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1. Introduction and review of known results

1.1 The Born-Infeld lagrangian in the context of String Theory

As a starting point we consider the low energy interactioraloélian open (bosonic) strings in
Minkowski spacetime, which is given by the Born-Infeld lagrangién [

1
Lo =~ g2\ €Uy + 27 P 1)

as long ag,, is kept constantD is the spacetime dimension.
The o’ expansion of%g, has the following form:

1 2 1
Zg1 = (constant— 7 F, FHY + %a’z (FWFVP FooF o — 4FWF“VFPGF""> +o(a) (1.2)

The first non constant term clearly is identified as the Maxwell lagrangian anﬁ(tdx@) term is
the first low energy correction coming from String Theory. Osgnpowers ofa’ show up in this
expansion.

The general situation for the low energy effective lagrangian includes as well derivatives§ the

ZLoft = LB + (derivative terms. (1.3)

The situation for the low energy effective lagrangian in Open Superstring Theory is similar to the
one in (L.3), the only difference being the fact that fermionic degrees of freedom are also present
in the lagrangiand]. Anyway, the bosonic part of this lagrangian has a similar structure as the one
in (1.3.

A nonabeliangeneralization of 1.3) is of interest for Type | theory. A first guess would be to
consider the trace of the lagrangian inl) and (L.2), leading to

1 2 1
fé‘lomab = (constant— 4tr<FWF“V> + 7;oz’ztr(FHVFV”FPC,F"v — 4F“VF“VFPGF”"> +

+o(ah, (1.4)

where, clearly, the first non constant term is the Yang-Mills lagrangian. From now on we will des-
consider the constant term if.4).

The problem arises as soon as we consideﬁt(m’z) contribution in (.4) since it is ambiguously
defined, for example, terms likg,,F"PF,sF°" andF,,F'PF°"F,s which are equivalent from
theabelianpoint of view are not so from theonabelianpoint of view. The reason lies in the fact

that the commutator of two field strengths is not zero in the nonabelian case. So a nonabelian gen-
eralization of the Born-Infeld lagrangian, in the context of Superstring Theory is not an immediate
task to acheive.

A nonabelian calculation by means of a 4-point amplitude calculation leads to the following ex-
pression 2, 3

1 2 1 2
DanPrFab = —4tr<Fqu“v> + ﬂéalztr(SFHvvaFpo'ng + éF”vFvPFGquG -

1 1
— FuvFH FpgFPo — 12F,WFMF“VFP"> +0(d"). (1.5)



Higher N-point Amplitudes in Open Superstring Theory Ricardo Medina

It is easy to see that the abelian limit of tma’z) terms in (L.5) agrees exactly with the corre-
sponding terms inl(.2).

1.2 Introducing the symmetrized trace

In [4] it was seen that the abelian and the nonabelian expressions of the Born-Infeld lagrangian
could be related, at least up @(a’z) terms, by introducing a symmetrized trace in the abelian
expressionl.2),

1 ? 1
Z&Oﬂ_ab = —4Str<F'qu“v> + za’zstr<Fqu"proF°V — 4va|:'uv|:p6|:pc) +

NACE (1.6)

The symmetrized trace, denoted by ’str’, is defined as an average of the trace of all possible permu-
tations of matrices. The result id.@) is very nice in the sense that it looks like a democratic way

of constructng the nonabelian lagrangian from the abelian one.

The complete proposal of for the nonabelian Born-Infeld lagrangian is simply

gglomab = (constant str<\/det(n#v + 2;;05/,:”)) . (1.7)

This can be considered as a prescription for writingRReéerms of the lagrangian, at any order in

o'. Its abelian limit clearly agrees with the usual Born-Infeld lagrangiaf)

So, the general structure of the low energy effective lagrangian in the open string sector of Type |
theory may be written as

covariant
Zeot = (constant str<\/del(n,” + Zna’Fuv)> + < derivative> + (fermions . (1.8)
terms

Equation (.8) may seem to be a quite simple and a very strong result and, although it is correct, it
has a serious problem. Due to tli#,, Dy|F,s = —ig[F.v,Fyp] identity, theF" and theD?PF"—P

terms can be related, so the covariant derivative term4.B) are as important as tHe" ones.
Therefore, the separation betwdehterms (i.e. nonabelian Born-Infeld lagrangian) and covariant
derivative ones is a purely artificial fact in the case of the nonabelian theory.

The conclusion is that the complete determination of #ig lagrangian in {.8) can only be
obtained by perturbative theory .

The approach that we will follow in this work is the scattering amplitude one.

2. Some details about the interactions
2.1 General formula for the string scattering amplitude
The general formula for the (open string) massless boson amplitude (at tree leGgl) is [

oM =i (20) %8 kot k) Y (AMAN L A%m) Aj, o, M), (21)

J150250m
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whereM is the number of bosons and the sgr’n’n the indices{ j1, j2,..., ju} is done ovenon—
cyclic equivalent permutations of the groyg,2,...,M}. The matricest® are in the adjoint
representation of the Lie group(ji, j2, ..., jm) is the main object of study, callesibamplitude

It corresponds to thd-point amplitude of open superstrings which do not carry color indices
and which are placed in the orderify, j2,..., jm} (modulo cyclic permutations). Using vertex
operators, the RNS formalism leads to the following integral formuladdr, 2,...,M) [6], for

M > 3:

ngZ

" M
X/dXz...dXM_z/dGl...deM_zl_I ‘Xi_xj _eiej‘za’h.kj «

I>]

x /dq)l...d(pM efm(Cko0) 2.2)

where
M (6 — 0)i(&i - k) (2a' )Y — 1/219; (G - &) (20)%/2
fM(Cakaevqb):_; X|—XJ—661 :
] |

(2.3)

The6;’s and theg;'s in (2.2) and @.3) are Grassmann variables, while tys are real variables such
thatx; < Xp < X3 < ... < Xu. Theki’s and the{’s are thei-th string momentum and polarization,
respectively.

Although not manifest, the subamplitudél,2,...,M) in (2.2) has the following symmetries]:

1. Cyclicity:
AL2,... M—1M)=A23,... . M1)=...=AM,1,... M—2M—-1) .
2. On-shell gauge invariance:

A(L2,... M|y =0, for i=1...,M.

3. World-sheet parity:

AL2,... . M=1M)=(—DMAM—-1,M—2,...,1M).

Formula @.2), together with 2.1), containsall the information to construct the low energy efective
lagrangian, which has the form

Lt = tr{F2+ o *F*+ o} (FS+ DF*) + o (FO + D?F° + D*F4) + ... } . (2.4)

Formula @.4) already considers the fact that the string 3-point amplitéd#, 2, 3), agrees com-
pletely with the corresponding Yang-Mills 3-point amplitude (i.e., it hasxhoorrections }]).
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2.2 Case of the 4-point amplitude

An interesting (and very well known) application of formula3) is the case of the 4-point
subamplitude. It leads to
2l (a9l (—a't)

_ 2
A(1,2,3,4) = 8¢? S EeT——

K (81, ke 82, ko; 83, Ka; Ca, ka) (2.5)

where
K (CL ki, CZa ka; C37 ks; €47 k4) = t€181)V1#2V2H3V3#4V4 C}}l k$1 C[fz k32 C[fs k‘\?’/s C:tlzt k4i/4 (26)

is a kinematic factorg, being a known tenso5]. The s andt variables in .5 are part of the
three Mandelstam variables. They may be written7gs [

S:—kl-kz—kg-k4, t:—k]_'k4—k2'k3 . (27)
The Gamma factor in(5) has a completely knowa’ expansion, which begins like

M-o'sf(-a't) 1 x?
: I'((l— o?’s(— oc’t)) TSt fafz +0(0"). 28)
Using @.7) and the known symmetries of thg, tensor p], the expression foA(1,2,3,4) in
(2.5 has all three symmetries (cyclic invariance, on-shell gauge invariance and world-sheet parity)
manifest
The general method of finding the string corrections to the Yang-Mills lagrangian, at aaiven
order, consists in writing all the possible terms with unknown coefficients. Consider, for example,

the ﬁ(a’z) corrections. Up to that’ order the effective lagrangian looks likg] [

1 2
geff — _4tr<F“\/F#v> + %(X’Ztr (C]_F‘quvPFpo-FGv +CZF'LL\/FVPFG'U'FPG +

This expression is the final result, after having considered also derivative terms and used the Bianchi
identity, integration by parts and tfig, D]F = [F, F] relations. In 2.9), we have also omitted terms
which vanish on-shell (i.e., terms which contaipF*").

Then, the tree level 4-point amplitude is calculated usih) @nd compared with the correspond-

ing expression in4.5) up to ﬁ(a’z) order. This comparison determines the unknoefns,, c3

andcy, leading to the expression ith.6) [2]).

Although this procedure can be applied to compute the correction terms (sensible to a 4-point am-
plitude) up to anyx’ order, it gets longer and harder as thieorder grows.

Based on the idea of], in [8] was done the explicit construction of @"F* (n=0,1,2,...) in

the effective lagrangian, arriving to

4
g|32n|:4 = —%gza’z //// { nleXj 5(10)(X—Xj) } X
J=1

(D1 +D2)%2+4 (D34 D4)? (D1+D4)2+ (D2 + D3)?
X fsym 5 , > X

thg:L)Vlﬂ2V2H3V3IJ4V4tr <FH1V1 (Xl) F,uzvz (XZ) F,uavs (X3> l:u4V4 (X4)> ) (2 . 10)
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where the functiorf is given by

M—a'gf(-a't) 1
rl-o's—a't) o?st’

f(st) = (2.11)

(See B] for more details about the relation between functidgg(s,t) and f(st).)

2.3 Case of the 5-point amplitude

At this point is where the search faigher N-point amplitudes begins. In the case of the 5-point
subamplitude formula(2) becomes

g3

“ . . — oo [22% K
X dX3 dX2 d91d92d93l_l|x| Xj 9|91| X
X1 X1

I>]

A(1,2,3,4,5) =2 (Xg —X1)(Xs — X1) X

x [ dé1dpadgsdosdgse’C k) (2.12)

wheref; = 65 = 0.
Once the Grassmann integration has been done, and after some lengthly algebra, it can be written

as bl
A(1.2,3.45) = 26° (202 Lalls: @G- (G-t + (44(E- O K-k term)

Ko(Ca- 80) (G ko) (o ke (GaKa) + <99<a_: O K2 terms) }
(2.13)

(See eq. (5.29) ofg for the complete detailed formulal.3 andK; are momentum dependent
factors (which also depend ar) given by double integrals:

1

L3 1 X3 20/ o 20/ ! / ! Xoxal1—xa)
o' ooa 20 o 20 o 20 o XoX3(1—X:

{ K, _—/0 dx3/0 dxo X5~ “2(1 — Xp) = 245" T3 (1 — x3) = P4 (%3 — X ) B4 2 3(1 3) ,

X2(1—-x3)
(2.14)

whereo;j = k; -kj. They can be calculated in terms of Beta and hypergeometric functions. Indepen-
dently of the method used to calculate them, the first terms of tHexpansion can be obtained.
For example,

Ky — 1 { 1 }_7T2{06510512—06120634—1-06340645}+
(20/)? | o2 034 6 012 034
+ ¢(3) (200 { 0F, 051 — 05, 012+ 05 O+ 0%y 02 — O, Oiga+ 05, Olas — 20012 023 0634}
012 (34
+ 0((2a')?). (2.15)

Formula @.13 was used in9] to distinguish from three non equivalent versions of t&FS terms
of (2.4) [10, 11, 12], obtaining complete agreement with the onelif][
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In [9], formula .13 was written in terms of &;’s and 8L;’s (plus cyclic permutations of the
terms in the amplitude). It was seen that some linear relations, coming from integration by parts
technique, existed between tgs and between thi;’s.

Afterwards, in [L3] it was seen that further linear relations existed between thdstependent
factors. The new relations, independent from the ones obtainedl,invgre due to the partial
fraction technique. So at the end, for the@6dependent factors there were found 7 independent
integration by parts relations and 7 independent partial fraction relations. Solving this linear system
it allowed to writeall Kj's andL;’s in terms of only 2 of them. This was summarized and exploited

in [14], where the final expression for the 5-point subamplitude was written as

A(1,2,3,4,5) =T -Aym(1,2,3,4,5) + (2a')°Ks - Aca(1,2,3,4,5) . (2.16)

In this formulaAym(1,2,3,4,5) andAg4(1,2,3,4,5) are the 5-point subamplitudes coming from
the Yang-Mills and the knowf* terms in (.4), while T andKz are o’ dependent factors which
have a knowrx’ expansion which go like

T=1+0(0%), (20)°Kz= 7;2(205’)2+ oa) . (2.17)

Formula @.16), the same as formul& (5), has the nice property that the cyclic, the on-shell gauge
invariance and the world-sheet parity symmetries are mar($est [L4] for further details). We
have also tested the factorization properties of the pdlds [

Benefits from having a closed formula for A(1,2,3,4,5):

2.3.1 5-point amplitudes involving fermions are immediate

By this we mean that there is no need to compute the 3-boson/2-fermion and the 1-boson/4-fermion
amplitudes right from the beginning, in the RNS formalism. The explanation is the following. Up
to now, the supersymmetric low energy effective lagrangiacoimpletelyknown up toﬁ(a’z)

terms. It has the form

Lot = Loym+ > Lo+ 0(a') (2.18)
where
Loym = tr<F2+i1pwa> (2.19)

is the D=10 Super Yang-Mills lagrangian and
zzztr<F4+ D(!VW)FZJrDz(v7yw)2+F(v7W)4> (2.20)

is the order’? string correction ta%sym. -%» has been determined completely irb].
In this sense, due to the structure of thleexpansion off and(2a)?Kz in (2.17), we could rewrite
eg. €.16 in a slightly different (but equivalent) notation:

5b _ 5b 2 5b
A®(1,2,3,4,5) =T -AXM(1,2,3,4,5) + (2a) Ks-A%,(1,2,3,4,5), (2.21)
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where 52’( v(1,2,3,4,5) andAfi,‘?z(l, 2,3,4,5) denote the 5-boson subamplitude coming frafeyu
and.%, respectively.

Now we write down our ‘immediate’ expression for the 3-boson/2-fermion and the 1-boson/4-
fermion subamplitudes. Our ansatz, based on the structure of #aepansion off and(2a’)?Ks

in (2.17), is the following, respectivelyl[d]:

AP/2(1,2,3,4,5) =T AJN (1,2,3,4,5) + (20)°Ks- A7 * (1,2,3,45),  (2.22)
AP/ (1,2.3,4,5) =T -Adrp (1,2,3,4,5) + (20/)%Ks- A4 (1,2,3,45).  (2.23)

As animmediate test 02(22 and .23 we see that, by construction they reproduce the 3-boson/2-
fermion and the 1-boson/4-fermion subamplitudes of the low energy effective lagrangtahgn (

On the other side, and this guarantees th&t3) and .23 are correct to any order in’, these for-
mulas, together with2.21), satisfy by construction the supersymmetry requirement: the summed
variation of A%(1,2 3,4,5), A%/2f(1,2,3,4,5) and Al"/4T (1, 2,3,4,5) under the supersymmetry
transformationse],

5AZ = lZEyu ey (2.24)
Syl = —}Favy“ve (2.25)
- —fey“v 2 (2.26)

is zero, after using the on-shell and the physical state conditions, together with momentum conser-
vation.

Formula @.23) is being used inf6] to determine thex’°D2F (yyy)? terms, which are unknown

at the present moment.

2.3.2 Determination of theo " >D2"F5 terms

In (2.10 it was seen that it was possible to explicitly construct all the effective lagrangian terms
which are sensible to the 4-point amplitude.

We will now see that that using the compact formualg we have been able to determine all
the /™ 3D?'F5 terms in @.4). For this purpose we compute first the corresponding scattering
amplitude as

Apmes(1,2,3,4,5) = A(1,2,3,4,5) — Aym(1,2,3,4,5) — Apznp(1,2,3,4,5) . (2.27)

It is quite remarkable that the resulting expression has no poles, as it should happér](fze [
further details). With the simplified expression #:qgs(1,2,3,4,5) we find the corresponding
lagrangian terms to bé {l:

Lomes— ig /////{ d1%; & )(xxj)}x

1
% [ {32H(1)(_D2 -D3,—D3-Dy,—Dy4-Ds) t(ﬁtllaglumusvwzxw%% +
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1
+T6P(1)(_D1 -D2,—D2-D3,—D3-Ds,—D4-Ds,—Ds-D1) (0 ’t(s))1“1V1“2V2“3V3“4V4“5V5} X

xtr <FH1V1 (Xl) Fuzvz (X2) F#3V3 (X3) FI-L4V4 (X4) FHSVS (X5)> -
— UW(-D1-Dz,~Dy- D3, ~D4-Ds,~Ds-Dy) x

1
X { &t(ﬁtll()vfuszswmvwsv%r <F.U1Vl (X1) Fupv, (X2) D¥Figvs (X8) Do Frugvy (Xa) Fugvs (Xs) | +

1
+ 176t(p§1)V4u5V5u1vszztr (D“S Fuvy (X1) D™ F i, (X2) Fuizvs (X3) Fuavs (Xa) Fusvs (X5) | +

1
™ 1761:(“83)"3114"4#5V5#1V1tr <Du2 Fﬂlvl (Xl> Fllzvz (XZ) D' Fﬂava (X3) FH4V4 (X4> Fllsvs (X5)

1
- 1761:(“81)‘/1‘12‘/2#3‘/3#4‘}4tr <DH5 F,ulvl (Xl) I:#2V2 (XZ) Fusva (X3) DV5 Fli4v4 (X4) Fusvs (X5)

N— — N N

1
- Et(pnglvluszsv?,tr <D“4 Fuvy (X1) Py, (X2) Fuavs (X8) Frugvs (X4) DY gy (X5)> } -
1

- éW(l)(—Dl‘Dz,—Dz‘D37—D3'D4 ,—D4-Ds,—Ds-Dq) x

X t€182)V2#3V3u4V4M5V5tr (Flilvl (Xl) D Fllzvz (XZ) Fusvs (X3) I:lL4V4 (X4) D™ Fusvs (X5)> -
1

— §Z(~D1:D2,~D2:D3,~D3: D4 ,~DyDs, —Ds - D1)

Xt(ﬁé;Z)V2ﬂ3V3H4V4ﬂ5V5 {tr <FM1V1 (X1> FIJ2V2 (XZ) D FIJ3V3 (XS) D™ FN4V4 (X4) Fusvs (X5)> -

—tr(Fm(xl>DMFum(xZ)Fusv?,(xS)F#4V4<X4>DV1FM<X5>)} n

1
- @A(—Dl-Dz,—Dz'D3,—D3'D4 ,—D4-Ds,—Ds-Dy) x

X {té‘fagll-lz\/zﬂsvwwws\/f)tr <D0‘ DP Fuavi (X1) Do Fupv, (X2) Frgvs (X3) v, (Xa) DgFusvs (X5)> +

+4(n .'[(8))1“1"1#2V2u3V3M4V4H5V5 %

><tr(Fm<xl>DaFuzvz<xZ>D“Fu3V3<X3>DﬁFW4<X4>DBFusv5<x5>) } ] ,
(2.28)

whereH®, PO U@ w®, 71 andA have known expressions (and therefore knaexpan-
sions) in terms of the Gamma factdrandKs.

In (2.28 we see that, besides the knotyg tensor, a nevi(;o tensor has ariserif]. Formula
(2.28 has been tested to reproduce the already kne(v&® terms and gives the explicit construc-
tion of all covariant derivative terms containind% (which are sensible to the 5-point amplitude).

3. Towards a closed formula for N-point (tree level) amplitudes in Open Superstring
Theory

The method of finding a basis of dependent factors that allows to write the scattering amplitude
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in a short form (see eqs2.6) and @.16), by using ‘integration by parts’ and ‘partial fractions’
techniques, can be used for any N-point amplitude>(3) and will lead to an expression of the
form

A(1,2,...,N) = Fy(aij; & )Ke (LK) + ...+ Fny (ctif; & )Kiny (8 K) - (3.1)

Here, theF(aij; o')'s are thea' dependent factors and tig({,k)’s are the kinematical expres-
sions. By now, the completely known cases are onlyNhe 4 and theN = 5 ones.
The ambitious program would consist then in:

1. Finding how many terms are there in formutalj: m, =2
2. Finding the specific formulas for:

e The kinematical expression&;({,K)’s, in such a way that the tensdysg), t1q), -- -,
tim,) can be determined.

e Thea' factorsFp(aij; )'s and itser’ expansions.

This is still an open problem. In order to get an insight it would be good to consider the case of the
6-point amplitude, but before that we will make an important comment about how the symmetries
of the scattering amplitude restrict its kinematical expression.

3.1 Implementing symmetries in the scattering amplitude

In subsectior?.1it was seen that the N-point subamplitudlél, 2, ..., N) satisfies cyclicity, on-
shell gauge invariance and world-sheet parity. We have verified, in the c&ée-af andN =5

that, after doing all Grassmann integrations2r?) (like in (2.13, in the case oN = 5) and de-
manding the 3 symmetries to be satisfied, then a set of linear relations betwegnféiotors is
found. This system of relations happens to be linearly equivalent to the one obtained when using
‘integration by parts’ and ‘partial fractions’ techniques. We have verified that this works correctly
also in the case of bosonic string amplitudes (which have an expression similar to the &2 in (
but with no Grassmann variables), fdr= 4 andN = 5.

The deeper mean of all this is that, at least uplte 5, the symmetries are enough to fix the kine-
matics that governs the scattering amplitude, at any ordet.iBut, unfortunately, as we will see

in the next subsection, this is no longer true already wkien6.

3.2 Case of the 6-point amplitude

After doing the Grassmann integration i %) in the case oN = 6 we arrive to an expression of
the following type[L7]:

A(123.456) = (20) g“{ (<2a’>le<c4-cs><ce-kz><c1-ks><cz-k4><cs-k4>+

+ (other (¢ - &) (& -k)* terms)) +

10
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+ (- 2kl ) G L) G-k o) +
+(other(C-C)z(C-k)zterm$> +

+ (ool (G- 8) o @) kal k) +

+ (other(¢ - £)3(k-k)? terms}) } , (3.2)

wherelg, 145 andligg area’ dependent factors given by triple integrals:

lg 1
X4 )% ! ! ! ! ! /
{I45 } :/0 d><4/0 dx3/0 dxp X5 M12(1 — xp) 2% 0255 013 (] _ x3) 2% a2 0] _ )20/ Oas
|

, ) ) (1—x4) (Xa—X2) (X4—X3)
X (Xg — %) 2% 723 (xg — X2) 2 24 (x4 — Xg) 2% 3 { P }
1

X2(1-X4) (X3—%2) (Xa—X3)

(3.3)

Formula @.2) contains at all 237 different’ dependent factorss.

Demanding the symmetries to be satisfied, as explained in subs@ctjeve obtain a set of linear
relations which allows us to write th& dependent factors in terms of 15 of them.

On the past year an interesting preprint appeared with the calculation of the 6-point amp8fude][
The authors of it did not find the relations between t@lependent factors by means of integra-
tion by parts neither by partial fractions techniques (although they saw that some of their relations
matched with the ones that come from these techniques). They demanded another symmetry to
be satisfied by the integral expressionAgl, ..., M): the superdiffeomorphism invariance on the
string world-sheet. In fact they work with an integral expression for the amplitude which is not
exactly the same as we wrote 2 %), where we have already admitted xy_1 andxy to be fixed

(and not integrated) and also where we had figgd; = 6 = 0. Their important result consists

in the fact that they find a basis containingx6dependent factors (instead of the 15 dimensional
basis that we found). The test that supports their result consists in the fact that the linear system of
equations that they find contains a lot more equations than unknowns (and still it is consistent).
Although all the authors ofl[g] give the first terms of the&’ expansions of the 6 factors, they do

not make any confirmaton between their expression and the 6-point amplitude that comes from
the D = 10 low energy effective lagrangia2.@). It would have been nice if they had checked

the known terms up t&(a’>) order (that have already been checked by S-matrix calculations and
other methods) and, moreover, they had confirmedithe’*) terms obtained in1[d)].

Anyway, the fact of their basis being 6-dimensional, motivated us to find the linear relations be-
tween thea’ dependent factors directly by considering the integration by parts and the partial
fractions techniques. The result of our computations agreed with their result: the basis is 6-
dimensional. So, besides finding agreement with the dimension of the basis lgfstispace,

we conclude that demanding cyclicity, on-shell gauge invariance and world-sheet parity in the scat-
tering amplitude, it does no longer determine the kinematics completely. In the same way, it is

11



Higher N-point Amplitudes in Open Superstring Theory Ricardo Medina

not guaranteed that the method proposed.B) yill be equivalent to the integration by parts and
partial fractions technique wheh > 6.

Up to this moment we have not obtained an explicit closed fornifar 2, 3,4, 5, 6) since the ex-
pressions for thé;’s in terms of the ones in the basis are extremely huge.

4. Final remarks and conclusions
We finish summarizing the main points of this talk:

e There does exist a method to explicidpmpute tree level scattering amplitudes in Open
Superstring Theory, beyond 4-point calculations. The method is based on the ‘integration
by parts’ and ‘partial fraction’ techniques of Integral Calculus, for d\elependent factors
that show up in the subamplitude. Any other method, which demands any kind of symme-
try present in the scattering amplitudes, should lead to equivalent linear relations for those
factors.

e The method has been successfully applied to compute all massless 5-point amplitudes in
Open Superstring Theory (5 boson, 3-boson/2-fermion and 1-boson/4-fermion).

e The N-point case is still an open problem.

e In order to look for some generalization, in the N-point case, it would be good to have a
closed formula for the 6-point amplitude which had been tested to reproduce the effective
lagrangian terms up tﬁ(a"‘) order. There is some work in progress in this direction.

e The kind of results presented in this talk are of importance in:
1. Determining the complete low energy effective lagrangian (at least in the open super-

string sector) in Type | theory.

2. Loop amplitudes: it is quite probable that the same kinematic expressions that already
appear at tree level also show up in higher loop calculations.

3. The low energy effective lagrangian of the Type Il theories, since closed string am-
plitudes can be directly obtained from the open ones (by means of the KLT relations
[20)).
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