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1. Introduction

In the Euclidean version of field theory, we are interested in computing theiSger func-
tions of a theory. In order to obtain these functions, Parisi and Wu intextisthe stochastic
quantization [1]. This formalism was introduced as an alternative quantizatibeme, differ-
ent from the usual canonical and the path integral field quantizatioadhashe Hamiltonian and
the Lagrangian respectively. The method starts from a classical eqeétioation, but not from
Hamiltonian or Lagrangian, and consequently can be used to quantizenitahaystems with-
out canonical formalism and therefore it is useful in situations where tther® methods lead to
difficult problems.

The main idea of the stochastic quantization is thditdamensional quantum system is equiv-
alent to a(d + 1)-dimensional classical system which undergoes random fluctuationse 8icthe
most important papers in the subject can be found in Ref. [2]. A briefdoirtion to the stochastic
guantization can be found in the Ref. [3] and Ref. [4]. See also the[Ref.

In a previous paper [6], we studied the stochastic quantization of a $et&ating scalar field
theory, assuming a non-Markovian process, modifying the Langeviatiequby introducing a
memory kernel [7] [8] [9]. We have shown that although a system with @osty, Gaussian,
non-Markovian Langevin equation with a memory kernel and a colorece ramaverges in the
asymptotic limit of the Markov parameteito the equilibrium, we obtain a non-regularized theory.

In this paper we would like to continue to investigate the virtues of this non-tWéak sto-
chastic quantization method, now employed in the case of a topological field/th@oe of the
peculiar features within this kind of theory is the appearance of a factoindfont of the topo-
logical action in Euclidean space. Since the topological theory does pendeon the metric
of space-time, the path integral measure weighing remains & lsen after the Wick rotation.
Another feature of a topological action is that it is the integral of a densiigiwis not bounded
from below in Euclidean space. So, if one attempts to use a Markovian angguation with a
white noise to quantize this theory, one will find serious problems if the fattasagnored. This
Langevin equation will not tend to any equilibrium in the langkmit. So, in this sense, the use of
a Langevin equation with a complex action [10] becomes essential for stomily quantizing a
topological action [11] [12] [13].

There is, in the literature, an approach to solve the above mentioned gengerproblem.
Studying the purely topological Chern-Simons theory, Fegtai, introduced a non-trivial kernel
in the Langevin equation [14]. On the other way, tal [15] showed that the Langevin equation
for a Maxwell-Chern-Simons theory converges to the usual equilibriwmtrevithout the need to
introduce such kernel. Their method, however, only works in the caseenthe Chern-Simons
coefficient is real.

We show in this paper that, if one uses a non-Markovian Langevin equatibra colored
random noise, this convergence problem may be solved in a differgnt We will apply this
approach to three-dimensional abelian Chern-Simons theory and patwedlobtain convergence
towards equilibrium even with an imaginary Chern-Simons coefficient. To siyrithif calculations
we assume the units to be such that c = 1.
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2. Stochastic quantization of abelian Chern-Simonstheory

Let us consider the following action for the three-dimensional Maxwellr@i8mons theory,
in Euclidean space:

S— / & (412A,1 (%) (— Ay + 0u0y)Ay (X) — i%s,,vau (x)dvAp(x)), 2.1)

where is the three-dimensional Laplace operator. At the end of our calculatiersety — oo to
obtain the results for the purely topological theory, as discussed in Reff. lNotice the factor of
i in front of the topological term, as mentioned before. In order to obtain ¢thevi@ger functions
o the theory, let us use the stochastic quantization method. Let us introdumelarkovian
Langevin equation given by

oS

7]
—A(T / dsMh(T — S)5A e )|A“(x):A“(S,X)

P +Nu(T,X), (2.2)

whereMx (T —s) is a memory kernel and is a arbitrary parameter. We will have, from Egs.(2.1)
and (2.2), in momentum space:

2
%A“(r,k) _ _k <5“v k“k")/ dsMy(T—9)A(s,K) +

—Eswpkp/o dSMA (T — S)A (8, K) + N (T, K) 2.3)

where the stochastic fielgl, (7,k) satisfies the modified Einstein relations:

(Nu(t,K))p =0 (2.4)

and also
(Nu(T,K) Nu(T'K) )y = 280 MA(|T = T']) 3 (K+K). (2.5)

For the initial conditionA, (T,k)|:—o = 0, it is easy to see that the solution of the Eq.(2.3) is given
by:

Au(r,k):/ dr'Guv(k T—1')nu(T',K), (2.6)
0
where we introduced the retarded Green func@ (k, T), which satisfies:
0 k? kyk
57 Cw(kT) = -2 <5,1p a P)/ dsMn(T — ) Gpy (K, 9) +
K
—E_[eupaka/o dSM\(T—S)Gpv(k,S)+5uv5(T), (2.7)

for 1 > 0andGyy(k, 1) =0fort <O0.
To proceed the calculations, let us introduce the Laplace transform &itli2.7):

2
2Gu(k2) = - f;(aup B JMn(2) G 2+

—E_[gupokoM/\(a Gpv (K, 2) + dyv, (2.8)
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where: -
Ma(2) :/O dTMa(1) e 2. 2.9)

For the result without memory (or, formally, whéty (1) — &(1)), we have, from Eq.(2.7):

ot k2
EupakaGpy (K, T) + 0w O(T), (2.10)

0 k2 k. k
—-CGuv(k 1) = 2 <5up - M)GPV(ka T)+

_K
4

whose Laplace transform reads:
k2 kK

K
——&upakaGpv (K, 2) + Oy (2.11)

4
Note the similarity between Egs.(2.8) and (2.11). The solution to Eq.(2.10)ds diy [15]

K, k k, ki
Guv(k 1) = —‘l’(z" + ((5,“, — ’:(2"> cos<4Knkr> +

_ 12
_swg% sin(i%kr)) exp((;r), (2.12)
whose Laplace transform is:
kuky 1 ((5“V_ki§v>z_£“mko<4l("))
Guv(k,2) = ‘;(ZVE+ . (2.13)

2 2
<z+ ';2) + <[n> k2

Comparing Egs.(2.8) and (2.11), it is trivial to obtain the analog of Eq.(2vitB)memory:

Ky ky /
s () ()

k2 K’ 2
where: 1 MA(2)
_ Ma(Z
2= g2 (2.15)
and
K' = KMa(2). (2.16)

In the appendipd, we derive in detail the inverse Laplace transform of Eq.(2.14). Inergby:

K, k ~
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where the quantitie§;(k, 1), i = 1,2, gy andgyy are defined in the appendix A. We see that
our G,y (k, T) does not approach zero as— «. The reason of such behavior is the presence of
the longitudinal term= -, which is common in the stochastic quantization of all gauge theories
without gauge fixing and can be eliminated by a suitable stochastic gauge firisgite of this,
the presence of this term will not give any contribution to gauge invariaantities.

After this discussion, we are able to present the two-point correlatiastium We have that

Duv(k; T,T’) is given by

Dw(k1,7) = <A,1(T,k)A\,(r",k’)>,7 =
:6d(k+k’)/0 ds/o A8 G (kT —9) Gy (K, T — &) (N (8,K) N (€,K) )1

_ 25d(k+k’)/omds/omd§GM (kT—5Gpy (T —S)MA(|s—¢ [). (2.18)

So, inserting Eqg.(2.17) in the above equation and splitting the result in fivereliff contribu-
tions yields:

D (k; T,7') = 289 (k+K') <J1+J2+J3+J4+J5> (2.19)
where:
le/Tds ' YMa(|s— |), (2.20)
0 0
T d
%= [ ds[ d90,000,Cu(kiT -9k T~ $Ma(| s~ ), 2:21)
0 0
T 1
ng/ ds/ 08 G2 G2 Ga(k T — 9)Ga(k: 7' — §)Ma (| s— 5 |), (2.22)
0 0
T 1
345/ ds/ d< g, GrvG1(k T—5)Go(k; T — S )MA(| s— 5 |), (2.23)
0 0
and finally
Jsz/rds/r dsS G v Ga(k T—8)Ga(k T’ —S)Ma(| s—5|). (2.24)
0 0

We can solve these equations by ordering the fictitious tsreewls, s > s for instance, and
solving the integrals is (S) in the interval[0,t] ([0,s]). We obtain ford, in the limit T — oo,

1k ky 1
=500 (r—/\z). (2.25)

The integralsl, andJ; can be solved by analogy with the scalar case [6]. Making the following
replacements:

(K2 +mP)y — (1 A+ N2y +(A_y1) (2.26)
2 \2
(KR +mP)p — (1+/\4) /\yl—ml\zyl), (2.27)
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where the subscript 1 (2) stands for iGe (G,) case (see the appendix A), we will have, in the
asymptotic limitt — oo that
-1
a? 2
_ o a2, (@YD) A /\7 (0+y)?
b = (/\2 (1-A")+ Ay + A2 > (ay?2\ 4 4 47_[ EuvpKo +

+(av)‘2<</;+(azy)2>2— ( ) >< k“"”)] (2.28)
and

1
_ [ a 4 a2, (O ) - N? A:' (0—y)? LS
= (/\Z(HA) AV =7 A am ) Ewveko F

+(UV)2<</:14+ (G;y)2>2/fk2(4’(n>2> <5uka(lz(v)]' (2.29)

The remaining integrald; andJs can be solved without any further complications [16]. Again, in
the asymptotic limitr — o, we obtain:

J+Js =
f(A,0,y) N [k
g(A,0.y) (20v)< ) wupkp
/\4 /\4 —y)?2 /\4 2 K kv
son (4 ) (5 o) () ) (i
where:

f(A,0,y) = 153+ A0 [18(0+ V2 +17(0—y)? + 904 +N° [(o+ V(o —y)*+

+ Y (v (0-v2) - jov((o+v-oya-2o)) | +

2
+/\20y[(azy)—ay(o+ Y)z—%(O'-F y)z(a—y)z}, (2.31)
and
an0y) = (905 (0 -y ) (N + (042 (A oAt ). (232)

As mentioned before, the linearly divergent longitudinal term, found inZ225{), can be eliminated
by a stochastic gauge fixing. Now, taking the limit> oo, it is easy to see that the contributid-
J; vanishes identically. Then, finally, we obtain, for the purely topologicalpwmt correlation

function:
1kuky 1 f'(N,a,y) N (K
P (T_AZ> "oy T 2ap \am) Beke T

(Qzﬁ(g;’) 1> (5“” a %))] ) (2.33)
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whereB' = Ble .o = 5 K2(£), ¥ = Yile - and:

{/(0,0.9) = fle = 1200+ TN9Q(Y,) + INQA(Y,) +
6
Q) AU+ AR~ 18R04) Q). (239
g (A 0,y) = gle—w = BANQ(y1) + 32N'Q(v2) +4Q" (v1), (2.35)
1/2
Qv = (%~ 002) (236

We see that in our last expression for the propagator remained a teporfiooal to the Maxwell

transversal propagator. This is a anomalous situation, since the Maxam#libzition is absent in
the usual purely topological Chern-Simons theory. The origin of this almmeaituation is the use
of a non-Markovian Langevin equation. To circumvent this problem andwver the usual result,
we have to make the following choice:

B =QYh), (2.37)
which lead us to:
A (/\8 _ 4B/)1/2

5 5 (2.38)

So, if we choose:

N (NB—4B)Y¥2 C

whereC is a real constant amlis an arbitrarily large integer number. Inserting this latter equation
in Eq.(A.23), we will get a cubic equation ®. From the usual Galois theory of radical solutions
for polynomials [17] [18], we can always choose a real root fromtkinee possible ones. So, in
other words, we can always choose a real constant such that theoimtoeorrelation function
converges to a “purely topological" term, with some minor differences fraanugual one. We
notice as well that our approach still works wheiis purely imaginary (which is mathematically
analogous to writingh,, = A}, +iA},, whereA, is real, and taking the real part of the Langevin
eqguation (2.3) in coordinate space).

3. Conclusions

In this paper we discussed the stochastic quantization for Maxwell Cierans theory using
a non-Markovian Langevin equation and examined the field theory thabapm the asymptotic
limit of this non-Markovian process.

This paper is the second one of a program where it is investigated thibifigsthat the
Parisi-Wu quantization method can be extended assuming a Langevin equéticm memory
kernel with the modified Einstein relations. To make sure that this modificatiobearsed, one
must first check that the system evolves to the equilibrium in the asymptotic limbn8e&ee have
to show that converges to the correct equilibrium distribution. We prowetcaithough the system
evolves to equilibrium, in the propagator remained a term proportional to tixev®etransversal
propagator. This is a anomalous situation, since the Maxwell contributiorsenéin the usual
purely topological Chern-Simons theory. To circumvent this problem aco\ver the usual result,
we have imposed a constraint in the parameters of our theory.
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A. Appendix

In this appendix, we derive the retarded Green function for the diffusioblemG,, (K, T).
Expanding the denominator in Eq.(A.1), given by

Kk ky /
kuky 1 ((@v—ﬁg>2—qu%<LJ>

ke z 2 p )
Z+ 2 + 7 k
we have: ko 1 ok
K
where: ,
11(2) = P2’ (A-3)
In(2) = M2 (A.4)
P(2) '
and:
=2 k? k* o K\? 2012
P(z2 =7+ 2?M/\(Z)Z+ ?M,\(z) t\ k“MA (2). (A.5)
Using the following exponential representation for the memory keviadlr):
1
MA(T) = 5 AA (A [ T])"exp(=A [ ), (A.6)

whereA\ is a parameter, we will have, for the case- O:

2+ 2N\ + Nz
11(2) = 1) , (A.7)
NN
l2(2) = 2;(;2 , (A.8)
and:
Q(2) =2+ 2N°2 + (N + a) 2+ aN?z+ 8, (A.9)
where: N2
= 2 (A.10)
and p , .
_ K 2\ A
B= <£4+<4n> k>4. (A.11)
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In order to get the inverse Laplace transform of Eq.(A.2), we must fweke solutions of
the quartic equatio2(z) = 0. As it is well known, a general quartic equation is a fourth-order
polynomial equation of the form:

' +as+apZ+az+ap=0. (A.12)

Using the familiar algebraic technique developed by Ferrari and Caifd&hait is easy to show
that the roots of Eq.(A.12) are given by:

1 11
1 1 1
22__ZaS+ER—§D, (A14)
1 1 1
3= -8~ >R+ E, (A.15)
1 1 1
where:
1 1/2
R= <4a§—a2+y1> , (A.17)
1/2
(F(R)+G> forR#£0
D= 12 (A.18)
(F(O)+H> for R=0,
1/2
(F(R)—G) forR=#£0
E= 1/2 (A.19)
(F(O)—H) for R=0,
3 2
F(R) = e — R - 2ay, (A.20)
1/2
H= 2<y§ —4a0> , (A.21)
1 3\p-1
G= 21(4a3a2 —8a—a3)R 7, (A.22)
andy; is a real root of the following cubic equation:
y® — apy? + (awag — 4ag)y + (4apag — a4 — adag) = 0. (A.23)

Therefore, the inverse Laplace transform @) andly(z) reads:

B+2NZ + Ny
(21— 2)(zn— ) (1 — 2a)

|1(T) = Al 4
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BHNBHNT g
(—2)(2—23) (22— 2)
B+2N°B + Nz o
(z3—21)(z3—22) (23— 21)
Z3+2N°Z5 + Nz,
e~T A.24
(m—n)zu-2)(zm—2) (A.24)
and
N2 A
721_}_ AN
I — 2 2 1T
D= o @
N? N4
Tt A
* (—21)(22—273) (22— 2a) *
N? A4
T8+ Ry
@-2)z-2)z—2)
Nty .

+(Z4—Zl)(24—22)(z4—z3) (A.25)

Now, let us study a simple convergence criterium in order @at(k, 7) — 0 as the Markov
paramter goes to infinity, i.e, — c. In this situation, the system converges to an equilibrium.
Comparing the polynomia®(z) with expression Eq.(A.12), it is trivial to make the following
identifications:ag = B, a1 = a/A?, a, = a + A% and, finally,az = 2A2.

For convenience, let us assume tRatlefined by Eq.(A.17), does not vanish. To proceed with
the calculations, let us introduce the following real quantitieendy defined respectively by

1, Y2 1/2
o= <az - Zla3 —Y1> =(a—y) (A.26)

and
1 \12
y= <a2+y1—2a§> =(a +y1—/\4)1/2, (A.27)
where we used the identificatioas = a +A* andag = 2A2. Then, we shall have:
R=io, (A.28)

and
E=iy. (A.29)

So, with the above identifications, it is easy to see to proveGhaefined by Eq.(A.22), vanishes
identically. Therefore, we will have, from Eq.(A.18) and Eq.(A.19), that E. We also see that:

o2+ =20 —-N*>0, (A.30)

which implies:
k2> ——, (A.31)



Stochastic Quantization of Topological Field Theory Gabriel Menezes

where we used Eq.(A.10), which is a convergence criterium similar to thdesassalar field case
[6].

Thus, from Egs.(A.13) - (A.16), Eq.(A.28) and Eq.(A.29), we obtain tiiving solutions
to Q(z) =0:

21:—/;2+;i0+;iy, (A.32)
22:—/;2+;i0—;iy, (A.33)
@——/;—;iaJr;iy, (A.34)
a_—/;—;ia—;iy. (A.35)

So, from these last results, we will have, finally, @, (k, T):

ky ki ~
Guv(k.T) = (‘;2 +GuvGu (K. T) + Gy Ga(k, r)) o(v), (A.36)
where:
2
Gi(k, 1) = (m/l v sin< (G;r V) r) + cos< (U;r V) r) ) e‘ATZT, (A.37)
2 _ _
Ga(k, 1) = <<U/\_ 7 sin((a2 V) r> Jrcos((a2 V) r))eAZZT, (A.38)
andgyy anddyy appearing in Eqg.(A.36) are defined by:
Ouv = Mpy —hyy, (A.39)
Guv = huy — ﬁuw (A.40)
with: )
7AN K
1 /N (0+4Yy)? kK
My = o <4+ 2 ) (5,N — ‘;(;), (A.42)
and ¢ 2 K
- 1 /N* (o—y

11
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