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1. Sheaves on manifolds

A preheaf. A presheaf# on topological spac¥ consists of the following data:
e For every open séf C X one can associate an abelian groépJ ).
e If V C U are open sets then a restriction homomorphism oggur % (U) — % (V).

The following conditions hold:if .%(0) = 0; (i) ryy is the identity map;i(i) If W CcV c U then
rvwruv = ruw. For the restrictiomyy (22), & € .7 (U) we use the notatio?|y. An element of
Z(U) is called a section of* overU, while an element of# (X) is called a global section.

A sheaf. A presheatZ is calledsheafif for every collectionU; of open subsets of with

U = U U; the following axioms hold:
jel

AL 1fP,Qe 7 (U) andryy(Z) =ruy,(2) V j, then? = 2.

2. It 2) e #(Uj) and if forUjNUj # 0, ry, u,nu, (Z)) = ru,u;nu, () V], then there exists
an ¢ .7 (U) such thaty y, () = 2}, ¥j. (1.1)

Let.# and& be presheaves ovel, then a morphism of presheaves .# — & is a collection of
mapsa (U) : #(U) — &(U), satisfying the relationyy o (U) = a(V)ryy. Morphisms of sheaves
are morphisms of the underlying presheaves.

Coherent sheavesLetY be a complex manifold. A sheaFf overX is called acoherent sheaf
of &-modules if for eachx € X there is a neighborhodd of x such that there is an exact sequence
of sheaves ovay:

0— Fly — Oy — 0P|y — ... — 0P|y — 0.

2. Differential complexes

We recall some definitions of differential complexes to be used in the followeyRham,
Dolbeault andCech complexes we shall discuss are examples of the differential condptiisect
sume* = @ ¢k of vector spacegX indexed by integerk is calleda differential complexf there

keZ .
are homomorphisms

kL O gk O kil 2.1)

such thatd? = 0. The homomorphism is calleda differential operatorof the complext®. Ele-
mentsck € ¢k are calleck-cochains Let us consider the space

ZK:=KerdneX = {# e ¢X such thadZ = 0} . (2.2)
ElementsX e Z¥ are calledk-cocyclesvhile ZX is calledthe space of k-cocycle$he space

BX:=Imdn¢X = {bX e ¢X such thab® = 51 for somec*! e ¢k 1} (2.3)
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is calledthe space of k-coboundariesd elements¥ € BX are calleck-coboundarieslt is evident
that BK ¢ ZX c ¢ | indeed eactk-coboundarybX is a k-cocycle: db¥ = 52c<1 = 0. Cocycles
Z such thatZ # 5c" 1 are callednontrivial k-cocycles The space of nontrivigk-cocycles is
parametrized by the quotient spatk:= Z*/BX. The spacéi® is calledthe k-th cohomology space
of the complex¢*. (For the equivariant conomology see for example [1].) The cohomaibtye

differential complex¢* is the direct sum of the quotient spad¢#§ and has the forri® = k@ Hk .
€z

De Rham complex.Let X be a differentiable (smooth) manifold of real dimensip2*(X)
is the space of smootkforms onX andd is an exterior derivativeQ*(X) — Q*1(X), d> =0
Then we have the de Rham complex

Q*(X) = éOQk(X) . (2.4)

A differential form w on X is calledclosedif dw = 0. A differential formt on X is calledexact

if 7= d¢ for some formg. Denote byzZ(X) the space of closekiforms onX and byBY(X) the
space of exadt-forms onX, BY(X) ¢ ZK(X) c Q¥(X). In the language of differential complexes
closed and exadt-forms are called de Rhamkcocyclesandk-coboundariesrespectively. The
quotient spac¢iX(X) = ZK(X)/BK(X) is called thek-th de Rham cohomology spagEX. The
direct sum

HI(X) = & HX(X) (2.5)

is called thede Rham cohomologyf X.

Dolbeault complex.LetY be a complex manifold of complex dimensinandQP4(Y) is the
space of smootfip, )-forms onY. The exterior derivativel on a complex manifold is splitted into
a direct sum of two differential operata#sandd such thatl= 9+ 9 , d? = 92 = 9% = 33 + 99 =
0 . Differential operators act on the spa@&9(Y) as follows:

a1 QPAY) — QPFLA(Y) 91 QPIY) — QPITL(Y)
d: QPAY) — QPTLA(Y) @ QPITL(Y) . (2.6)

Consider a sequence of homomorphisms

QPoy) -2 arliy) -2 2L QP(Y) — 0. 2.7)

Sinced? = 0, the direct sun@P*(Y) = éonvq(Y) of the spaceQP4(Y) is a differential complex,
0=

calledthe Dolbeault complexA (p,q)-form wis calledd-closedif dw = 0. In the caseg = 0 such
0-closed forms are callelablomorphic Let

Z09(Y) = Kerd N QPA(Y) = {w € QPI(Y) such thadw = 0} (2.8)

is the space oﬂ_-closed(p, q)-forms, i.e. Dolbeaulg-cocycles in the language of differential
complexes, and let

BRA(Y) = Imd NQPAY) = {1 € QPI(Y), suchthatt =dv forsomev e QPI 1Y)} (2.9)
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is the space oﬁ—exact(p, q)-forms, i.e. Dolbeaulg-coboundaries. Denote h§P(Y) := Zg’O(Y)
the space of holomorphig, 0)-forms. The quotient spade>%(Y) = z29(Y)/BEY(Y) is called
the (p, g)-th Dolbeault cohomology spacé Y. The direct sum

HY*(Y) = @ H2Y(Y) (2.10)

is calledthe Dolbeault conomologyf Y.

Cech complex. We turn to the construction of th€ech cohomology following the lines
of the books [2, 3]. For any smootidimensional manifold one can choose an open covering
= {Uq }ael such that each nonempty finite intersection of the openlgis diffeomorphic to
an open ball inR" (or biholomorphic to a Stein manifold for the case of comphemanifolds).
Such a covering will be called good covering For a good covering the Poincaré lemma holds
on each finite intersection of the open sefg, a € 1. An ordered collectionNUg,, ...,Uq,,) Of
m+ 1 open sets from the coveringsuch thatyy, N...NUq, # 0 is called them-simplex The set
Uao...am = Ug, N ...NUg,, is called asupport of the m-simplefJq,, ...,Uq,,)-

Let us consider the spac® of forms of a particular type defined locally on various open sets.
Depending on the structure of manifolds (smooth or complex-analytic) this malgebspace of
smoothk-forms, holomorphid p,0)-forms etc. In other words, we consider various sheaves of
forms over manifolds [2, 3]. Acechm-cochainc™ with values in the space” is a collectionc™ =
{Cao...an } Of €lementsy, o, from .7 defined on supportdy, . q,, Of Mmsimplex(Ug,, ...,Uq,,). The
space ofCechm-cochains for the covering with values in.# will be denoted byYCM(4,.7). Let
us denote by, the restriction operator acting on elements frefras follows: ifZ € . is defined
on an open séfl thenpq 2 is defined orJ NU,. Now letr us consider the map:= {p(4.. 1},

5 : {Cao...cxm} - {p[aocal...dmﬂ} ) Cm = {Cao...cxm} € Cm(u7¢7)7
6Cm = {p[agcal...aml]} € Cm+l(u’y) (211)

and[do...am+1] Means antisymmetrization with respect to the indiggs..,am1. The operator
o is calleda coboundary operator SincepqaPg = PgPa, We haved? = 0. Therefore, one can
consider a sequence of homomorphisms

cOt,.) -2 2 em iy, ) 2 ey, 2 ey, 2 (2.12)

which gives theCech compleC® (U,.7) = @OCm(u,ﬂ) . The coboundary operatdris a differ-
m>
ential operator of this complex in the terminology of differential complexesidieby

Z"(4,.) = KerdNCM(U,.) = {ze C"(U,.) : dz=0} (2.13)
the space o€echm-cocycles, and by
B™(U,.7) :=ImdNCM(L,.) = {be C™(Y,.#) : b=5c forsomece C™L(y,.)} (2.14)

the space o€echm-coboundaries. It is evident thBf(8(,.7) ¢ Z™(4,.#) € C™(4L,.%) . There-
fore, we can introduce the spad@(4,.&) = ZM(,.#)/B™(4,.%) of nontrivial Cechm-cocycles,
where two distinct elements @™ (4l,.7) are regarded as equivalentit(4l,.) if they differ by
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a coboundary. We call™(4l,.) the m-thCech cohomology spaaé the coverind.l with coeffi-
cients in the space”. The direct sum

H*(U,) = & HM(U,.¥) (2.15)
m>0
is calledthe Cech cohomologwpf 4 with coefficients in.. The result depends to some extent
on the choice of coveringl, but for a good covering this dependence disappear (for proof see
e.g. [2,3)).
Complexes of coherent sheavetet .#* denote a complex of coherent sheaves,

ze. 90 i1 90 5 9 g1 T

Hered!51—1 = 0; for details we refer the reader to the book [12]. Cohomology grofifgeacom-
plex.Z* can be defined as followsi!(.#*) = Ker &/ /Im 61-1. Then a morphism of complexes
a:.7* — &* induces a morphism of cohomology grougs$a) : H*(.#°*) — H*(&£*). A mor-
phisma is said to be a quasi-isomorphismHf(a) is an isomorphism. For homotopy equivalent
morphismsa andf one getdH(a) = H(B).

2.1 Isomorphisms of cohomologies

For a differentiablen-manifold, we denote b@k the space of locally definddforms and by
¢ < QO the space of locally constant functions. For a complaranifold, by Q(P0 we denote
the space of locally holomorphip, 0)-forms, and by’ = Q%9 the space of locally holomorphic
functions. In other words, we consider the she&/e® of locally constant functions and locally
holomorphic functions respectively, and the shed¥& (P9 of forms.

Theorem 1. The de Rham cohomology] (X) andCech cohomology HX, %) of a differentiable
n-manifold X are isomorphic.

Theorem 2. The Dolbeault cohomologyg"f (Y) andCech cohomology HY,Q(P0)) of a complex
n-manifold Y are isomorphic.

For the proof of Theorem 1 and 2 we refer the reader to the bookJ[3].

3. Abelian theories

The field-theoretic description of the de Rham and Dolbeault cohomologiebe given re-
spectively by the following action functionals [4, 5]:

l
Sir :/X Y " AadaY, 3.1)
k=1
n —
Soo = /Y 3 P9 7 ggylPa-D) (3.2)
g=1
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wherew® € Q5(X) ares-forms onX, s=0,1,....n, ¢=["!] is the integer part of the number
(n+1)/2, 0“9 € QS(Y). The Euler-Lagrange equations for these action functionals are

dow® =0, k=0,1,..,n—1, (3.3)
0wP4 Y =0, g™ P9 =0, q=1,.n. (3.4)

Solutions of equations associated with de Rham action are elementZft¥m Exact forms from
B‘é(X) give trivial solutions. Therefore, the space of nontrivial solutionsduticspace) is given by

-1
the spacélz@o HX(X). The de Rham theory generalizes Abelian Chern-Simons theory and Abelia
topologicaT BF theory defined respectively by the actions

&CS:/); ANdA . (3.5)
SABF=/XBAF, (3.6)

whereA := w € Q1(X3),dimg X3 = 3,B:= w(™2 € Q" %(X), F :=dw®, andw € Q*(X).

As an example, one can comp&gs with Sir for n=3: Sir= Jiy (W@ Adw® + w® Adw®) .

Let us consider a complexmanifoldY. The moduli space of solutions is a vector space which
has the foméél (H2Y2(Y) ©H2P""9(v)). The Dolbeault theory described By generalizes

Abelian holomorphic BF theory with the action functional
Saner — / B2\ F02 (3.7)
Y

whereB™"2 := (-2 ¢ QN-2(Y), FO2 = 90D, 0D € QOL(Y),

4. Non-Abelian theories

There exist non-quadratic topological field theories for which partitioetions can be exactly
determined as well-defined quantities without actually having to evaluate thdnal integrals.
It happen when the theory is endowed with a lot of symmetry. Symmetries leamhsiraints
on the structure of the theory after quantisation. If there is enough symihetnythe structure
of the quantum theory may completely determined by the constraint#\ topological gauge
theory is by definition endowed with an abundance of symmetry: it is invaniadé¢r both gauge
transformations and space diffeomorphisms. It has been realised that aasgh of the Chern-
Simons gauge theory the resulting constraints on the structure of the qdahesey are strong
enough to completely determine the partition function and expectation values @fitkon loop
observables without actually having to evaluate the functional integralsierake?

Chern-Simons theory. Let 4l = {U, } be a good covering of oriented smooth 3-manifdld
G a matrix Lie group, ang its Lie algebra. Denote b% a connection 1-form on a (topologically

1A classic example where this happens is in the two-dimensional WZW coafdield theory. In fact there the con-
straints resulting from the conformal symmetry completely determine thetste of the quantum theory, in particular
the fusion rules.

2The possibility that topological invariants could be obtained via Chern-Sirgange theory had been discussed
in [6].
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trivial) principal G-bundleP over X. For such bundleé is ag-valued 1-form orX. Consider the
action functional of non-Abelian topological Chern-Simons (CS) theory

Ses(A) = 41n/XTr(A/\ dA+ %A/\A/\A); 4.1)

field equations have the forffi, = dA+AA A= 0. In the Chern-Simons gauge theory the fields
are theSU(N) gauge fields on a general closed oriented 3-maniglde. the 1-forms orX with
values in the Lie algebrsu(N). (More general gauge groups can also be considered.) Solétions
define flat connections dp, i.e. differential operatorda = d + A such tha‘dﬁ =0.

Analogously, non-Abelian holomorphic Chern-Simons theories are adefinecomplex 3-
manifolds and describe flat (0,1)-connections (holomorphic structusutionsA can be con-
sidered as de Rham 1-cocycles in the non-Abelian de Rham cohomologyea€h open set
Uq equations are solved triviallyA = {Aq}, Aq = fgld foa, wheref = {fy} is a collection of
smoothG-valued functions o{U,}. To obtain a global solutios on X from local solutions
Ay = f;1d f4, one should solve the differential equatidg%d faip — fB*‘id fgja =0, fa)p :=hg fa,
on each intersectiody NUg # 0, which simply mean thatigAy = hgAg onUy NUg # 0. These
eguations are equivalent to the equatidt(n%awfl;‘é) = 0. We see thatyp = fq fﬁ*‘é is a lo-
cally constantG-valued function defined oy NUg. The collection{c,p} of G-valued func-
tions is aCech 1-cocycle in the non-Abeligbech cohomology [7-10], where the cocycle condi-
tions are(h,c,p)(haCgy) (hgCya) = 1 0NUg NUg MUy, # 0. Therefore, solutions of field equations
dA+AAA=0 can be obtained by splitting locally consté&htalued functiong, g, satisfying co-
cycle conditions, into a product of two smod#ivalued functionsf, and fﬁ‘l, defined orlJ, and
Ug, respectively. Then, by virtue of the de Rhadech correspondence, a collectigiy *d fy } =: A
gives a global solution to field equations.

Topological BF theories.A generalization of Chern-Simons theories to arbitrary dimensions
is given by (topological) BF theories. The action functional for non{#metopological BF theory
has the following form:

SF = /xTr(B/\ Fa), (4.2)

whereF, is the curvature of a connection 1-forfnon a topologically trivial principalG-bundle
P over X, andB is a g-valued (n — 2)-form on X. The variation of the action with respect to
B gives the Chern-Simons field equations, while variation with respedtdwes the equations
daB=dB+AAB—-BAA=0. Thus, topological BF theories describe flat connectidp®n a
bundleP over X and g-valuedda-closed(n — 2)-forms B on X. Differential Cher-Simons field
equations are equivalent to functional cocycle equations which aredsblc,g = famf[;‘é for
some smootiG-valued functiong f, }, and for a flat connectioA = { f;'d f, }. EquationsiaB =
dB+AAB—BAA=0 can be easily reduced to equatiat{$Bf~1) = 0 from standard de Rham
cohomology.

LetY be a complex-dimensional manifolds a complex matrix Lie groupy its Lie algebraP
a topologically trivial principalG-bundle ovelY, A a connection 1-form oR, andFa = dA+AAA
its curvature. Consider holomorphic BF theories with the action functional

Swor = [ Tr(B™ 27 FQ2) (4.3)
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whereB™"~2 is ag-valued(n,n — 2)-form onY and F,S’z_is the (0,2)-component of the curvature
tensorFa = F2%+ Fa' + F22. The field equations ar@A®! + A%L A A% = 0, 9B""-2 4 AOL A
B2 _B"-2 A A% =0, whereA%! is the (0,1)-component of a connection 1-fora: A0+ AGL
onP. If a representation o in the complex vector spad® is given, we can associate withthe
complex vector bundl& = P x¢ C’ and use vector bundles in the description of BF theories.

It follows from field equations that models (3.6) describe flat (0,1)—e0tinnso'_?A =9 +A0!
on G-bundles over complex-manifoldsY andda-closedg-valued(n,n — 2)-formsB™"2 onY.

One can consider a procedure of constructing solutions to field equatichsiapping solu-
tions into one another (dressing transformations) [10]. This cohomolagiethod of solving field
equations is based on the equivalencé:e(:h and Dolbeault descriptions of holomorphic bundles
and is a generalization to arbitrary dimensions of the dressing approaaingm-Hilbert prob-
lems) to solving integrable equations in two dimensions.

Remark 1. The de Rhan€ech isomorphism reduces differential equatidog¥) = 0 onk-
formsw® (de Rhank-cochains) on a smoothmanifoldX to the functional equationsq,Ca, ...ay, 1]
=0on (v:echk—cochains{cao,,,ak} from ck(u,y) defined on open subsefdly, ¢} Of X. Thus,
solutions of topological Chern-Simons and BF theories can be constriogtedans ofech co-
cycles. Symmetries of these theories can be described in ter@sobf 1-cocycles with values in
the sheaf of locally constant maps of the spAdato the Lie groupG.

The Dolbeault€ech isomorphism reduces differential equations of motior{ @uy)-forms
(Dolbeaultg-cochains), defined on a complexmanifold Y, to functional equations oéechq—
cochains fronC9(4l, £P) defined on open subseflg,...q,} Of Y. By using this isomorphism, one
obtains another description of solutions of holomorphic Chern-Simons Britld®ries.

Non-Abelian cohomological structure.Results of of holomorphic structure of BF theory can
be formulate in terms of elements of homological algebra using sheaves-éfreian groups. Let
G be a (complex) semisimple matrix Lie groupijts Lie algebra,P a principalG— bundle over
complexn—manifoldY. Let.# be the sheaf of germs of smod@r+valued functions ofY and&’
its subsheaf of holomorphi@—valued functions. LeRy, be a (trivial)G—bundle ovely and.cr%!
the sheaf of flat (0,1)-connections Bf(germs of solutions to the equation of motions of (4.3) for
the (0, 1)-component of a connection 1-form@n

Let us introduce the sets of the following quatit@®(4l,.%#) of 0-cochains of the covering
= {Uq} of a manifoldY with values inZ, Z°(4,.%) of 0-cocycles with values it#, C*(4,.%)
of 1-cochains with values i, Z1(4,.%) of 1-cocycles of the coveringl with values in the
sheaf# and the 1-cohomologht®(4l,.%). Itis clear that these sets contain the sub&&tsl, &) ,
204, &), CHYU, &), ZH4, &) andHL(U,.7) respectively (for definitions we refer the reader to the
book [11]). By definitionH(Y,.7) = Z°(s(,.7) , HO(Y, &%) = ZO(u, &7®1). One can choose
a coveringil = {Ug} such thatH(4(,.7) = HY(Y,.Z), HY(U,&) = HL(Y,&). 3 Then some of
spaces and groups are defined as follow&:~ HO(Y, a7%%) /HO(Y,.%), where.# is the moduli
space of flat (0, 1)-connectio®®! parametrizing holomorphic structures of the (0, 1)-part of

3This is realized for instance whéh,’s are Stein manifolds.
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exterior derivative on the bundi. One can construct the exact sequence of sheaves [7-9]
e T g O 01 8

whereo : & — .7 is an embedding of’ into .7, 5%: 7 — 7% is a map given for any open

setU of the spacey, 81 maps any flat (0, 1)-connection into zero, ani$ a marked element of

the considered sets, i.e. identity in the shé&af .# and zero in the shea#®. Then the exact

sequence of cohomology sets holds

50 51
e HOY, &) 25 HOY, ) 2 HO(Y, &%) 2 HL(Y, &) 2 HY(Y, .7),

where the map coincides with the canonical embedding by the embedding of sheavés— .%.

The kernel KeA = A ~1(e) of the map) coincides with a subset of equivalence classes of topologi-
cally trivial holomorphic bundle®. The following result holds [10]:# ~ HO(Y, &7%%) /HO(Y, %)

~ KerA.

5. Categories

A categoryé consists of the following data:

e A class Ob% of objectsA, B, C, .. .;
o A family of disjoint sets of morphisms HorA( B), one for each ordered pak; B of objects;

e A family of maps HontA, B) x Hom(B,C) — Hom(A,C), one for each ordered triplét, B,
C of objects.

These data obey the axioms:

3. Iff:A—-B,g:B—C, h:C— D, then composition of morphisms is associative,
thatis,h(gf) = (hg) f.

/4. To each objecB there exists a morphisns1 B — B such that §f = f , glg = g for
f:A—Bandg:B—C.

Additive category. An additive category is a category in which each set of morphisms
Hom(A, B) has the structure of an abelian group. The following axioms hold:

/5. Composition of morphisms is distributivég; +g2)f = g1f +g2f , h(g1+ @) =
hg, + hg, for anyg;,g2:B—C, f:A—B, h:C—D.

6. There is a null object 0 such that HoM(0) and Hom(0A) consist of one morphism
for anyA. ‘
/7. To each pair of object8qy andA; there exists an objed and four morphismgy Y
B2 A, 12 B Ay, which satisfy the identitie& ji = 1a,, (K=1,2), j1l1+ jalo = 1p, l2j1 =
l1j2=0.

Abelian category. It is an additive categorj which satisfies the additional axiom:

/8. To each morphisnf : A — B there exists the sequenKe—k> AL 4 BS K
with the propertiesji = f; K is a kernel off, K'is a cokernel off; | is a cokernel ok and
a kernel ofc.
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The category of coherent sheaves is the abelian catégory
The derived category.The definition of derived categoB)(A) proceeds as follows [12] (see
also [13]):

e We begin with category of complexes of coherent she&as(A): Ob Kom(A) =
{complexesB* of coherent sheaves Hom(B*, C*) = morphisms of complexeB® — C*.

e The homotopy categorg (A) can be determined as follows: G4A) = Ob Kom(A), Mor
K(A) = Mor Kom(A) modulo homotopy equivalence.

e Finally the derived category (A) is determined as follows: Ob (A) = ObK(A).

The morphisms ob (A) are obtained from morphismsk(A) by inverting all quasi-isomorphisms.
The derived categor® (A) is the additive category.

6. Topological D-branes

Let us address to a specific set of topological field theories with targeeXp The sum of all
such topological field theories giv€(X). The objects irD(X) is calledtopological braneg16].
These topological field theories can be build by making use the followingepses:

e Take into account Witten's B-model [14, 15].
e Add the notion of integral grading [16].

e Construct specific kinds eharginaldeformations of this theory to form a more general class
of objects.

The dynamics of off-shell open string modes in the topological B-model psucad the holo-
morphic Chern-Simons action which defines a cubic string field theory. dardp write down

this action, we must regard a holomorphic bunBl®en Y as aC” vector bundle equipped with

a connectiorA so thatF%?(A) = 0. The off-shell boundary fields form an ‘associative algebra
A= @%ZOQQP(Y, EndE)), wherep represents the ghost number. A morphi@grepresents the
BRST operatoiQ acting on off-shell states, which defines a structure of differentialeagtaal-
gebra on. The massless spectrum of the theory is parameterized by the graded spte
H= @%ZOHQP(Y, EndE)), and the boundary chiral ring structure is defined by the Yoneda pairing
onH. In addition the physical on-shell operators in string field theory cpomed to elements of
degree one M, that is cohomology classesf1(Y,EndE)).

It has been proved that the sum of a certain class of topological fielddélsemn an algebraic
variety X is equivalent (in some sense) to the bounded derived category afetolsheaves (see,
for example, the review paper [18]). The finite collection of nontrivisdaress™" is the objects
in our category. We can say that the objects are D-branes and the nmaspduie open strings.
Composition of morphisms is then given by the Yoneda pairing [19]:

ExtP(&°,6M) @ Extd(&M, M) — ExtPT9(£4, &M, (6.1)

10
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which means that two open strings joining along a common boun@fdnfhere are the following
conditions that these objects and morphisms need to satisfy in order to beyargat€or every
object there exists an identity morphism which is given Ry Ext%(£", &M); the morphisms are
associative.

The content of a topological field theory is given completely by its operdgmbaa. The
topological field theory we are discussing is therefore completely equivadehis category. By
our construction we have described a category with a finite number oftsebjere category (X)
of all possible topological D-branes ofhas an infinite number of objects. Thus, the category
associated to a particular topological field theory is a subcategary>of.

The open strings vertex operators (which deform the theory) must dst gimber one. Let
us consider a theory with a single D-brane which is given by the locallydheafé. Then the
ghost number one we have E{,&). Ignoring potential obstructions in the moduli space this
agrees with the expected deformations of the sieéf” can be associated with a vector bundle
E, in that case EX(&,&) = HY(X,EndE))). Let a open string stretching between two possibly
distinct D-branes. It can be done assuming that edts actually a direct sum of two sheaves
for all n, i.e. the sum¢" & . #". We can restrict the maps in this complex for a particular string to
being block-diagonaldt : &" — &ML §F 1 .#" — #1152 = 0 and with nod maps mixing the
&’s and.#’s. Then we have two D-branes; one associatedt@nd one associated 8°. The
topological field theory is specified by a complex of locally free sheaves:

o, (&) &)

T — e (7Y PO 0050 N ®) o1 g1y A

(6.2)

The original vector bundl& is finite-dimensional, thus this complex is bounded. Let us consider
the sheaf given byzom(&™,.#"). The vector spaces Hd@i™,.Z#") is difer from the sheafs
som(&™M . F") which associates an open &kwith local holomorphic maps from sections of the
bundleE™ overU to sections of the the bundl” overU. The mapsdF andd" induce a double
complex:

(6.3)
o oF
&% 3 o
— som(&t, 70) —— stom(&t, 7)) ——
& &
o, & of
— om(&°, 70) —— stom(£°, F1) ——
oF, o5
while the single complex has the form
& &
- —— NP (£°,.F ) — AOoMH(E°, F*) — -+ (6.4)

Here #onfl(&£°,.7°) = @, Aom(&N, FM9) | § = 6F + 67, anddF andéF anti-commute. The
operator product is a generalization of the Yoneda pairing Heit,.7*) @ HomR(.7*,¥*) —
HomP*+Q(&*,%*). Taking into account a decompositief = ®©nz&", where &M is a B-brane
with ghost numben, we may construct a general collection of D-branes in terms of a localéy-fr

11



Topological field theories, branes, morphisms and categori A. A. Bytsenko

sheaf&’. In addition the ghost number one operators in this B-model are therelengents of
Ext(&", &M+ for anyn andk.

7. Deformations in category

Remark 2. A functor F from categoryA to categoryB associates from each objektof A
objectF(A) from B and from each morphism : A — B of A morphismF(a) : F(A) — F(B) of B
such that has the composition and identity morphisnigor o 3) = F(a) o F(B), F(1a) = 1r(a).
If functor has propertieB(A) — F(B) andF(B) — F(A) then it called theovariant functor

Remark 3. A chain map which induces an isomorphism on the cohomology groups of the
complex is called guasi-isomorphism

Theorem 3. Let A be an abelian category, and |IBbm(A) be the category of complexes over
There exists a categofy(A) and a functoiQ : Kom(A) — D(A) such that the following properties
hold:

e For any quasi-isomorphism () is an isomorphism.

e Any functorF : Kom(A) — B transforming quasi-isomorphisms into isomorphisms can be
uniquely factorized througB(A). It means that there exists a unique fundforD(A) — B
which satisfyF = Go Q.

Following the lines of [18] let us consider the categBiy:(X) of complexes of locally free sheaves
on X and the morphisms in this category which are chain maps: a chamnq(X) maps to the
corresponding D-brane ifi(X), and a chain map ik (X) maps to an element of H&fE™*, . #*)
in T(X).

Mapping cone construction.Let f be a quasi-isomorphism between two complekeg® —
&*. Note thatf* is an isomorphism. Indeed, lét* (% °) be acyclic (be a complex with trivial
cohomology) and letZ* (&£*) be any complex. In this case the cohomology of He#t,.7*)
(Hom"(&, %)) is trivial for any & (#*). Let us introduce th€oneof a mapf of complexes.

Definition 1. The mapping con€ong f : £* — .#°*) can be defined as the complex

(F2) (F4)

f o f o

&te 70 2o 7t &30 F7? (7.1)

Condf : &* — Z°*) is acyclic iff the mapf is a quasi-isomophism. As an example, for chain
oo 0 O

complex&™ @ &°[1] & &* we haved = | —Id da[1] Id | . If f is a quasi-isomorphism then its
0 0 On

cone is acyclic. and the groups HB(Cong f),.#*) associated to the cone are zero. Thus
f*: HomP(&*,.7°*) — HomP(&*,.%*). provides the canonical isomorphism. Therefore a quasi-
isomorphism irK g(X) maps to an isomorphism if(X). Let us take into accout complexes over

12
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an abelian category, it gives a possibility to use Theorem 3. Consideathgary of coherent
sheaves (the smoller category of locally-free sheaves is not abeliae, isidoes not contain its
own cokernels). Let as befdfom(X) denote the category of bounded complexes of coherent
sheaves oX. We can defined a functor frolkom (X) to T(X), and therefore by Theorem 3 can
constructed a functds : D(X) — T(X) (see for details [18]).

8. Monodromy

The monodromy acting on the derived categb§A) and is induced by a so-called Furier-
Mukai transform [16] associated with some gener#tde D(A). Action of the monodromy on a
complex#* is given by

L
#° — Rpu(K* @ pa(#*)). (8.1)
The projection maps frorK x X to its first and second factors is:

YA\

N

XxX
P P2

/ N
X X

HereA C X x X is the diagonal embedding & For the monodromy action formula we have used
the following transformations:

o Complex of sheave®*® on X has beempulling backto the inverse-image complex of sheaves
P5(%°) on X x X.

e The left-derived complex (hence the capital lettgrof sheaves oiX has been constructed
by taking the tensor-product with the genera{dr

e The right-derived complex (hence the capital leRgiof sheaves oiX has been constructed
by pushing-forwardo the direct image complep (o).

In the case of A-branes monodromy associated with a movement arourslitotpe mod-
uli space is purely classical. Way around non-contractible loops in the lirahce of complex
structure leads to a non-trivial monodromy associated with the periods bbtbmorphic 3-form
over integral 3-cycles. In that case the monodromy can be interpretadaagomorphism of group
Hs(Y,Z) which preserves the intersection form between 3-cycles. The homolagyes of A-
branes undergo monodromy and as a consequence the A-braneslteeraadergo monodromy.

In the B-brane case the brane charge is an elemdt®6f{X,Z). Considering the case of the
quintic# one can map betweet(Y,Z) andH®®(X,Z). Therefore the monodromy action from
the A-model into the B-model can be copied.

4Let, as an examplé, be the quintic hypersurface €P*4. We can defined the mirrdv as the orbifold(/Zg. Since
the virtue of mirror symmetry [20] the K&éhler moduli spaceYois identified with the complex structure moduli space
of M, which is described by the Picard-Fuchs equatigdf + 5z[11_,(56,+ ¢) }ax(z) = 0. Here the complex variabie
spans the complex structurte moduli spstef; = zd/dz Point of the Landau-Ginzburg potential of the moduli space
Y is mirror toz= . The limit of the large radius of is mirror tos= 0, while the conifold point o¥ is mirror toz= 1.
The periodsw(z) correspond to these three points are singular.

13
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As an example, let us begin with a particular sheatind then compute the monodromy ac-
tion on Chern character €& ). We can find examples where the resulting elemett%f(X,7Z)
cannot correspond to the Chern character of any sheaf. (In teeotayperbolic geometry some
explicit results for the index of a Dirac operator, the Chern charact@amest K-groups, asso-
ciated with topological charges of branes, the reader can find in [14]t)g8ing to the derived
category solves these problems [18]. In category language we havetaif fromD(X) to D(X)
that is a bijection on the (isomorphism classes of) objects and that pregbeseorresponding
morphisms. Such situation @ X) is always induced by a Fourier-Mukai transform.

Monodromy of the quintic. As an example, let us consider a monodromy about the Landau-
Ginsburg point in the Ehler moduli space of the quintic. Such a monodromy is generated by [18]

Kic=0— 6XO(1) — On(1) — 0, (8.2)
where the notatioAX B to meanp;A® p;B for A,B € D(X) has been introduced. The explicit

monodromy calculations faf’ € D(A) the reader also can find in [18].

9. Hochschild cohomology of D-branes category

The closed string correlators perhaps can be constructed from thenps using topological
string theories as a model. This conjecture has been patrtially verifyed bysroéaomputation of
the Hochschild cohomology of the category of D-branes.

Definition 2. Let A be an associative algebra ov@r The Hochschild cochain complex with coef-
ficients in A is the sequence of vector spacg®C= Homc(A®" A), n=0,1,..., equipped with
an operatord : C"(A) — C"*1(A) defined by

n .
(6f)(a17"'7an+l) = alf(a27"'7an) + 21(_1)'f(a17"'>aifl>aiai+laai+27"'7an)
i=
+ (=)™ (ay,...,an)an 1. (9.1)

The cohomology 08 in degreen will be denoted HH(A),

HHP () - KETE:CU(A) — CTh(A))

" Im(5:C"1(A) — CN(A)) ©-2)

and calledhe Hochschild cohomology of A with coefficients inTAe connection between Hoch-
schild cohomology and infinitesimal deformationsiaif given by HH/(A). Denote the product in
A by m, an infinitesimally deformed product y = m +t¢, wheret? = 0, then the map? — Ais

a Hochschild cocycle and the trivial deformations are given by Hoélascbboundaries. Indeed,

mt(mi(ay,82),83)) = adas +1(P (a1, a2)as + ¢ (auaz, az)),
me(ag, me(az,a3)) = aydrag +t(ard (az, az) + ¢ (ar, aag)),
a1¢(ag,a3) — P (a1a2,a3) + ¢ (a1, aza3) — P (a1,a2)az = 0 (since associativity ofm;).

The last condition is simply the conditiadp = 0. A trivial deformation is given by the condition
that A with the new multiplication is isomorphic to the original algebra structure. Thue tiser
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a linear bijectiong; : A — A such thatm(oi(a1),0t(a2)) = Gi(arap). Let a; := 1 +tA, where
A :A— Ais alinear map. We get

my(ar,a2) = 010 H(a1), 0y H(@2)) = ande —t(ash (a) — A (1) + A (a1)a)
= aap —t(bA)(ag,a).

Therefore coboundaries give rise to trivial deformations 264 classifies nontrivial deformations
of the associative algebra structure An The total Hochschild cohomology HIKRA) classifies
infinitesimal deformations oA in the class oA\ algebras.

Definition 3. Let A be aZ-graded algebra and Abe a degree- p component of A, such thapA

Aq C Apiq- We say that element f of'G\) has an internal degree p if(fy, ..., an) € Apiky -tk

a € A. The vector spaceCA) is graded by the internal degree, and the total degree of an element
has the form €(A) = ®,C"(A). The Hochschild complex is graded by the total degree, and the
Hochschild differential can be expressed in the form

n

(6f)(ar,...,ans1) = (-1)*T &y f(ag,....an Z 1) f(ag,...,8j-1,jaj11,8)42,- -, an)

+ (=) (ay,...,an)an; 1. (9.3)

Definition 4. Let.s# = (A, Q) be a differential graded algebra (DG-algebra). The degree-1 deriva
tion Q as the map QA, — A1 satisfies =0, and given by

n
(Qf>(a17"'7an) :Q( a17 7 Z Vl+"‘+v]-71+f+n71f(alu"'7aj—l7Qai7aj+17"'7an)~
=1
(9.4)

On the bigraded vector spa€*(A) there are two comute differentialQ and 8. Thus the
Hochschild cohomology of7 is defined to be the cohomology 6f1)"Q+ &. In the category
of DG-algebras HFi(.«7) classifies deformations ¢A, Q) regarded as af., algebra.

Remark 4. Closed topological string states are related to infinitesimal deformations of the
open-string theory. If in the theory exists a single D-brane then all thenmeftion is encoded in
an associative algebra equipped with a BRST differenti&) of ghost number one (i.e. in DG-
algebra) and an invariant scalar product. Equivalence classedarfriddions of these data are
described by a Hochschild cohomology theory(8fQ). The conjecture is [21]: The space of
physical closed-string states is isomorphic to the Hochschild cohomolog@y, @¥.

Let a D-brane be an object of an additive category, and let the spaep strings between
two D-branes be the space of morphisms. The algebra of open string fetateparticular D-
brane is its endomorphism algebra. Then BRST operators give rise éoetiiffals on all spaces of
morphisms, and it is convenient to dealing with a differential graded catetjr order to analyse
the space of physical open-string states between two D-branes, sie kaow the cohomology
of the BRST operator on the space of morphisms. The appropriate cohgymslthe Hochschild

5The grading is given by the ghost number.
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cohomology which classifies equivalence classes of deformations lofcatiegories. A heuristic
conjecture is: The space of physical closed strings is isomorphic to theskloitd cohomology of
the category of D-branes.

For the topological Landau-Ginzburg models the category of D-brasede thought of as
the category of curved differential graded modules (CDG-modules) awertain commutative
CDG-algebra [22]. The Hochschild cohomology of the category of bar@inzburg branes has
been computed in [21]. Note also Landay-Ginzburg models on orbifoldswcan provide an
alternative description of certain Calabi-Yau sigma-models (or so-calledé&senodels [23]).
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