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1. Introduction

The classical 4D electromagnetic duality without sources states an exchange between electric
and magnetic field§ E,B) — (B,—E)]. In regard to the electromagnetic waves this simply im-
plies ar /2 rotation, which, without sources, is physically innocuous. The situation is much more
involving in nonlinear extensions of electromagnetism. Even without sources the NC electromag-
netism is not a free theory and the extension of the mentioned duality leads to nontrivial properties
essential to the understanding of the NC gauge theories. In this paper, which specially relies on
Ref. [1], we study some of the properties and nontrivial consequences of this duality within the NC
field theoretical framework.

The first paper to address the issue of 4D NC electromagnetic duglégnjployed the Seiberg-
Witten (SW) map 4] to first order in6 and found that the dual action remains the same, except
for the inversion of the coupling constant and the exchange(tife noncommutativity parameter)
with 6 = g’ *6 (whereg? is the gauge coupling constant ahds the Hodge duality operator).

This modification oné connects space-like noncommutativity with time-like honcommutativity
(6"v6,, > 0= 6, < 0) and hence, iB® = 0, in the dual picture a noncommutativity be-
tween time and space emerges, a commonly undesirable fégtu@efalitatively, having in mind
the /2 rotation of electromagnetic waves in the ordinary case andtimegeneral determines two
preferential directions in spac@¥ ande'i9;), which interacts witiE andB differently, it should

be clear that in the NC duality case the ride— *F alone should not lead to another physically
equivalent picture in general, some modificatioiis indeed necessary to assure duality.

The result of Ref. 3] was extended by Ref6] to all orders ind in the slowly varying fields
(SVF) limit [4, 7], that is, disregarding possible appearence of derivative correctiofsinrhe
effective SW mapped actiosE& Ssye+ O(dF)). It was found that the rul@ — 6 persists in that
limit to all orders iné.

Many papers have addressed the NC extension of the 3D electromagnetic duality with topo-
logical mass$, 9, 10, 11] which is a vector/vector duality. The 3D duality we study in this paper,
likewise in Ref. [l], is qualitatively different since it is a vector/scalar duality, which to our knowl-
edge was not explored in a NC context before. Since it does not have topological mass it is easier
to compare with the 4D duality.

In this work we extend the 4D NC electromagnetic duality to the 3D space-time and evaluate
the necessity of the SVF limit from a classical field theoretical perspective, in order to find what
are the fundamental properties of this duality. Many arguments of Betlejpend on the space-
time dimension (e.g., the 4D space-time is the only one wihicgmd*6 are both 2-forms and
the S-dual massless gauge fields are both 1-forms), therefore a natural question is how the NC
electromagnetic duality presents itself in other dimensions, and to what extent the properties of the
4D NC electromagnetic duality can be extended to those. From all possibilities, the 3D space-time
seems to be a natural option. In this space-time, we establish to second ofddeidlual scalar
action (consistently with the rulé — *0g?) and we show that many terms of the Seiberg-Witten

LFrom the string theory perspectiv@duality of [IB strings in the presence of a magnetic background induces a
duality between spacially NC Yang-Millg”= 4 theory with a string model called NCOS (noncommutative open string),
as conjectured in Ref2]. Although the approaches of Re&][and ours are quite different, there are similarities in the
resulting dualities, like the exchange ®fwvith *0g2. See our Conclusions for further comments.
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mapped action can be considerably simplified. The necessity of the SVF limit, to preserve the rule
6 — *0g? and thereforeS-duality?, starts from the third order ifi for any space-time dimension
(with D > 2).

2. Reuvisiting the 3D electromagnetic duality

To introduce our framework, we briefly review the electromagnetic duality in 3D ordinary
space-time. The electromagnetic theory action with a 1-form salice

SWAJ] :/(aF/\*F +eAND), 2.1)

where A is the 1-form potential, the field strength satisfies, by definitionF = dA anda =
—1/(2g?). To preserve gauge invariance and to satisfy the continuity equafiomst be a closed
2-form.

As usual, the dynamics of the electromagnetic fields comes from the equation of motion and
the Bianchi identity, namely,
e
2a
Except for the sign of the first equality, the above equations are valid in any space-time dimen-=
sion. One may introduce an electric vecfbrand a magnetic pseudo-scaBin 2D space and
search for duality in these grounds,[but here we will follow the master action (or Lagrangian)
approachl2]. Consider the action

dF=—-—*"J and dF=0. (2.2)

SM[F,¢]:/ [aFA(*F—i—S/\)—d(])/\F], (2.3)

whereF, A and¢ are regarded as independent 2-form, 1-form and O-form respectively bt
a dynamical field. Equating to zero the variation of the above action with respéctie obtain
dF = 0. This implies, in Minkowski space, th&t= dA Replacing- by dAand settingJ = dA,
Su becomes equivalent to the action in Eg.1j.

On the other hand, the variation of E&.%) with respect td- produces
1

*E =
2a

(do —eN). (2.4)

Inserting Eq.2.4) into the master actiofy (and recalling™ = 1 for any differential form in
the dealt space-time), we find
1 *
SulF.g] < 5= [ (6 —en) A*(dg —en) = S, [9] @25)

We use the symbol*" instead of =" to be clear that equivalence of actions (functionals) is
to be understood as a correspondence between their equations of motion; ti&t4s,3f, the set

2In the sense of a global inversion of the coupling constant (s8idgality is not of concern in this approach).
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of equations of5; can be manipulated, using its own equalities, or inserting new redundant ones,
to become the set of equations®f(the inverse also proceeds).

The two equations of motion @y (dF = 0 and Eq.2.4)) generate a map between the equa-
tions of motion ofSy andSy, viz,

!
dA= 2 (dp —en). (2.6)

Applying d on both sides, we find EQ(2), while the application ofl* results ind*d¢ = ed*A,
which is the equation of motion &,.

3. 3D NC electromagnetic duality to second order ir9

The NC version of thé&J (1) gauge theory, whose gauge group we denot&lf{), is given
by [13]

SA*:a/F”A**If, 3.1)

whereais a constant: = dA—iAA. A= 1(9,A, —d,A, —i[Ay,A/].)dx AdX, [A,B], = AxB—
BxAand

(A+B)(x) = exp(‘zewazavy) A By)ly (3.2)

is the Moyal product. In particulafx*,x"], =i6*v. (6*") can be any real and constant anti-
symmetric matrix.

SincedF + 0, previous duality arguments cannot be directly applied. In order to employ them
we will resort to the Seiberg-Witten (SW) map. Seiberg and Witten have shown that there must
exist a map betwedd, (N) andU (N) gauge theoriesd]; therefore, denoting their gauge fields by
A andA respectively, it should comply with

§;AA) = A(A+5,A) —AA), (3.3)

whereA € u,(N) andA € u(N), i.e., forN = 1, A transforms as; A= dA — 2iAA. A andA as
0, A =dA. While theU,(1) theory depends of only through the Moyal products, the mapped
U(1) theory only uses ordinary products and depends explicitly 0As a corollary, also useful
to our purposes, this map provides a more direct treatment of the observefilegvhile F —
S, « F « S under gauge transformations, (¢ U, (1)), F is gauge invariantF — SF § =F
(SeU(2)). In short, the mapped (1) theory satisfies the identigF = 0 andF is a observable.

To second order i, for theU (1) case, the SW mapped action 6f1) reads [15, 3, 9]

: 1
Sy = 2/ [Fuvav (1— ze“vﬁw> +21tr(FFOF) + Loz | dPx, (3.4)

3Note that Ref}] uses a different convention in the differential forms constant factors.
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with D the space-time dimension,
1
L= —2tr(OFOF3) +tr(OF20F?) 4 tr(6F) tr(F3) — étr(eF)ztur(Fz) +
1
+5tr(6F 6F) tr(F?) (3.5)

and t(AB) = A,,B", tr((ABCD) = A,,B"*C; ,D** etc

Fortunately, in the 3D space-time, the above expression can be considerably simplified. A
direct computation shows that&F 0F) = 3tr(FF) tr(F @) for anyF and@. With some reflection
this relation can be generalized to

n-1 n
tr(ABLAB; ... ABy) — (;) [ tr(AB). (3.6)
k=1

for any anti-symmetric 2-rank tensots{By}. Therefore,
Loz = %tr(FF) tr(oF)2. (3.7)
Exploiting the Bianchi identity, we propose the following master action to second order in
Sw, [F.0] = / [a*F AF (1+(6,F)— (8,F)2) —dg AF], (3.8)

where( , ) is the scalar product between differential fofmm particular(F,08) = *(*F A ) =
%G“VF“V. Other master actions are possitlg [

The variation ofSy, [F, ¢] in respect top leads todF = 0, which impliesF = dA; inserting
this result intoSy, , Sy, is obtained. To settle the other side of duality, the variation in regakd to
is evaluated, leading to a nontrivial NC extension of E¢f{without source, namely,

«e_ do (6,%dg) _(6,"d¢)? (dg,dg)
F= 2a<1_ 22 oz 00 gp >_
v (do.dg) -(0.*d¢)
i <1—¢ - ) (3.9)

The scalar action which describes NC electromagnetism to second o@lénem reads

1 . . 1 - -
Sh, = —ﬁ/dq) A*de (1— (6,do) +3<6,d¢>2+1<6,9> <d¢>,d¢>) , (3.10)

wheref =*6/2a.
The correspondence of the equations of motion between vector and scalar models, as expected,
is given byF = dAtogether with Eq3.9) (and its inverse).
This duality to second order #h shows the exchange of the coupling constanith its inverse
and that this inversion only occurs if a certain rescaling &f assumed, which happen®if— 6.
This rule is the one found when studying the S-duality of NC field theories in 4D space-time in the

4In odd dimensional Minkowski space, the internal product of two n-foAnand B is defined by(A B) =
“(*AAB) = FAu, B,
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following contexts: to first order i8 [3], in the slowly varying fields limit ] and as a consequence
of the 1IB string S-duality 2]. In the 3D space-time in particular it rotates the privileged spacial
direction by 7/2. If no spacial privileged direction is prese = 0), then duality preserves
spacial isotropy.

The action 8.10) presents the 3D NC electromagnetism in the scalar picture up to second order
in & and shows that the ruleé — 6 plays an important role in 3D NC electromagnetism duality
in regard to classical S-duality. In the next section we investigate to what extent the interchange
betweerp and6 through duality is exact.

4. Third and higher order duality and the role of the SVF limit

NC gauge theories have a very interesting connection with general relativity, for coordinate
transformations are achieved through gauge transformationsi@der a recent review). Never-
theless the SW map states an equivalence between NC gauge theories and ordinary gauge theories.
The correspondence of the last with general relativity can be recovered by assuming éheethe
pendent terms induced by the SW map are nonlinear-field-dependent metric correctlofifhi¢
realization of this idea to any order & in the SVF limit, was done in Ref7]. According with this
approach, the SW map establish an equivalence between the NC electromagneti¢ Ratiorr
with a certain commutative electromagnetism in a curved space-time which f€atsF, where
* stands for a Hodge duality operator evaluated with a metric which deperféisiod 6.

In the SVF limit, to any order ir® and in any space-time dimension, no contributiord Bf
appears in the mapped action. Moreover, since the SW mapped action must be invariant under
U (1) gauge transformatiofshe gauge potentias's should only appear inside the field strengths
F’s. Therefore, applying formula3(6), in the 3D space-time the general term of the SW map can
be written as

acn/F/\*F (F,0)", (4.1)

wherec, € R.

When evaluating 3D duality, one should notice that, since the ternifadnder inF occurs
in (4.1) proportionally toe"~2, for each¢ which appears in the dual scalar action there will corre-
spond a factor Aa and in the term of W power ing there will be a term ofn— 2)th order ino;
therefore the rul® — 6 = *0 /2awill assure a global inversion of the coupling constant, likewise
previously stated up to the second ordeBinFurthermore it should be clear that, to any order in
9, this rule is such that in the dual picture no explicit reference,ttd or *6 is necessaryg can
be seen as the fundamental parameter of the dual picture. Therefore in the 3D space-time with
the SVF limit the rule of interchanging with 6 through duality remains exact to any orderdin

5In the 3D space-timé determines a single privileged direction in space giver@é));i/z 6%, which is orthogonal
to the privileged direction given b6.

®In component notation this read®] [ \/Ig] ¢"¥ 9*F Fua Fyp With guy = nuy + (FO)uy, g = det(gyy) and
n =diag+——...).

7And its structure is not dimensional dependent.
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likewise in the 4D case. Additionally, one may write the dual scalar actigidas/ *d¢, where*
is an extension of the Hodge duality operator in 3D space-time which depemﬂsandé.

A natural question that emerges here is if the SVF limit has any role in the study of this duality.
Up to the second order il no contribution ofdF appears in the SW mapped action. However,
as we will show, starting from the third order expansiorfinterms with more derivatives than
potentials appear in the SW map Bfand are present ihg:. These factors spoil the last sug-
gested symmetry betwe#hand. To infer these terms, we will use the following SW differential
equation {i

R 1 R R PN R A R
8Fuv(0) = 760 [2FuaFup + 2Py x Fua—Aq x (BpFuy +9pFin)—  (42)
ExpandingF andA in powers off, to third order it reads

2 1 R! "R
555%)(9) — _25906!3 906 B 906 B (aa,&a//Fua(?ﬁ,()ﬁquﬁ — 8a,aa/,Aa8ﬁ,8,3,,8[5 F,uv) +... (43)

WhereF,, = Ifli?,) andA, = ALO). Only the terms with more derivatives than fields were written
in the above expression. Inserting this result into &G)( the only terms ot 3z which have more
derivatives than fields are in the following expres§ion

0P 0% P'tr(9g 0o F 6 dpdpF F) — ieaﬁ 0%P tr(FO) tr(9ude F d5dpF). (4.4)

Once again, in the 3D space-time a considerable simplification is possible. In the 3D space-
time, the expressiori(4) is equal to

1 1R
2 0°B %P tr(0e 0o F IpdpF) tr(F ). (4.5)

A careful analysis shows that.¢@) [likewise (4.5)] is not identically null nor is a surface term
in any space-time with dimension greater than dfjeThis result is in contradiction with a certain
proposition of Ref. 19], see our Conclusions for more details.

SinceF = *d¢/(2a) + O(0), to third order inf the contribution of 4.5) to the scalar action
reads

a 1R/
/d3x S5 0B %P 0V% (9,09, 0) (Ipdp 9" 9) £42p3P 0. (4.6)

This term violates the symmetry betwe@rand 6. It is natural to change the thir@l above t06,

which will lead to preservation of the classictuality, nevertheless this transformation is rather
artificial and leaves the dual picture as dependettt anhdé, which, in particular, fop© = 0 will

insert a new privileged direction in the dual picture. On the other hand, changing all the above
threed’s to 6's will spoil the global inversion of the coupling constant. It is easy to see that similar
arguments are valid to the 4D space-time.

8This solution can also be inferred by the results of R&f,[Section 3.2, in which the SW map is expanded in
powers ofA.
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5. Conclusions

We established, to second orderdnthe scalar description of the 3D NC electromagnetic
theory 3.10, which is usually described by the gauge model), In order to achieve this result,
and some subsequent ones, we found and employed the forBr)|anhich significantly simplifies
the Seiberg-Witten (SW) mapped action in 3D space-time. Thedrth&Y 6 = g2 *6 was extended
to the 3D space-time up to the second ordef ior to all orders ind in the slowly varying fields
(SVF) limit; outside this limit and starting from the third order expansiof ias shown in the last
section, this rule is incompatible with classi&dluality.

Currents can be easily inserted in this duality, along the lines of Sec.2, if it is assuihmeaha
dependent coupling lik& A*J in the mapped action. Nevertheless, this violates correspondence
with theU, (1) theory, which asserts the coupliAg\, *J, whose map was found in Re(].

In the previous section we show, by means of a straightforward calculation, that the SW dif-
ferential equation4.2) leads to the appearance of terms with more derivatives than fields in the
third order expansion. These terms were applied into the NC electromagnetic Lagrdrgian (
and the resulting terms were stated 4ndj. Perhaps surprisingly, these terms are not null nor are
surface terms, as carefully shown in Ref]’[ This result is not in agreement with the first part
of a proposition in Refl9]. We think our result should be considered as a counter-example to
it. Indeed, the first part of Proposition 3.1 does not seem to be correct in gerdraHpwever,
it should be stressed that it clearly holds in the slowly varying fields limit and, in this limit, it is
compatible with our results; moreover, any results which depend on that proposition are perfectly
valid in that limit.

The SW map can be used as a convenient tool to extract local gauge invariant quantities from
the NC gauge field theoried4]. An interesting question is if in general the SW map removes
all the nonlocality of the original NC gauge theory. Our answer is no. Outside the SVF limit
according with an immediate extension of our previous Section, there appears in the action terms
whose number of derivatives is proportional to the powe? ,afo only disregarding terms with
one can achieve a local action exacbimbtained through the SW map.

As previously stated, this work does not aim to resolve stBmyality issues in the presence
of a magnetic background, like ReR][does. However, a certain exchangedofvith *6g?, among
other similarities, occurs in both cases. According with our result, this exchange only occurs to all
orders inf in the SVF limit. At the moment it is not clear to us if our result has consequences to
the stringS-duality of NC theories since, among other possibilities, we may have come across a
pathological feature of the Seiberg-Witten mag][
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