
P
o
S
(
I
C
2
0
0
6
)
0
5
3

Stochastic Quantization of Topological Field Theory:
Generalized Langevin Equation with Memory Kernel

Gabriel Menezes∗

Centro Brasileiro de Pesquisas Físicas -CBPF,
Rua Dr. Xavier Sigaud 150,
Rio de Janeiro, RJ, 22290-180, Brazil
E-mail: gsm@cbpf.br

Nami F. Svaiter
Centro Brasileiro de Pesquisas Físicas -CBPF,
Rua Dr. Xavier Sigaud 150,
Rio de Janeiro, RJ, 22290-180, Brazil
E-mail: nfuxsvai@cbpf.br

We use the method of stochastic quantization in a topological field theory defined in an Euclidean

space, assuming a Langevin equation with a memory kernel. Weshow that our procedure for the

Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.

Fifth International Conference on Mathematical Methods inPhysics — IC2006
April 24-28 2006
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
I
C
2
0
0
6
)
0
5
3

Stochastic Quantization of Topological Field Theory Gabriel Menezes

1. Introduction

In the Euclidean version of field theory, we are interested in computing the Schwinger func-
tions of a theory. In order to obtain these functions, Parisi and Wu introduced the stochastic
quantization [1]. This formalism was introduced as an alternative quantization scheme, differ-
ent from the usual canonical and the path integral field quantization, based in the Hamiltonian and
the Lagrangian respectively. The method starts from a classical equationof motion, but not from
Hamiltonian or Lagrangian, and consequently can be used to quantize dynamical systems with-
out canonical formalism and therefore it is useful in situations where the others methods lead to
difficult problems.

The main idea of the stochastic quantization is that ad-dimensional quantum system is equiv-
alent to a(d+1)-dimensional classical system which undergoes random fluctuations. Some of the
most important papers in the subject can be found in Ref. [2]. A brief introduction to the stochastic
quantization can be found in the Ref. [3] and Ref. [4]. See also the Ref.[5].

In a previous paper [6], we studied the stochastic quantization of a self-interacting scalar field
theory, assuming a non-Markovian process, modifying the Langevin equation by introducing a
memory kernel [7] [8] [9]. We have shown that although a system with a stationary, Gaussian,
non-Markovian Langevin equation with a memory kernel and a colored noise converges in the
asymptotic limit of the Markov parameterτ to the equilibrium, we obtain a non-regularized theory.

In this paper we would like to continue to investigate the virtues of this non-Markovian sto-
chastic quantization method, now employed in the case of a topological field theory. One of the
peculiar features within this kind of theory is the appearance of a factor ofi in front of the topo-
logical action in Euclidean space. Since the topological theory does not depend on the metric
of space-time, the path integral measure weighing remains to beeiS even after the Wick rotation.
Another feature of a topological action is that it is the integral of a density which is not bounded
from below in Euclidean space. So, if one attempts to use a Markovian Langevin equation with a
white noise to quantize this theory, one will find serious problems if the factor of i is ignored. This
Langevin equation will not tend to any equilibrium in the largeτ limit. So, in this sense, the use of
a Langevin equation with a complex action [10] becomes essential for stochastically quantizing a
topological action [11] [12] [13].

There is, in the literature, an approach to solve the above mentioned convergence problem.
Studying the purely topological Chern-Simons theory, Ferrariet al, introduced a non-trivial kernel
in the Langevin equation [14]. On the other way, Wuet al [15] showed that the Langevin equation
for a Maxwell-Chern-Simons theory converges to the usual equilibrium result without the need to
introduce such kernel. Their method, however, only works in the case where the Chern-Simons
coefficient is real.

We show in this paper that, if one uses a non-Markovian Langevin equationwith a colored
random noise, this convergence problem may be solved in a different way. We will apply this
approach to three-dimensional abelian Chern-Simons theory and prove that we obtain convergence
towards equilibrium even with an imaginary Chern-Simons coefficient. To simplify the calculations
we assume the units to be such thath̄ = c = 1.

2



P
o
S
(
I
C
2
0
0
6
)
0
5
3

Stochastic Quantization of Topological Field Theory Gabriel Menezes

2. Stochastic quantization of abelian Chern-Simons theory

Let us consider the following action for the three-dimensional Maxwell-Chern-Simons theory,
in Euclidean space:

S=
∫

d3x

(

1
4ε2Aµ(x)(−∆δµν +∂µ∂ν)Aν(x)− i

κ
8π

εµνρAµ(x)∂νAρ(x)

)

, (2.1)

where∆ is the three-dimensional Laplace operator. At the end of our calculations we setε → ∞ to
obtain the results for the purely topological theory, as discussed in Ref. [15]. Notice the factor of
i in front of the topological term, as mentioned before. In order to obtain the Schwinger functions
o the theory, let us use the stochastic quantization method. Let us introduce anon-Markovian
Langevin equation given by

∂
∂τ

Aµ(τ,x) = −
∫ τ

0
dsMΛ(τ −s)

δ S
δ Aµ(x)

|Aµ (x)=Aµ (s,x) +ηµ(τ,x), (2.2)

whereMΛ(τ −s) is a memory kernel andΛ is a arbitrary parameter. We will have, from Eqs.(2.1)
and (2.2), in momentum space:

∂
∂τ

Aµ(τ,k) = −
k2

ε2

(

δµν −
kµkν

k2

)

∫ τ

0
dsMΛ(τ −s)Aν(s,k)+

−
κ
4π

εµνρkρ

∫ τ

0
dsMΛ(τ −s)Aν(s,k)+ηµ(τ,k) (2.3)

where the stochastic fieldηµ(τ,k) satisfies the modified Einstein relations:

〈ηµ(τ,k)〉η = 0 (2.4)

and also
〈ηµ(τ,k)ην(τ ′,k′)〉η = 2δµνMΛ(|τ − τ ′|)δ d(k+k′). (2.5)

For the initial conditionAµ(τ,k)|τ=0 = 0, it is easy to see that the solution of the Eq.(2.3) is given
by:

Aµ(τ,k) =
∫ ∞

0
dτ ′Gµν(k;τ − τ ′)ην(τ ′,k), (2.6)

where we introduced the retarded Green functionGµν(k,τ), which satisfies:

∂
∂τ

Gµν(k,τ) = −
k2

ε2

(

δµρ −
kµkρ

k2

)

∫ τ

0
dsMΛ(τ −s)Gρν(k,s)+

−
κ
4π

εµρσ kσ

∫ τ

0
dsMΛ(τ −s)Gρν(k,s)+δµν δ (τ), (2.7)

for τ > 0 andGµν(k,τ) = 0 for τ < 0.
To proceed the calculations, let us introduce the Laplace transform of theEq.(2.7):

zGµν(k,z) = −
k2

ε2

(

δµρ −
kµkρ

k2

)

MΛ(z)Gρν(k,z)+

−
κ
4π

εµρσ kσ MΛ(z)Gρν(k,z)+δµν , (2.8)

3
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where:
MΛ(z) =

∫ ∞

0
dτ MΛ(τ)e−zτ . (2.9)

For the result without memory (or, formally, whenMΛ(τ) → δ (τ)), we have, from Eq.(2.7):

∂
∂τ

Gµν(k,τ) = −
k2

ε2

(

δµρ −
kµkρ

k2

)

Gρν(k,τ)+

−
κ
4π

εµρσ kσ Gρν(k,τ)+δµνδ (τ), (2.10)

whose Laplace transform reads:

zGµν(k,z) = −
k2

ε2

(

δµρ −
kµkρ

k2

)

Gρν(k,z)+

−
κ
4π

εµρσ kσ Gρν(k,z)+δµν . (2.11)

Note the similarity between Eqs.(2.8) and (2.11). The solution to Eq.(2.10) is given by [15]

Gµν(k,τ) =
kµkν

k2 +

(

(

δµν −
kµkν

k2

)

cos

(

κ
4π

kτ
)

+

−εµνσ
kσ

k
sin

(

κ
4π

kτ
)

)

exp

(

−k2

ε2 τ
)

, (2.12)

whose Laplace transform is:

Gµν(k,z) =
kµkν

k2

1
z

+

(

(

δµν −
kµ kν
k2

)

z− εµνσ kσ

(

κ
4π

)

)

(

z+ k2

ε2

)2

+

(

κ
4π

)2

k2

. (2.13)

Comparing Eqs.(2.8) and (2.11), it is trivial to obtain the analog of Eq.(2.13)with memory:

Gµν(k,z) =
kµkν

k2

1
z

+

(

(

δµν −
kµ kν
k2

)

z− εµνσ kσ

(

κ ′

4π

)

)

(

z+ k2

ε ′2

)2

+

(

κ ′

4π

)2

k2

, (2.14)

where:
1

ε ′2 ≡
MΛ(z)

ε2 (2.15)

and
κ ′ ≡ κMΛ(z). (2.16)

In the appendixA, we derive in detail the inverse Laplace transform of Eq.(2.14). It is given by:

Gµν(k,τ) =

(

kµkν

k2 +gµνG1(k,τ)+ g̃µνG2(k,τ)

)

θ(τ), (2.17)

4
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where the quantitiesGi(k,τ), i = 1,2, gµν and g̃µν are defined in the appendix A. We see that
our Gµν(k,τ) does not approach zero asτ → ∞. The reason of such behavior is the presence of
the longitudinal termkµ kν

k2 , which is common in the stochastic quantization of all gauge theories
without gauge fixing and can be eliminated by a suitable stochastic gauge fixing. In spite of this,
the presence of this term will not give any contribution to gauge invariant quantities.

After this discussion, we are able to present the two-point correlation function. We have that
Dµν(k;τ,τ ′) is given by

Dµν(k;τ,τ ′) ≡ 〈Aµ(τ,k)Aν(τ ′,k′)〉η =

= δ d(k+k′)
∫ ∞

0
ds
∫ ∞

0
ds′Gµκ(k,τ −s)Gλν(k,τ ′−s′)〈ηκ(s,k)ηλ (s′,k′)〉η

= 2δ d(k+k′)
∫ ∞

0
ds
∫ ∞

0
ds′Gµλ (k,τ −s)Gλν(k,τ ′−s′)MΛ(| s−s′ |). (2.18)

So, inserting Eq.(2.17) in the above equation and splitting the result in five different contribu-
tions yields:

Dµν(k;τ,τ ′) = 2δ d(k+k′)

(

J1 +J2 +J3 +J4 +J5

)

(2.19)

where:

J1 ≡
∫ τ

0
ds
∫ τ ′

0
ds′

kµkν

k2 MΛ(| s−s′ |), (2.20)

J2 ≡
∫ τ

0
ds
∫ τ ′

0
ds′gµλ gλνG1(k;τ −s)G1(k;τ ′−s′)MΛ(| s−s′ |), (2.21)

J3 ≡
∫ τ

0
ds
∫ τ ′

0
ds′ g̃µλ g̃λνG2(k;τ −s)G2(k;τ ′−s′)MΛ(| s−s′ |), (2.22)

J4 ≡
∫ τ

0
ds
∫ τ ′

0
ds′gµλ g̃λνG1(k;τ −s)G2(k;τ ′−s′)MΛ(| s−s′ |), (2.23)

and finally

J5 ≡
∫ τ

0
ds
∫ τ ′

0
ds′ g̃µλ gλνG2(k;τ −s)G1(k;τ ′−s′)MΛ(| s−s′ |). (2.24)

We can solve these equations by ordering the fictitious timess ands′, s> s′ for instance, and
solving the integrals ins (s′) in the interval[0, t] ([0,s]). We obtain forJ1, in the limit τ → ∞,

J1 =
1
2

kµkν

k2

(

τ −
1

Λ2

)

. (2.25)

The integralsJ2 andJ3 can be solved by analogy with the scalar case [6]. Making the following
replacements:

(k2 +m2)1 →
α
Λ2(1−Λ4)+Λ2y1 +

(α2−y2
1)

Λ2 , (2.26)

(k2 +m2)2 →
α
Λ2(1+Λ4)−Λ2y1−

(α2−y2
1)

Λ2 , (2.27)

5
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where the subscript 1 (2) stands for theG1 (G2) case (see the appendix A), we will have, in the
asymptotic limitτ → ∞ that

J2 =

(

α
Λ2(1−Λ4)+Λ2y1 +

(α2−y2
1)

Λ2

)−1[

Λ2

(σγ)2

(

Λ4

4
+

(σ + γ)2

4

)(

κ
4π

)

εµνρkρ +

+(σγ)−2

(

(

Λ4

4
+

(σ + γ)2

4

)2

−
Λ4

4
k2
(

κ
4π

)2
)

(

δµν −
kµkν

k2

)

]

, (2.28)

and

J3 =

(

α
Λ2(1+Λ4)−Λ2y1−

(α2−y2
1)

Λ2

)−1[

−
Λ2

(σγ)2

(

Λ4

4
+

(σ − γ)2

4

)(

κ
4π

)

εµνρkρ +

+(σγ)−2

(

(

Λ4

4
+

(σ − γ)2

4

)2

−
Λ4

4
k2
(

κ
4π

)2
)

(

δµν −
kµkν

k2

)

]

. (2.29)

The remaining integralsJ4 andJ5 can be solved without any further complications [16]. Again, in
the asymptotic limitτ → ∞, we obtain:

J4 +J5 =

f (Λ,σ ,γ)

g(Λ,σ ,γ)

[

−
Λ2

(2σγ)

(

κ
4π

)

εµνρkρ +

+(σγ)−2

(

(

Λ4

4
+

(σ + γ)2

4

)(

Λ4

4
+

(σ − γ)2

4

)

+
Λ4

4
k2
(

κ
4π

)2
)

(

δµν −
kµkν

k2

)

]

,(2.30)

where:

f (Λ,σ ,γ) ≡ 153Λ14+Λ10
[

18(σ + γ)2 +17(σ − γ)2 +9σγ
]

+Λ6
[

(σ + γ)4 +(σ − γ)4 +

+
σγ
2

(

(σ + γ)2 +(σ − γ)2
)

−
9
2

σγ
(

(σ + γ)2−σγ(1−2σγ)

)]

+

+Λ2σγ
[

(σ + γ)2

2
−σγ(σ + γ)2−

1
2
(σ + γ)2(σ − γ)2

]

, (2.31)

and

g(Λ,σ ,γ) ≡

(

9Λ4 +(σ − γ)2
)(

9Λ4 +(σ + γ)2
)

(Λ4 +σ2)(Λ4 + γ2). (2.32)

As mentioned before, the linearly divergent longitudinal term, found in Eq.(2.25), can be eliminated
by a stochastic gauge fixing. Now, taking the limitε → ∞, it is easy to see that the contributionJ2+

J3 vanishes identically. Then, finally, we obtain, for the purely topological two-point correlation
function:

Dµν(k;τ,τ ′) = 2δ d(k+k′)

[

1
2

kµkν

k2

(

τ −
1

Λ2

)

+
f ′(Λ,σ ,γ)

g′(Λ,σ ,γ)

(

−
Λ2

2Q(y′1)

(

κ
4π

)

εµνρkρ +

+

(

β ′

Q2(y′1)
−1

)(

δµν −
kµkν

k2

)

)]

, (2.33)

6
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whereβ ′ = β |ε→∞ = Λ4

4 k2( κ
4π ), y′1 = y1|ε→∞ and:

f ′(Λ,σ ,γ) = f |ε→∞ = 120Λ14+
19
2

Λ10Q(y′1)+9Λ6Q2(y′1)+

−
Λ6

2
Q(y′1)+

9
2

Λ4Q(y′1)+Λ2Q2(y′1)−18Q2(y′1)+
9
2

Q(y′1), (2.34)

g′(Λ,σ ,γ) = g|ε→∞ = 64Λ8Q2(y′1)+32Λ4Q3(y′1)+4Q4(y′1), (2.35)

Q(y′1) ≡

(

Λ4y′1− (y′1)
2
)1/2

. (2.36)

We see that in our last expression for the propagator remained a term proportional to the Maxwell
transversal propagator. This is a anomalous situation, since the Maxwell contribution is absent in
the usual purely topological Chern-Simons theory. The origin of this anomalous situation is the use
of a non-Markovian Langevin equation. To circumvent this problem and recover the usual result,
we have to make the following choice:

β ′ = Q2(y′1), (2.37)

which lead us to:

y′1 =
Λ
2
±

(Λ8−4β ′)1/2

2
. (2.38)

So, if we choose:

y1 =
Λ
2
±

(Λ8−4β ′)1/2

2
+

C
εn , (2.39)

whereC is a real constant andn is an arbitrarily large integer number. Inserting this latter equation
in Eq.(A.23), we will get a cubic equation inC. From the usual Galois theory of radical solutions
for polynomials [17] [18], we can always choose a real root from thethree possible ones. So, in
other words, we can always choose a real constant such that the two-point correlation function
converges to a “purely topological" term, with some minor differences from the usual one. We
notice as well that our approach still works whenκ is purely imaginary (which is mathematically
analogous to writingAµ = A′

µ + iA′
µ , whereA′

µ is real, and taking the real part of the Langevin
equation (2.3) in coordinate space).

3. Conclusions

In this paper we discussed the stochastic quantization for Maxwell Chern-Simons theory using
a non-Markovian Langevin equation and examined the field theory that appears in the asymptotic
limit of this non-Markovian process.

This paper is the second one of a program where it is investigated the possibility that the
Parisi-Wu quantization method can be extended assuming a Langevin equationwith a memory
kernel with the modified Einstein relations. To make sure that this modification canbe used, one
must first check that the system evolves to the equilibrium in the asymptotic limit. Second we have
to show that converges to the correct equilibrium distribution. We proved that although the system
evolves to equilibrium, in the propagator remained a term proportional to the Maxwell transversal
propagator. This is a anomalous situation, since the Maxwell contribution is absent in the usual
purely topological Chern-Simons theory. To circumvent this problem and recover the usual result,
we have imposed a constraint in the parameters of our theory.

7
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A. Appendix

In this appendix, we derive the retarded Green function for the diffusion problemGµν(k,τ).
Expanding the denominator in Eq.(A.1), given by

Gµν(k,z) =
kµkν

k2

1
z

+

(

(

δµν −
kµ kν
k2

)

z− εµνσ kσ

(

κ ′

4π

)

)

(

z+ k2

ε ′2

)2

+

(

κ ′

4π

)2

k2

, (A.1)

we have:

Gµν(k,z) =
kµkν

k2

1
z

+

(

δµν −
kµkν

k2

)

I1(z)− εµνσ kσ

(

κ
4π

)

I2(z), (A.2)

where:
I1(z) ≡

z
P(z)

, (A.3)

I2(z) ≡
MΛ(z)
P(z)

, (A.4)

and:

P(z) ≡ z2 +2
k2

ε2MΛ(z)z+
k4

ε4M2
Λ(z)+

(

κ
4π

)2

k2M2
Λ(z). (A.5)

Using the following exponential representation for the memory kernelMΛ(τ):

Mn
Λ(τ) =

1
2n!

Λ2(Λ2 | τ |)nexp
(

−Λ2 | τ |
)

, (A.6)

whereΛ is a parameter, we will have, for the casen = 0:

I1(z) =
z3 +2Λ2z2 +Λ4z

Ω(z)
, (A.7)

I2(z) =
Λ2

2 z+ Λ4

2

Ω(z)
, (A.8)

and:
Ω(z) ≡ z4 +2Λ2z3 +(Λ4 +α)z2 +αΛ2z+β , (A.9)

where:

α ≡
k2Λ2

ε2 , (A.10)

and

β ≡

(

k4

ε4 +

(

κ
4π

)2

k2

)

Λ4

4
. (A.11)

8
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In order to get the inverse Laplace transform of Eq.(A.2), we must seekfor the solutions of
the quartic equationΩ(z) = 0. As it is well known, a general quartic equation is a fourth-order
polynomial equation of the form:

z4 +a3z3 +a2z2 +a1z+a0 = 0. (A.12)

Using the familiar algebraic technique developed by Ferrari and Cardano[19], it is easy to show
that the roots of Eq.(A.12) are given by:

z1 = −
1
4

a3 +
1
2

R+
1
2

D, (A.13)

z2 = −
1
4

a3 +
1
2

R−
1
2

D, (A.14)

z3 = −
1
4

a3−
1
2

R+
1
2

E, (A.15)

z4 = −
1
4

a3−
1
2

R−
1
2

E, (A.16)

where:

R≡

(

1
4

a2
3−a2 +y1

)1/2

, (A.17)

D ≡























(

F(R)+G

)1/2

for R 6= 0

(

F(0)+H

)1/2

for R= 0,

(A.18)

E ≡























(

F(R)−G

)1/2

for R 6= 0

(

F(0)−H

)1/2

for R= 0,

(A.19)

F(R) ≡
3
4

a2
3−R2−2a2, (A.20)

H ≡ 2

(

y2
1−4a0

)1/2

, (A.21)

G≡
1
4
(4a3a2−8a1−a3

3)R
−1, (A.22)

andy1 is a real root of the following cubic equation:

y3−a2y2 +(a1a3−4a0)y+(4a2a0−a2
1−a2

3a0) = 0. (A.23)

Therefore, the inverse Laplace transform ofI1(z) andI2(z) reads:

I1(τ) =
z3
1 +2Λ2z2

1 +Λ4z1

(z1−z2)(z1−z3)(z1−z4)
ez1τ +

9
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+
z3
2 +2Λ2z2

2 +Λ4z2

(z2−z1)(z2−z3)(z2−z4)
ez2τ +

+
z3
3 +2Λ2z2

3 +Λ4z3

(z3−z1)(z3−z2)(z3−z4)
ez3τ +

+
z3
4 +2Λ2z2

4 +Λ4z4

(z4−z1)(z4−z2)(z4−z3)
ez4τ , (A.24)

and

I2(τ) =
Λ2

2 z1 + Λ4

2

(z1−z2)(z1−z3)(z1−z4)
ez1τ +

+
Λ2

2 z2 + Λ4

2

(z2−z1)(z2−z3)(z2−z4)
ez2τ +

+
Λ2

2 z3 + Λ4

2

(z3−z1)(z3−z2)(z3−z4)
ez3τ +

+
Λ2

2 z4 + Λ4

2

(z4−z1)(z4−z2)(z4−z3)
ez4τ . (A.25)

Now, let us study a simple convergence criterium in order thatGµν(k,τ) → 0 as the Markov
paramter goes to infinity, i.e.,τ → ∞. In this situation, the system converges to an equilibrium.
Comparing the polynomialΩ(z) with expression Eq.(A.12), it is trivial to make the following
identifications:a0 = β , a1 = αΛ2, a2 = α +Λ4 and, finally,a3 = 2Λ2.

For convenience, let us assume thatR, defined by Eq.(A.17), does not vanish. To proceed with
the calculations, let us introduce the following real quantitiesσ andγ defined respectively by

σ ≡

(

a2−
1
4

a2
3−y1

)1/2

= (α −y1)
1/2 (A.26)

and

γ ≡

(

a2 +y1−
1
2

a2
3

)1/2

= (α +y1−Λ4)1/2, (A.27)

where we used the identificationsa2 = α +Λ4 anda3 = 2Λ2. Then, we shall have:

R= iσ , (A.28)

and
E = iγ. (A.29)

So, with the above identifications, it is easy to see to prove thatG, defined by Eq.(A.22), vanishes
identically. Therefore, we will have, from Eq.(A.18) and Eq.(A.19), thatD = E. We also see that:

σ2 + γ2 = 2α −Λ4 > 0, (A.30)

which implies:

k2 >
ε2Λ2

2
, (A.31)
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where we used Eq.(A.10), which is a convergence criterium similar to the massless scalar field case
[6].

Thus, from Eqs.(A.13) - (A.16), Eq.(A.28) and Eq.(A.29), we obtain the following solutions
to Ω(z) = 0:

z1 = −
Λ2

2
+

1
2

iσ +
1
2

iγ, (A.32)

z2 = −
Λ2

2
+

1
2

iσ −
1
2

iγ, (A.33)

z3 = −
Λ2

2
−

1
2

iσ +
1
2

iγ, (A.34)

z4 = −
Λ2

2
−

1
2

iσ −
1
2

iγ. (A.35)

So, from these last results, we will have, finally, forGµν(k,τ):

Gµν(k,τ) =

(

kµkν

k2 +gµνG1(k,τ)+ g̃µνG2(k,τ)

)

θ(τ), (A.36)

where:

G1(k,τ) ≡

(

Λ2

(σ + γ)
sin

(

(σ + γ)

2
τ
)

+cos

(

(σ + γ)

2
τ
)

)

e−
Λ2
2 τ , (A.37)

G2(k,τ) ≡

(

Λ2

(σ − γ)
sin

(

(σ − γ)

2
τ
)

+cos

(

(σ − γ)

2
τ
)

)

e−
Λ2
2 τ , (A.38)

andgµν andg̃µν appearing in Eq.(A.36) are defined by:

gµν ≡ Πµν −hµν , (A.39)

g̃µν ≡ hµν − Π̃µν , (A.40)

with:

hµν ≡−
Λ2

2γσ
εµνρkρ

(

κ
4π

)

, (A.41)

Πµν ≡
1

γσ

(

Λ4

4
+

(σ + γ)2

4

)(

δµν −
kµkν

k2

)

, (A.42)

and

Π̃µν ≡−
1

γσ

(

Λ4

4
+

(σ − γ)2

4

)(

δµν −
kµkν

k2

)

. (A.43)
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