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Dilatonic Strings and the Flat Behavior of Rotational Curves in Galaxies A. L. Naves de Oliveira

1. Introduction

Observational data measuring the rotational curves in some galaxies show that coplanar orbital
motion of gas in the outer part of galaxies maintains a constant velocity up to several luminous radii
[6, 7, 8, 9, 10]. The most accepted explanation for this effect is that there exists a spherical halo of
dark matter which surrounds the galaxy and accounts for the missing mass needed to produce the
flat behavior of the rotational curves.

It is reasonable to suppose that the halo of the dark matter is symmetric with respect to the
rotation axis of the galaxy, so we consider here an axisymmetric spacetime. Inprevious works a
cosmic string in scalar-tensor gravities were considered [1, 2, 3]. This kind of source is an example
of axisymmetric spacetime.

This work is organized as follows. In section 2 we impose the trajectory of thetest particle
in this static axisymmetric space-time to be coplanar and radii independent and then obtain its
angular velocity in terms of the coefficients of the metric. In section 3 we re-write the line element
of this region using the Chandrasekhar form and we calculate the tangential velocity of these test
particles. Such calculation leads to a theorem that gives a necessary andsufficient condition on the
metric coefficients in order to have tangential velocities of equatorial objectscircling the galaxy
and whose magnitude is radii independent. In section 4 we apply this theoremto the case of a
space-time generated by a dilatonic current carrying cosmic string [1, 2].Finally, in section 5 we
present some conclusions.

2. The Line Element

The line element of an axially symmetric space-time is given in the form [11]:

ds2 = −e2ψ (dt+ωdϕ)+e−2ψ [e2γ (dρ2 +dz2)+ µ2dϕ2] (2.1)

whereψ , ω , γ andµ are functions of(ρ,z).
The Lagrangean for a test particle travelling on the static space-time(ω = 0) described by

(2.1) is given by:
2L = −e2ψ ṫ2 +e−2ψ [e2γ (ρ̇2 + ż2)+ µ2ϕ̇2] , (2.2)

thus, the associated canonical momenta,pxa = ∂L

∂ ẋa , are

pt = −E = −e2ψ ṫ,

pϕ = L = µ2e−2ψ ϕ̇,

pρ = e−2(ψ−γ)ρ̇,

pz = e−2(ψ−γ)ż, (2.3)

whereE andL are constants of motion for each geodesic, a fact that comes from the symmetries
of the space-time analyzed. As there is no explicit dependence on timet, the Hamiltonian,H =

paẋa−L is another conserved quantity, which we normalize to be equal minus one halffor timelike
geodesics. Also, we restrict the motion to be at the equatorial plane, thus ˙z= 0. In this way, we
obtain the following equation for the radial geodesic motion:

ρ̇2−e2(ψ−γ) [Eṫ −Lϕ̇ −1] = 0. (2.4)
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In order to have stable circular motion, which is the motion we are interested in, we have to satisfy
three conditions:
i) ρ̇ = 0
ii) ∂V(ρ)

∂ρ = 0, whereV(ρ) = −e2(ψ−γ) [Eṫ −Lϕ̇ −1],

iii ) ∂ 2V(ρ)
∂ρ2 |extr > 0, in order to have a minimum.
With these conditions, from (2.4), we obtain a set of two equations constraining the motion to

be circular extrema in the equatorial plane:

Eṫ −Lϕ̇ −1 = 0, (2.5)
∂

∂ρ

(

e2(ψ−γ) [Eṫ −Lϕ̇ −1]
)

= 0. (2.6)

From (2.3), we can expressṫ andϕ̇ in terms ofE andL, and the metric coefficients as:

ṫ = e−2ψE, (2.7)

ϕ̇ =
e2ψ

µ2 L. (2.8)

Using these equations in the constraints ones and recalling thatE andL are constants for each
circular orbit, after some rearranging, we arrive at the following equations:

µ2e−2ψ (1−e−2ψE2)+L2 = 0, (2.9)

−
(

e2ψ)
ρ E2 +

(

e2ψ

µ2

)

ρ
= 0, (2.10)

where the subindex stands for derivative with respect toρ. Solving forE andL, we obtain:

E = eψ

√

√

√

√

µρ
µ −ψρ

µρ
µ −2ψρ

,

L = µe−ψ
√

ψρ
µρ
µ −2ψρ

. (2.11)

The second derivative of the potentialV(ρ) evaluated at the values ofE andL which constraint the
motion to be circular and extrema, is given by:

Vρρ |extr =
2e2(ψ−γ)

µρ
µ −2ψρ

(

µρ

µ
ψρρ −

µρρ

µ
ψρ +4ψ3

ρ −6
µρ

µ
ψ2

ρ +3

(

µρ

µ

)2

ψρ

)

. (2.12)

We can now obtain an expression for the angular velocity of a test particle,Ω, moving in a circular
motion in the orbital plane, in terms of the metric coefficients, recalling that:

Ω =
dϕ
dt

=
ϕ̇
ṫ
, (2.13)

thus, using Eqs. (2.8) and (2.11) in this last equation for the angular velocity, we obtain that:

Ω =
e2ψ

µ

√

ψρ
µρ
µ −ψρ

. (2.14)
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3. The Tangential Velocity

We now want to express the tangential velocity of the test particles in circularmotion in the
equatorial plane, in terms of the metric coefficients, following [5], we rewritethe line element (2.1)
as:

ds2 = −e2ψdt2 +e−2ψ µ2dϕ2 +e−2(ψ−γ)dρ2 (3.1)

thus, in terms of the proper time,dτ2 = −ds2, we have that

dτ2 = e2ψdt2
[

1−e−4ψ µ2
(

dϕ
dt

)2

−e2γe−ψ
(

dρ
dt

)2
]

. (3.2)

from which we can write
1 = e2ψu02[

1−v2] , (3.3)

whereu0 = dt
dτ is the usual time component of the four velocity, and a definition of the spatial

velocity,v2, comes out naturally in this way.
This spatial velocity is the 3-velocity of a particle measured with respect to an orthonormal

reference system, thus has components:

v2 = e−4ψ µ2
(

dϕ
dt

)2

+e2γe−4ψ
(

dρ
dt

)2

. (3.4)

The orthogonal velocity is the 3-velocity of a particle measured with respectto an orthonormal
reference system, thus has components:

v2 = v(ϕ)2
+v(ρ)2

. (3.5)

From these last two expressions we obtain for theϕ-component the spatial velocity:

v(ϕ) = e−2ψ µΩ, (3.6)

and replacingΩ from Eq. (2.14), we finally obtain an expression for the tangential velocityof a
test particle in stable circular motion, in terms of the metric coefficients of the general line element
given by Eq. (2.1), such tangential velocity has the form:

v(ϕ) =

√

ψρ
µρ
µ −ψρ

. (3.7)

It was our goal to obtain this expression for the tangential velocity for a general axisymmetric
static space-time, and to be able to describe it in terms of the metric coefficients alone, because
now we can impose conditions on this tangential velocity, and deduce a constraint equation among
the metric coefficients, which has to be satisfied in order to fulfill the condition imposed on the
velocity. In particular, the tangential velocity for a trajectories in each orbitis constant, that is
v(ϕ)

ρ = 0, thusv(ρ) = v(ϕ)
c , with v(ϕ)

c a constant, representing the value of the velocity, from Eq.
(3.7), we have that:

µρ

µ
=

1+v(ϕ)
c

2

v(ϕ)
c

2 ψρ (3.8)
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Theorem: The tangential velocity of circular stable equatorial orbits is constant iff thecoeffi-
cient metric are related as

eψ =

(

µ
µ0

)l

(3.9)

with l = cte.
We can see that this is anecessary and sufficient conditionfor the velocityv(ϕ)

c to be the same for

two orbits at different radii at the equatorial plane, provided thatl =
(

v(ϕ)
c

)2
/

(

1+
(

v(ϕ)
c

)2
)

.

In order to have tangential velocities of equatorial objects circling the galaxy, and whose mag-
nitude is radii independent, the form of the line element in the equatorial planehas to be

ds2 = −

(

µ
µρ

)2l

dt2 +

(

µ
µρ

)−2l
[

e2γdρ2 + µ2dϕ2] . (3.10)

4. Stable Circular Geodesics Around a Dilatonic Electrically Charged Cosmic
String

The metric of a electrically charged cosmic string is [1, 2]:

ds2
E =

(

r
r0

)2l2−2n

W2(r)(dr2 +dz2)+

(

r
r0

)−2n

W2(r)B2r2dθ 2

−

(

r
r0

)2n 1
W2(r)

dt2 (4.1)

where

W(r) ≡

(

r
r0

)2n
+k

1+k
.

The constantsm, n, k andB will be determined after the inclusion of matter fields. Our objective
in this section will be to derive the geodesic equations in the equatorial plane(ż= 0), where dot
stands for “derivative with respect to the proper timeτ". First of all, let us re-write the metric (4.1)
in a more compact way:

ds2 = A(r)
[

dr2 +dz2]+B(r)dθ 2−C(r)dt2, (4.2)

with

A(r) =

(

r
r0

)2m2−2n

W2(r),

B(r) =

(

r
r0

)−2n

W2(r)β 2(r),

C(r) =

(

r
r0

)2n

W−2(r)
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The Lagrangian for a test particle moving in this space-time is given by:

2L = A(r)
[

ṙ2 + ż2]+B(r)θ̇ 2−C(r)ṫ2 (4.3)

The associated canonical momenta,pα = ∂L

∂ ẋα , are:

pt = −E = −C(t)ṫ,

pθ = L = B(r)θ̇ ,

pr = A(r)ṙ,

pz = A(r)ż. (4.4)

Because of the symmetries of this particular space-time, the quantitiesE andL are constants for
each geodesic and, because this space-time is static, the Hamiltonian,H = pα ẋa−L , is a con-
stant. Combining this information with the restriction of a motion in an equatorial plane, we arrive
to the following equation for the radial geodesic:

ṙ2−A−1[Eṫ −Lθ̇ −1
]

= 0. (4.5)

In this work, we will concentrate on stable circular motion. Therefore, we have to satisfy three
conditions simultaneously. Namely:

• ṙ = 0 ;

• ∂V(r)
∂ r = 0, whereV(r) = −A−1

[

Eṫ −Lθ̇ −1
]

;

• ∂ 2V(r)
∂ r2 |ext > 0, in order to have a minimum.

Consequently, we have:

Eṫ −Lθ̇ −1 = 0 (4.6)
∂
∂ r

{

A−1[Eṫ −Lθ̇ −1
]}

= 0

Expressinġt and θ̇ in terms of the constant quantitiesE andL respectively, we can re-write the
above equations as:

(

1
C

)

E2−

(

1
B

)

L2−1 = 0

(

1
C

)′

E2−

(

1
B

)′

L2 = 0 (4.7)

where prime means “derivative with respect to the coordinater", which finally gives us expressions
for E andL:

E = C

√

B′

B′C−BC′
,

L = B

√

C′

B′C−BC′
(4.8)
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Recalling that the angular velocity of a test particle moving in a circular motion in anorbital
plane isΩ = dθ

dt = θ̇
ṫ , we have:

Ω =

√

C′

B′
(4.9)

We are now in position to compute the tangential velocity of the motion in an orbit plane. From
now on, we will follow the prescription established by Chandrasekhar. Let us re-express the metric
(4.2) in terms of the proper timeτ, asdτ2 = −ds2:

dτ2 = C(r)dt2
[

1−
A
C

(

dr
dt

)2

−
B
C

(

dθ
dt

)2
]

(4.10)

and comparing with the expression

1 = C(r)
(

u0)2[
1−v2] , (4.11)

whereu0 = dt
dτ , we can easily obtain the spatial velocityv2:

v2 =
(

v(r)
)2

+
(

v(θ)
)2

, (4.12)

whose components are, respectively:

v(r) =

√

A
C

(

dr
dt

)

,

v(θ) =

√

B
C

(

dθ
dt

)

=

√

B
C

Ω. (4.13)

In order to have stable circular orbits, the tangential velocityv(θ) must be constant at different
radii at the equatorial plane. Therefore, we can impose:

v(θ) =

√

BC′

B′C′
= v(θ)

c = const. (4.14)

Applying the theorem to this case, we get

C1/2 =

(

r
r0

)l

, (4.15)

providedl = v(θ)
c

1+v(θ)
c

. This theorem implies that the line element in the equatorial plane must be:

ds2 = −

(

r
r0

)2l

dt2 +

(

r
r0

)−2l
[

(

r
r0

)2m2

dr2 +B2r2dθ 2

]

(4.16)

This form is clearly not asymptotically flat and also does not describe a space-time corresponding to
a central black hole. Therefore, we can infer that it describes solely the region where the tangential
velocity of the test particles is constant, being probably joined in the interior and exterior regions
with other metrics, suitably chosen in order to ensure regularity in the asymptoticlimits.
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Let us notice, however, that this metric has the form which has been foundpreviously [1, 2],
after identifyingl with the appropriate constant parameters which depend on the microscopic de-
tails of the model. The calculations are straightforward but length. For this particular configuration,
consisting of an electrically charged dilatonic string, we have:

l = 2G0α(φ0)
[

U +T + I2] , (4.17)

whereU , T andI2 are the energy per unit length, the tension per unit length and the currentof the
string, respectively.α(φ0) measures the coupling of the dilaton to the matter fields.

5. Conclusion

We found the conditions on the metric coefficients of a static axisymmetric space-time to
admit a test particle with a coplanar circular orbit radii independent up to several luminous radii. A
remarkably fact is that the results presented in sections 2 and 3 are independent of the type of the
energy-matter tensor present in the space-time and curving it. It is a purelygeometric analysis. A
possible example of this kind of space-time is the one generated by a dilatonic electrically charged
cosmic string.

Considering cosmic strings formed atGUT scales,G0
[

U +T + I2
]

∼ 3× 10−6, and for a
couplingα(φ0) which is compatible with present experimental data,α(φ0) < 10−3, the parameter
l (and thus the tangential velocityvθ

c ) seems to be too small. The observed magnitude of the
tangential velocity beingv(θ)

c > 3×10−4 cannot be explained by a single dilatonic current-carrying
cosmic string in this case. As argued by Lee [4], if a bundle ofN cosmic strings formed at GUT
scales seeded one galaxy, then the total magnitude of the tangential velocity would beNv(θ)

c . In our
case, to be compatible with astronomical observations, one must have a bundle of N ∼ 105 strings
seeding a galaxy. With such a density, a cosmic string network would be dominating the universe,
and its dynamics would be completely different. The only situation where such ahuge number of
strings could be possible is at much lower energy scales (electroweak scale, say) but then of course
the energy scale is far too low to have any relevance for structure formation.
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