateΦk transforms. For instance,
if the stateΦ0 corresponds to gauge bosons,λ 0 represents gauge groupG generators2.

Let us assume that such Chan-Paton factors have been determined already and that we further
act on string states with a generatorθ of a ZN symmetry group. Such action which manifests as

a phasee2π i
γi mi
ki+2 on world sheet fieldΦk should, in principle, be accompanied by corresponding

representation of group action such that

θ̂ |Φk; i, j〉λ ji = γii ′ |θ̂Φk; i
′, j ′〉γ j ′ jλ ji = e2π i

γi mi
ki+2 (γ−1λγ) j ′i′ |Φk; i

′, j ′〉

Therefore, invariance under such action requires

e2π i γi mi
ki+2 γ−1λ kγ = λ k (4.5)

By following the same steps as in Ref. [23], we can representZN Chan-Paton twist in terms of
Cartan generators asγ = e2π iV H whereV is a “shift" eigenvalues vector of the generic form

V =
1
N

(0N0,1N1, . . . ,(N−1)NN−1) (4.6)

2Which generically will be a product of unitary, orthogonal and symplectic groups.
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(ensuringγN = 1) and Cartan generators are represented by 2×2 σ3 submatrices.
On this basis, projection equation (4.5) reduces to the simple condition

ρkV =
γimi

ki +2
+

vs−1

2
(4.7)

whereρk is the weight vector associated to the correspondingλ k representation.
Recall that in the orientifold theory we must introduce a boundary state and its image under

Ω.
Tadpole conditions can be generalized for orbifolded hybrid modelsT2×Gepnerin the fol-

lowing way [6]
Dλ

µ

(

TrγN,2x +
√

f TrγD,2x,I

)

+Oλ
µ cosπxv= 0 (4.8)

Dλ
µ

(

TrγN,2x+1 +
√

f TrγD,2x+1,I

)

= 0 (4.9)

for all states(λ ,µ) such thatχλ
µ+2xΓ is massless.

HereOλ
µ is the orientifold charge we have in six dimensions for the state (λ ,µ) while the

factor f = 4sin2 πxv is a non-trivial contribution from the fixed points in the complex torus T2 in
the NN sector. The labels N and D are used to distinguish between D-branes with Neumann and
Dirichlet boundary conditions in the torusT2.

5. A MSSM example

As an illustration of the general techniques discussed above we concentrate here on aZ4 mod-
ding of the[(6)2(2)(0)]c=6 ×T2 model3. Let us notice that inspection of allowed internal states
indicates that only 3 massless chiral (l i = mi ,si = 0) states, namely those such(m1,m2,m3,m4) =

(3,3,1,0), (5,1,1,0), (1,5,1,0), do propagate between braneL10 (with aU(N10) gauge group liv-
ing on its worldvolume) andL6 (with an Sp(N6) gauge group). Therefore, an internal modding
of the form Γ = (0,0,1,0) acting on the Gepner model will allow such states to remain inthe
spectrum and, by appropriately embedding it as a twistγ10,γ6 on the D-brane sector, the origi-
nalU(N10)×Sp(N6) gauge group could be broken into a Standard-like model with 3generations.
Moreover, in order to haveN = 1 supersymmetry in four dimensions, we must accompany this
modding with aZ2 modding onT2, namelyv3 = 1/2, so as to satisfy Eq.(4.3). Thus, our starting
point is

Γ = (0,0,1,0)(
1
2
)⊗ γa (5.1)

Note that the actual internal modding (see (4.1)) isγi/(ki +2) so it represents aZ4 action.
As we stressed in the previous section, performing aZ2 modding on the torus will require the

introduction of a new set of branes having Dirichlet boundary conditions on the open string ends
living on T2. We quote them with an indexD while introducing an indexN to label the original
branes with Neumann conditions on the third complex coordinateZ. We will refer to them asDZ

andNZ branes respectively. Besides the untwisted tadpole equations 3.13, several new equations
must now be solved (see [7] due to the twisting, according to Eq.(4.8,4.9).

3We will write the internal sector in terms of four theories inwhat follows.

10



P
o
S
(
I
C
2
0
0
6
)
0
3
4

Particle Physics from D-Branes at Gepner Points Gerardo Aldazabal

As mentioned,L10 and L6 constitute the basic branes which, after splitting under modding
action, will give rise to our model. It is interesting to remark that, both boundary states can be
placed on the same NN sector, or eitherL10 in NN sector andL6 in the DD sector (or viceversa)
or both in the DD sector. The basic features, discussed below, will be independent of the sector
choice. However phenomenological details will be different, mainly due to the extra branes that
must be added to satisfy RR tadpole cancellation.

We choose two (minimal)N10 = N6 = 4 stacks ofL6 andL10 branes to start with aU(4)×
Sp(4) gauge group. The moddingΓ in ( 5.1) is embedded as twistsγ6 andγ10, on each respective
stack, as

γ6 → V6 =
1
4
(0,2) (5.2)

γ10 → V10 =
1
4
(1,1,1,3) (5.3)

For the vectorΓ.µ = 0 and therefore from (4.7) we find

U(4) → SU(3)×U(1)2 (5.4)

Sp(4) → SU(2)×SU(2)

whereSp(2) ≡ SU(2). Thus, a LR symmetric-like model group is obtained.
Moreover, the correct LR spectrum with 3 massless generations is found. Namely, massless

chiral states propagating in betweenL10 −L6 (these are(0;3310;0), (0;15100), (0;5110;0))
satisfyΓµ = 1

4 and therefore we find the spectrum representations underSU(3)×SU(2)L×SU(2)R×
QB−L to be

3[(3,2,1) 1
3
+(3̄,1,2)− 1

3
+(1,1,2)1 +(1,2,1)−1] (5.5)

where the subindex indicates the charge eigenvalue of

QB−L =
1
3

Q3+Q (5.6)

Q3 being the generator of theU(1) in U(3) andQ the otherU(1) generator in (5.5).
Actually, it is possible to establish a correspondence withan intersecting brane model picture

in toroidal manifolds (see for instance [11]). Namely, under the action ofγ10 and γ6, boundary
statesL10 and L6 intersecting at a six dimensional manifold, split into fourstacks of boundary
states as

L10[U(4)] → La
10[U(3)]+Ld

10[U(1)] (5.7)

L6[Sp(4)] → Lb
6 [Sp(2)]+Lc

6[Sp(2)] (5.8)

where we have indicated in brackets the gauge group living onthe corresponding brane. Thus,
boundary statesLa

10,L
d
10,L

b
6 ,L

c
6 do match with the basic branesa,b,c,d arising in intersecting

brane models on toroidal constructions [11, 24].
Thus, drawing boundary states as lines and interpreting multiplicities as intersection numbers

we are lead to a graphic representation as the one given in left side of Figure 1.

11



P
o
S
(
I
C
2
0
0
6
)
0
3
4

Particle Physics from D-Branes at Gepner Points Gerardo Aldazabal

L 10

d

L 10

a

L 6

b

L 6

c+c*

(3,2,1)

(1,2,2)

(3*,1,2)

(1,2,1)

(1,1,1)

Q
 L

U R

RD

 L
E

H
 U

HD

RE

L 6

c

L 6

cc*

��������

������������������������������

L 10

aL 10

d

L 6

b

Figure 1: By separatingLc+c∗
6 → Lc

6 + Lc∗
6 away from the orientifold point breaking from LR to MSSM

with 3 righthanded neutrini is achieved

Besides states propagating between different branes we must consider states along the same
type of branes. They lead to vector like matter.

Interestingly enough, massless states(4020),(0420) and(2220) do propagate inL6 −L6 sec-
tor. They satisfyΓ.µ = 1

2 and thus, together with(1)(0000), descending from the six dimensional
vector, lead to 9(1,2,2)0 candidates to LR Higgses.

Branesc and its imagec∗ are placed here on top of each other and on top of an orientifold
point (leading toSp(2)). Since such branes are parallel in the torus, following similar steps as
discussed [12], we can think into separating them away from the orientifold point in the torus. Thus,
SU(2)R →U(1)c whereU(1)c charges are given byT3

R eigenvalues. Therfore, by introducing the
weak hyperchargeY = −T3

R + 1
2QB−L we find that the original LR symmetric model breaks down

to SU(3)×SU(2)L ×U(1)Y MSSM with three chiral generations

3[(3,2,1) 1
6
+(3̄,1)− 2

3
+(3̄,1) 1

3
+(1,1) 1

2
+(1,2)− 1

2
+(1,1)0] (5.9)

including three right handed neutrini. Moreover, LR chiralstates(1,2,2)0 decompose into(1,2)−1/2+

(1,2)1/2 with the correct MSSM Higgs charges. It can be checked that, non-anomalous, hyper-
charge remains massless in the model under consideration [7]. A pictorial representation is pre-
sented in Figure 1.

Besides these basic boundary states leading to the MSSM structure, additional stacks of branes
must be added in order to satisfy tadpole cancellation equations. Different choices are possible and
each of them will give rise to particular phenomenological features. A simple explicit example can
be found Ref. [7].

Some general remarks about Yukawa couplings can be advanced. As a general observation
notice that a Yukawa coupling will have the form

Yi jkΦi
baΦ j

acΦ
k
cb (5.10)

whereΦab is the chiral superfield insertion connecting boundariesa andb andi, j,k refers to inter-
nal CFT labels. Such a term should be a singlet of the gauge group and invariant underΓ modding.
Moreover, it must be allowed by the fusion rules of the internal conformal field theory [25, 21].
Namely,Yi jk ∝ 〈i jk〉 ∝ N k

i j
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For instance, couplings like

[(5110)](3,2,1)ab
1/3 × [(3310))](3̄,1,2)ac

−1/3[(2220)](1,2,2)bc
0 (5.11)

(where we have indicated the internal charges in brackets) are non vanishing and lead to degenerate
masses for two quark generations. Fusion rules forbid masses for the first quark generation. A
similar result is obtained for lepton masses since the same internal states are involved for leptonic
Yuakawa couplings. The general pattern is very similar (thenumber of Higgses is different) to the
one found in Ref. [26] in the context of branes at singularities.

Actually, (see i.e. [26], the full picture of mass structures becomes more complicated due, for
instance, to the presence of Yukawa couplings of quarks withcolored triplets present at other inter-
sections. Notice also that, from the 9 candidates to be interpreted as Higgs particles coming from
L6 −L6 sector, only those with CFT quantum numbers(2220) are allowed in Yukawa couplings.
For all of them, on the other hand, mass term like couplings are allowed. Thus, we can imagine a
scenario where some of the(1,2,2) multiplets become very massive.

In the example discussed above the basic branesL10, containing strong group, andL6, where
SU(2)L ×SU(2)R lives, were placed in the same NN sector. However, other schemes, which might
be useful future phenomenological applications, are also possible. For instance, consistent models
where part of the spectrum containing theSU(2)L ×SU(2)R gauge theory is placed on the branes
in the DD sector can be built.

An interesting feature of the hybrid construction is that lowering of the string scale [27] could
be achieved by considering large extra dimensions in theT2 torus, transverse to the whole config-
uration of intersecting boundary states.

Indeed, in the present examples of the typeGepner×T2/ZN, boundary states would corre-
spond to branes wrapping cycles onK3 and stuck at aC/ZN singularity. Thus, if we denote byV4

the volume of the Gepner piece, which should be of the order ofthe string scaleV4 ∝ 1/M4
s , and by

V2 that of two dimensional manifold. Then we expect the Planck scale, after dimensional reduction
to four dimensions, to be

MPlanck =
2
λ

M4
s

√
V4V2 (5.12)

whereλ is the string coupling. Therefore the string scaleMs can be lowered by choosing the

volumeV2 (V2 =
M2

Planckλ
2

4M4
s

) sufficiently large. Recall that the models constructed here are fully
supersymmetric and though lowering the scale could be phenomenologically attractive in some
cases it is not as compelling as in non supersymmetric models.

Presumably, having these large extra dimension could allowfor the introduction of dilute
fluxes in a supergravity limit of some of these hybrid construction [28].
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