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1. Introduction

The Maupertuis-Jacobi principle[1] in classical mechanics establishes that the dynamics of a
given system can be viewed as geodesic motions in an associated Riemannian manifold. Recalling
briefly, let us consider a classical mechanical system withN degrees of freedom described by the
Lagrangian

L(q, q̇) =
1
2

gi j (q)q̇i q̇ j −V(q), (1.1)

where i, j = 1,2, . . . ,N, the dot stands for differentiation with respect to the timet, and gi j is
the Riemannian metric on anN-dimensional configuration spaceM . All the quantities here are
assumed to be smooth. The Euler-Lagrange equations of (1.1) can be written as

q̈i +Γi
jkq̇ j q̇k =−gi j

∂ jV(q), (1.2)

whereΓi
jk is the Levi-Civita connection for the metricgi j .

The Hamiltonian of the system described by (1.1)

H(q, p) =
1
2

gi j (q)pi p j +V(q), (1.3)

with pi = gi j q̇ j , is obviously a constant of motion, namely the total energy. For a fixed energyE,
the trajectories in the 2N-dimensional phase-space(qi ; p j) are confined to the hypersurfaceE =
1
2gi j pi p j +V(q). On the other hand, the admissible region for the trajectories in the configuration
space is given by

DE = {q∈M : V(q)≤ E}. (1.4)

In general, the regionDE can be bounded or not, connected or not. The boundary of the admissible
region for the trajectories is given by

∂DE = {q∈M : V(q) = E}. (1.5)

If the potential has no critical points on the boundary(V 6= 0), then∂DE is aN−1 dimensional
submanifold ofM . We can easily see that if a trajectory reaches the boundary∂DE at a pointq0,
its velocity at this point vanishes and the trajectory approach or depart fromq0 perpendicularly to
the boundary∂DE. In particular, there is no allowed trajectory along the boundary.

One can show that the equations of motion (1.2) are, in the interior ofDE, fully equivalent
to the geodesic equation of the “effective” Riemannian geometry onM defined from the Jacobi
metric[1]

ĝi j (q) = 2(E−V(q))gi j (q). (1.6)

The geodesic equation in question is given by

∇̂uu =
d2qi

ds2 + Γ̂i
jk

dqj

ds
dqk

ds
= 0, (1.7)

whereu = dqi/ds is the tangent vector along the geodesic and∇̂ and Γ̂i
jk are, respectively, the

covariant derivative and the Levi-Civita connection for the Jacobi metric ˆgi j , ands a parameter
along the geodesic obeying

ds
dt

= 2(E−V(q)). (1.8)
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As any classical topic, there is a vast literature on the Maupertuis-Jacobi principle. We notice
only that, motivated by the celebrated result due to Anosov[2] stating that the geodesic flow in a
compact manifold with all sectional curvatures negative at every point is chaotic, the Maupertuis-
Jacobi principle has been recently invoked for the study of chaotic dynamics. (See, for instance,
[3] and the references therein).

The main motivation of the present work is the the result presented in [4]. The authors consid-
ered cosmological models withN self-interacting scalar fieldsφ α taking their values in a Rieman-
nian target space endowed with a metricGαβ . The corresponding actions is∫

d4x
√
−g
(

R−gi j Gαβ (φ)∂iφ
α

∂ jφ
β −2V(φ)

)
. (1.9)

Greek indices run over 1. . .N (the target space dimension), while the lower case roman ones run
over 1. . .4 (the spacetime dimension). The spacetime metric isgi j and R stands for its scalar
curvature. By considering the Friedman-Robertson-Walker homogeneous and isotropic metric

ds2 =−dt2 +a2(t)dΣ2
κ , (1.10)

a(t) > 0, whereΣκ represents the 3-dimensional spatial sections of constant curvatureκ, they
showed, by using arguments close to the Maupertuis-Jacobi principle, that the equations of motion
associated to the action (1.9) do indeed correspond to the geodesics of a certain “effective Jacobi"
(pseudo) metric on an augment Lorentzian space. For the spatially flat case (κ = 0), for instance,
the augmented space has(1,N) signature and the geodesics corresponding to the equations of
motion derived from (1.9) are timelike, null, or spacelike according, respectively, ifV > 0,V = 0,
orV < 0. These results have been applied to the dynamical study of the models governed by actions
of the type (1.9), see [5].

Applications of the Maupertuis-Jacobi principle to the field equations obtained from Hilbert-
Einstein like actions have also a long history. Non-homogeneous and anisotropic cases were con-
sidered in [6]. Applications involving distinct differential spaces instead of differential manifolds
were discussed in [7]. Non-minimally coupled scalar fields, however, have not been considered so
far.

2. A Maupertuis-Jacobi principle for non-minimally coupled cosmology

Non-minimally coupled scalar fields are quite common in cosmology. In particular, they have
been invoked recently to describe dark energy (see [8] and [9], and the references therein, for,
respectively, models using conformal coupling and more general ones). The non-minimal coupled
generalization of (1.9) we consider here is∫

d4x
√
−g
(

F(φ)R−gi j Gαβ (φ)∂iφ
α

∂ jφ
β −2V(φ)

)
. (2.1)

In this work, we restrict ourselves to theκ = 0 case, the full analysis will appear elsewhere[10].
For such a case, one hasR= 6Ḣ +12H2, H = ȧ/a. Integrating by parts the action (2.1), we obtain
the following Lagrangian

L(a, ȧ,φα , φ̇ α) = a3(−6H2F −6Hφ̇
α

∂αF +Gαβ (φ)φ̇ α
φ̇

β −2V(φ)) (2.2)
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for the system on theN+1 configuration space spanned by(a,φα). By introducing the following
Lorentzian metric

GAB(a,φ α) =

(
−6aF −3a2∂β F

−3a2∂αF a3Gαβ

)
(2.3)

on the configuration space (upper case roman indices run over 0. . .N), the Lagrangian (2.2) can be
cast in the form

L(φA, φ̇A) = GAB(φ)φ̇A
φ̇

B−2Veff(φ), (2.4)

whereφA = (a,φ α) andVeff(φA) = a3V(φ α). It is clear the similarity with (1.1), provided that
detGAB 6= 0, which we assume by now. We will return to this issue in the last Section.

Before considering the Maupertuis-Jacobi principle, let us recall that our manipulations imply
that all solutions of the Euler-Lagrange of (2.1) are also solutions of the Euler-Lagrange equations
of (2.2), but not the converse. Einstein equations form a constrained system. The solutions of
(2.1) correspond, indeed, to a subset of the solutions of (2.2), as one can realize by considering the
Hamiltonian associated to (2.2)

H(φA,πA) = GAB
πAπB +2Veff(φ) = a3(−6H2F −6Hφ̇

α
∂αF +Gαβ (φ)φ̇ α

φ̇
β +2V(φ)), (2.5)

which, obviously, must be a constant of motion, sayH(φA,πA) = E. The Euler-Lagrange equations
of (2.1), on the other hand, implies thatE = 0 (the so-called energy constraint). Hence, we must
bear in mind that the relevant solutions of our original problem correspond indeed to theE = 0
subset of the dynamics governed by (2.2). Now, let us consider separately the casesV = 0, V < 0
andV > 0.

According to (1.2), for V = 0 the Euler-Lagrange equations of (2.1) are already given by
geodesics of (2.3). From the energy constraint

GAB(φ)φ̇A
φ̇

B =−2a3V(φ), (2.6)

one sees that such geodesics are of null type. ForV < 0, one can introduce the metric

ĜAB =−2VGAB (2.7)

and obtain the same conclusions by repeating the same procedure used for the classical Maupertuis-
Jacobi principle. From the energy constraint (2.6), it is clear that the associated geodesics will be
spacelike. Finally, forV > 0, one can introduce

ĜAB = 2VGAB (2.8)

and repeat exactly the same steps followed for the last case. In this case, the geodesics will be
timelike. Since the metric (2.3) is not positive defined, one cannot, in general, obtain from the
energy constraint a dynamically admissible regionD of the configuration space, as done for the
classical Maupertuis-Jacobi principle. Also as a consequence of the Lorentzian signature of (2.3),
one has that, typically,D will be unbounded.

Summarizing, the equations governing the cosmological model (2.1) correspond to the geodesics
of the metric

ĜAB =

{
GAB if V = 0,

2|V|GAB if V > 0 orV < 0,
(2.9)
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with GAB is given by (2.3). Moreover, since

ĜAB(φ)φ̇A
φ̇

B =−4a3|V|V, (2.10)

one has that the geodesics are of null type, timelike or spacelike, respectively, according ifV = 0,
V > 0, orV < 0. All the results[4] that have motivated this work can be obtained by settingF = 1.

3. Final Remarks

Since the equations for cosmological models like (2.1) correspond to the geodesic equations
of the Lorentzian metric (2.9), it is possible, in principle, to obtain some information about the
cosmological dynamics from the geometry of the associated Lorentzian metric. For instance, it is
shown in [4] that cosmological solutions exhibiting late time acceleration are related to geodesics
entering in a certain region corresponding to a subset of the lightcone of (2.9). The study of
dynamical singularities can also benefit from these results. The essential assumption of detGAB 6= 0
is strictly related to the avoidance of some singularities. For theN = 1 andGαβ = 1 case, one has

detGAB =−6a4
(

F(φ)+
3
2

(
F ′(φ)

)2
)

. (3.1)

The vanishing of this quantity is known to be associated with the existence of some unavoidable
dynamical singularities (see, for references, [11]), which render the associated cosmological model
unphysical. Some preliminary results suggest that the same occurs for theN-field case.

We finish by noticing that one of the most interesting peculiarities of the conformal coupling
(F(φ) = 1−φ2/6) is that it can evade the detGAB = 0 singularity, since

F(φ)+
3
2

(
F ′(φ)

)2 = 1 (3.2)

for the conformal coupling and, consequently, the Maupertuis-Jacobi principle can be always em-
ployed.
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