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1. Introduction

The main goal of the present paper is to build a path integral formalism to Thermofield Dy-
namics (TFD) approach, proposed by Takahashi and Umezawa as a real-time thermal quantum field
theory fully structured on the notion of linear (Hilbert) spaces. With the emergence of TFD, as an
operator version of the Matsubara (imaginary time) formalism, vast applications were available
for treating thermal phenomena in the realm of quantum figJds[3, 4], in particular exploring
algebraic representatio$] Despite the success and the effort over the last five decades, since the
seminal paper by Matsubara in 1955, the construction of a general thermal quantum field theory
remains an open problem, demanding improvements to derive, for instance, transport equations for
systems described by a quantum field in a curved space-time backgdodndjr to deal with the
imminent possibility of experimental informations, in high energy physics, about the phase transi-
tion from the state of hadrons to a quark-gluon plasma $€a®[ Under such a situation, TFD
arises as a strong candidate for new developments due to its algebraic nature.

TFD is defined through two expedients: the tilde (dual) conjugation rules and a Bogoliubov
transformation. The former defines a doubling in the dynamic variables, whilst the latter introduces
thermal effects through a vacuum condensation. Because of these algebraic constituents, TFD has
proved to be useful for developing thermal field theories, with particular emphasis on symmetry
groups. Support for this can be found in some instances: the generators of Bogoliubov transfor-
mations in TFD are the generators$if)(2) in the case of a fermionic system , agd(1,1) for
bosonsfl]; elements of the g-groups have been explored in connection with the notion of dual con-
jugation rules and the Bogoliubov transformations, introducing the effect of temperature through
a deformation in the Weyl-Heisenberg algeli@a[11, 12]; the nature of the doubling has been
analyzed via the bialgebras, and also in this context, a connection among elements of Hopf and
w*—algebras has been suggesietifL4].

Furthermore, the TFD vector space has been taken as a representation space for Lie Hifjebras|
Thus, the equations of motion in TFD have been derived from a study of the Galilei and Poincaré
symmetries]5, 16]; Liouville-von Neumann equations have been introduced for the Klein-Gordan
and Dirac field associated with the kinetic thedr¥jf and a classical counterpart of TFD has been
identified[L8, 19]. A constitutive element of this representation theory for Lie algebras is the dou-
bling structure in the set of mappings defined in the TFD Hilbert space (actually, this doubling is
present in any field formalism dealing with thermal phenomghaSuch a doubling gives rise to
the fact that the generators of symmetries and the dynamic observables, although playing the same
role in the algebraic level, are distinct from each other in a dynamic sense. This result has indicated
an association between the Lie algebras defined in the TFD Hilbert space and the standard represen-
tation ofw*-algebras}0, 21, 22], in particular, as a generalization of the Ojima’s w@&in order
to treat non-equilibrium systenid}, 17]. This type of representation has been calleekrmo-Lie
algebrasand it is useful to set forth a thermal quantum field theory from quite precise mathematical
and physical roles. For instance, the tilde conjugation rules in TFD are derived under general basis
and can be then applied to interacting systems; this is not the case of the original TFD formulation,
which is based under physical reasoning but restrict to free systems giving rise to different defini-
tions sometimes in contradiction to each other. In this paper we use such an algebraic procedure
of thermoalgebra to introduce a functional integral formalism for TFD. The presentation follows
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the derivation of some results which are useful for practical applications. In the literature there are
just two attempts to write a functional formalism for TFD (at least to our best knowleddel9).

Here we improve those results by following the Weinberg appro2@i¢ derive n-point functions

at zero temperature. An advantage in the method is its generality to treat with different fields.

2. Emergence of TFD

We can think of the operatiofA) = Tr(Ap), as an average of an operafoim some Hilbert
state, say0(f)), such that/A) = (0(B)|A|0(B)), wherep = % T being the temperature. In this
way, the system would be described by a pure like state, but still compatible with the description by
a mixed state. Actually, the equation above provides an alternative formula)fof he ensemble
average of an operatérin thermal equilibrium, is given byA) = Z-1(8)Tr(e HA). Assuming
thatH|n) = Ep|n) , with (n|m) = Sym, we write (A) = Z~1(B) 3, PE(n|An).

We are looking for a stat®(f3)) such that

(A) = (0(B)|AIO(B)) =Z*(B) Y e P=(nAn). (2.1)
Let us write|0(B)) = 3, |n)(n|0(B)) = S fn(B)|N), which results in

(O(B)IAJO(B)) = ;ﬂfé (B) fm(B)(n[AIm).
This gives us the required expression in Bdlif f:(B)fm(B) =Z 1(B)e PE8,m. But we know
that f,(B8) are c-numbers and, then, it is impossible to satisfy this relation so long as we restrict
ourselves to the original Hilbert space. The above condition is like an orthogonality condition.
Therefore if we introduce a doubling in the Hilbert space, we may be able to satisfy this condition.
Let us do this, resulting in a tensor product of spaces, With) = |n) ® |M). We can write
10(B)) = 3n fn(B)|n, ), such that

(O(B)IAIO(B)) =S fa(B)fa(B)(NIAIN),
where we have assumed tiiatfi|Ajm, M) = (n|Ajm) (A|M) = Anmbnm. Now we havef; (B) fn(B) =
Z-1(B)e PE, which has the solutiofi,(8) = Z~Y/?(B) e PE/2, Therefore we obtain,

06)) = 5577 3 & A,

The thermal staté0(f3)) is then defined in this doubled Hilbert space. Doubling is not a
characteristic of TFD, but rather an ingredient present in all thermal theory. In terms of density
matrix, the doubling is present when we write the Liouville-von Neumann equatigns= Lp,
with L = [H,] being the Liouvillian. In this case we halethe generator of time evolution of
p(t) andH the Hamiltonian of the system. They are in the correspondence, but are different to
each other in mathematical and physical ground. In the sequence we explore this result in a more
general context.
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3. The Meaning of the Doubling in Thermal Theories

3.1 Generator of Symmetry and Observable

In order to introduce a formalism based on sta®¢g)) from general assumptions, we assume
that the set of kinematical variables, séyis a vector space of mappings in a Hilbert space denoted
by 7. The set/” is composed of two subspaces and is writtettas 7o, ¥gen, Where?op stands
for the set of kinematical observables whilgis the set of kinematical generators of symmetries.

This classification o is usual in quantum (as in classical) theory, but in that dase 7, =
7gen This is so because to each generator of symmetry there exists a corresponding observable and
both are described by the same algebraic element.

It has to be emphasized that, although thellcorrespondence among observables and gener-
ators of symmetry is based on physical ground, there exisagmmi@ri mechanical (or kinematical)
imposition to consider a generator of symmetry and the corresponding observable as described by
the same mathematical quantity. Actually we are free to assume a more general situation. Here we
consider then the same-11 correspondence among generators and observableg;joand ¥gen
will be took as different from each other. That ¥y, and¥gen are described by different mappings
in 2. To emphasize these aspect, we denote an arbitrary elemetits bf A and by,& the
corresponding element ifgen, Now we analyze the consequence of saeparability conditionin
a general situation.

3.2 Doubled Lie Algebra

Taking 7# as the carrier space for representation of a Lie algetacan write

~

ALA] = ick Ay, (3.1)

whereA € 7gen The imaginaryi is to emphasize that we treat a unitary representation. Since
we have a hat-representation fothe non-hat operators have to be taken into consideration in a
representation in the full spac#s (otherwise the representation will be restricted to a subspace
of s in which the set of hat operatorggen, is defined; resulting in the usual representations).
Therefore we have additional commutation relations amAnmd,& operators, and among the
operatordA. Let us then write

ALA] = itEA (3.2)
[ALA]] = igh A, (3.3)

Wherefi'} andg}‘j are constants to be fixed with the following reasoning. Observe that this comuta-
tion relations describe a Lie algebra (to be denotedy which is called a semidirect product of
two subalgebrasfgen and ¥ops, With 7ops the invariant subalgebra. The motive for that is a phys-
ical imposition. Since non-hat operators describe kinematical observable3,ZEoierpreted as

the infinitesimal action of a symmetry generatedﬁb;on the observabléy, resulting in another

observable given bif$Ac. Here we takef = g = cf [18].
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3.3 Tilde Conjugation Rules

Some properties of such an algebrathat will be useful in the study of representations, can
be immediately derived. Defining the variabde= A — A, the commutation relations given by
Eqgs.B.1)-(3.3) are now rewritten as

[AbAi] = ic!(jAk’
ALA]] = —icl A,
[ALA] = 0.

This result shows that a doubling of the degrees of freedom has been introduced, compared with the
standard (irreductible) group theory representation. This is a direct consequence of the algebraic
separability between mappings.i# describing the generators of symmetry and those describing
the observables.

Such a doubling can be described as a mapping ia %o, ® Ygen, Sayt: ¥ — ¥, denoted
by AT = A, fulfilling the following conditions:

(AAT= AA;,
(CA+A]T=CA+A;,
(ATT= (AT,
(AT = A.

These properties are calléftle conjugation rules

4. Thermal Generating Functional and Feynman Rules

Lets us consider the example of a real scalar field. The tilde conjugation rules can be applied to
any relation among the dynamical variables, which enable to add for the scalar field and conjugated
momentum the tilde components. In this case the canonical commutation relations can be written
as

[Pm(X), (V)] = 18mnd (X =), [Pm(X), Pn(y)] = [Mm(X), Mn(y)] =0,
where (®y1(x), D2(x)) = (P(x), —D(x)) and (M1(x),M2(x)) = (M(x),1(x)). We can apply the
tilde conjugation to the equations of motion in the Heisenberg picture, by writing the generator of
time translation a#l = H —H and in this way we derive the associated Lagrangianad. — L

such that the free Lagrangian of the scalar theory is given by

~ 1
Lo = —50m (9™ ()99 (x) +- M9 (x)9' (x)),
whereoy, are the components of the Pauli maioix The free action for this theory is given by
Sol9] = [ d%Co(6(,9000) + 3¢ [ dxYEm(X )50 ~¥)0"006' ().

where Em(X,y) = dmi [ (gig’ﬁip-(x‘y)E(p) andE(p) = v/p2+m2. Since both terms ir§ are

quadratic in the fields, we may writ® in the quadratic form
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Sl0] =~ [ detyim( )"0’ ().

where

Dim(X,y) = o'|m(ay’ua#54(x—y) +rr\254(x—y)) ieEim(X,y)d Xo yO
The propagator is given by the inverse®f[26], that isAm(x,y) = (2~ ) mi(x,y); and since

4
T(x9) = [ 15 L3P om0 1)~ i6meE p)]

(2m)*
we have
[ 9P e Y g

A(Xay)_/(zn.) el (p)7
such that

1 0

. p2+m2—ieE(p) o

Alp)=2"(p) = 0 PrneeEp)

We proceed further by introducing the Bogoliubov transformation
U(B) =e ClOBI

whereG[0(B)] = —i [d3pO(E(p); B)(a(p)d(p) — a'(p)a'(p)) is the generator of the Bogoliubov
transformation and since it is hermiti@(0(B)] = G'[6(B)], we haveU 1(B) = UT(B). The
fuctional paramete® (E(p); B) is such that

1
/1—_e BPED)’

—BE(p)
e 2

1—eBEM’
In order to add the temperature in the duplicated system we proceed, just like it is done with
the time, by defining

U(E(p); B) = coshb(E(p); B) =

V(E(p); B) = sinh8(E(p); B) =

o'(x,B) =U(B)®' (x)U*(B),

N™(x,B) = U (B)N™()U ~*(B).

The Bogoliubov transformation is a canonical transformation, such that

[¢m(X7B)>nn(yvﬁ)] = i6mn5(X—y), [CDm(X,ﬁ),CDn(y,ﬁ)] = [nm(xvﬁ)vnn(yvﬂﬂ =

where(®s(x, B), ®2(x, B)) = (®(x, ), ~P(x, §)) and (M (x. B), M2(x, ) = (M(x, B),(A(x, B))-
These operators have the eigenstaes, B) =U (B)|¢; t) and|x; 7, ) =U(B)|x; T), such that
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®'(x,B)I¢:7.B) = ¢'(¥)|¢;7.B), N'(x.B)|m;7.B) =7 (x)|7:7,B).
These eigenstates satisfy the completeness and ortonormality conditions for eaclaticheem-
perature 1.
In terms of creation and annihilation operators we have

d(p;B)=U(B)a (p)U(B) = B,(p% B)a™(p),
and[a (p; B),a™ (q; B)] = §'™M5(p—q), where(al(p),a%(p)) = (a(p), —&'(p)) with
0.2\ _ rpl /n0- . u(po;ﬁ) V(DOJB)
B(p": ) = [Bh(p: B)] = (V(po;ﬁ) u(po;ﬁ)> .

Using these definitions, the thermal figl@x, ) can be written in terms of non-thermal field&x)
and a thermal Bogoliubov operatB(ido; ), that is

d3p

I —
B =] i 2

= [ 9P (@Pan(p) P )
(2m)3y/200

V2p°
d®p

= Bl (ido; .
iiB) [ o s
= Brn(ido; B)9™(),
where the action dB(idp; ) is defined by

(€7a (p; B) +eP"a" (p; B))

(€Pa™(p) +e'Pa""(p))

Bhn(id0; B)e" P = Bl(p% B)e P¥. (4.2)

Once we introduce the temperature in the fields, we may show that the themalized action is
given by

SI0:] = —5 [ Ay in(x y)o™0x 50! (3:B)

= —5 [ 4y Zim(xy: B)6™00' ),
where '
Dim(%,Y; B) = B} (idy,; B)Bly(idk: B) Zik (X, Y).

SinceZi(x,y) = [ gzgzeip-(x‘”.@jk(p),we have

Zim(P;B) = B (1% B) Zi(P)B(% B).
whose inverse iA(p; B) = 27 1(p; B) = B~1(p% B) 21 (p)B~(p% B); or explicitly:

ppi ) — [T 2SI B)  —2xid (o2 4 mP)e’E n(pPif)
| 28 (0 - )N B) ki + 20i8( (R B) )
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wheren(p? B) = v2(p% B) is boson ocupation number. The physical component of the thermal
propagator is

ALl(p;B) = pZ-|-lrnZ—|g+2m5(p2+m2)n(po,ﬁ),

in agreement with the usual procedures.
As a start point to derive the path integral formalism in TFD for scalar theories, we can show
the following result,

(0(B);out| T{P(X1,t1)...P(Xn,tn) }|O(B);in)

_ |N|2/ [ 40" (%, D)9 (X1, tr) ... (X, tn) €xpiS[: B, (4.2)

X, T,

where: we have assumed a quadratic Hamiltonian in the momenta,

0(B);in) =U(t — —)[0(B)), [0(B);0ut) =U(t — +)|0(B)),

S0; B] = S[¢; B] + Snt[¢] and|N|? is a normalization factor. With this result we are ready to use
the path-integral formalism to derive the thermal Feynman rules in a scalar theory with interaction.
We will concentrate on the themal vacuum expectation values of the time-ordered products of the
non-tilde components, which is defined by

(0(B);out| T{P(X1,t1) ... P(Xn,tn) }|O(B);in)

(0(B);out/0(B);in) '
From this definition, the physic&( 3 )-matrix elements may be obtained following in parallel with
the Weinberg procedur@§]. Using Eq.4.2) in Eq.@.3), we obtain

_ I Tixd0'(x)9(x) .. (x0) €4

M(X1... % B) = (4.3)

M(X1... % B) T T <91 () &50P (4.4)
To deal with interactions we expand the exponential in powe&,d®|, that is
o k
eXpliS: ) = expliSoloipl) 3 g (Snlo))" (45)
—0 '™

The general integral that we find in the numerator and denominator of thé& Bas(in the form

FinnYss-- i B) = [ 199 00m(32)-- om0 (1) 0 ()=, (4.6)

where the field®m, (Y1), - .-, oMk (yk) come from(Spt[0])X in Eq.@.5). SinceSy[¢; B] is quadratic
in the fieldsg, we can evaluate the functional gaussian integraly pbtaining the following resuts

i2(B),,
o)

NI

M-z ).

pairings of fields pairs

This expression gives rise to the coordinate-space Feynman rules for calculating the numerator of
Eq@.3): we proceed by expanding in the interaction te$pg, and sum over the ways of pairings
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the fields in theSy's with each other and with the fieldgx;), . .., ¢ (X)), with the contribuction of
each pairing being given by space-time integradiy; . .. dyk) of the product of the coefficient of
the fields inSy; and the product of propagators 2—1(B) [26].

This approach can be extended for gauge and fermion fields following the basic structure of
TFD, with the thermal Bogoliubov operator introduced in Ef1). One interesting aspect is that
the Bogoliubov transformation can be generalized to describe a quantum field in a confined region
in space §]. This aspect can be straightforward brought to the form of the thermal Bogoliubov
operator.
5. Summary

In this work we use the Thermofield Dynamics formalism, based on the tilde conjugation rules
and a thermal Bogoliubov transformation, to obtain a thermal n-point functions for the scalar field
theory. In order to achieve our results we have analyzed the structure of TFD on the basis of
Lie algebra; so deriving general algebraic properties that can be used in the context of interacting
fields. Our approach to derive the thermal n-point functions follows the Weinberg scheme for a
path-integral (without the use of sources), and is based on a definition of the thermal Bogoliubov
transformation written as a differential operator acting on the fields. This formalism can be gener-
alized, along the same lines, for spinors and gauge fields. Such a subject matter will be presented
in detail elsewhere.
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