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with its application to topological field theories and D-branes. We shall limit our discussion, in

particular, to Chern-Simons and BF theories and some examples of A-brane and B-brane models.

This introduction should prepare readers for quite more ambitious discussions found in recent

literature. The role of cohomological methods in physical theories will continue to grow as it has

grown in past years. In particular it will be an indispensable tool for topological theories of gauge,
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Topological field theories, branes, morphisms and categories A. A. Bytsenko

1. Sheaves on manifolds

A preheaf. A presheafF on topological spaceX consists of the following data:

• For every open setU ⊂ X one can associate an abelian groupF (U).

• If V ⊂U are open sets then a restriction homomorphism occurrUV : F (U) → F (V).

The following conditions hold: (i) F ( /0) = 0; (ii ) rUU is the identity map; (iii ) If W ⊂V ⊂U then
rVWrUV = rUW. For the restrictionrUV(P), P ∈ F (U) we use the notationP|V . An element of
F (U) is called a section ofF overU , while an element ofF (X) is called a global section.

A sheaf. A presheafF is calledsheafif for every collectionU j of open subsets ofX with
U =

⋃

j∈I
U j the following axioms hold:

A1. I f P, Q∈ F (U) andrUU j (P) = rUU j (Q) ∀ j, thenP = Q.
A 2. If P j ∈ F (U j) and if forU j

⋂

U j 6= /0, rU j ,U j
⋂

Uℓ
(P j) = rUℓ,U j

⋂

Uℓ
(Pℓ) ∀ j, then there exists

anP ∈ F (U) such thatrU,U j (P) = P j , ∀ j. (1.1)

Let F andE be presheaves overX, then a morphism of presheavesα : F → E is a collection of
mapsα(U) : F (U) → E (U), satisfying the relationrUVα(U) = α(V)rUV . Morphisms of sheaves
are morphisms of the underlying presheaves.

Coherent sheaves.LetY be a complex manifold. A sheafF overX is called acoherent sheaf
of O-modules if for eachx∈ X there is a neighborhoodU of x such that there is an exact sequence
of sheaves overU :

0−→ F |U −→ O
⊕p1|U −→ O

⊕p2|U −→ . . . −→ O
⊕p j |U −→ 0.

2. Differential complexes

We recall some definitions of differential complexes to be used in the following. De Rham,
Dolbeault anďCech complexes we shall discuss are examples of the differential complex.A direct
sumC• = ⊕

k∈Z

Ck of vector spacesCk indexed by integersk is calleda differential complexif there

are homomorphisms

... −→ Ck−1 δ
−→ Ck δ

−→ Ck+1 −→ ..., (2.1)

such thatδ 2 = 0. The homomorphismδ is calleda differential operatorof the complexC•. Ele-
mentsck ∈ Ck are calledk-cochains. Let us consider the space

Zk := Kerδ ∩Ck = {zk ∈ Ck such thatδzk = 0} . (2.2)

Elementszk ∈ Zk are calledk-cocycleswhile Zk is calledthe space of k-cocycles. The space

Bk := Imδ ∩Ck = {bk ∈ Ck such thatbk = δck−1 for someck−1 ∈ Ck−1} (2.3)
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Topological field theories, branes, morphisms and categories A. A. Bytsenko

is calledthe space of k-coboundariesand elementsbk ∈ Bk are calledk-coboundaries. It is evident
that Bk ⊂ Zk ⊂ Ck , indeed eachk-coboundarybk is a k-cocycle: δbk = δ 2ck−1 = 0. Cocycles
zk such thatzk 6= δck−1 are callednontrivial k-cocycles. The space of nontrivialk-cocycles is
parametrized by the quotient spaceHk := Zk/Bk. The spaceHk is calledthe k-th cohomology space
of the complexC•. (For the equivariant cohomology see for example [1].) The cohomologyof the
differential complexC• is the direct sum of the quotient spacesHk, and has the formH• = ⊕

k∈Z

Hk .

De Rham complex.Let X be a differentiable (smooth) manifold of real dimensionn, Ωk(X)

is the space of smoothk-forms onX andd is an exterior derivative:Ωk(X) → Ωk+1(X), d2 = 0.
Then we have the de Rham complex

Ω•(X) =
n
⊕

k=0
Ωk(X) . (2.4)

A differential formω on X is calledclosedif dω = 0. A differential formτ on X is calledexact
if τ = dϕ for some formϕ . Denote byZk

d(X) the space of closedk-forms onX and byBk
d(X) the

space of exactk-forms onX, Bk
d(X) ⊂ Zk

d(X) ⊂ Ωk(X). In the language of differential complexes
closed and exactk-forms are called de Rhamk-cocyclesandk-coboundaries, respectively. The
quotient spaceHk

d(X) = Zk
d(X)/Bk

d(X) is called thek-th de Rham cohomology spaceof X. The
direct sum

H•
d(X) =

n
⊕

k=0
Hk

d(X) (2.5)

is called thede Rham cohomologyof X.

Dolbeault complex.LetY be a complex manifold of complex dimensionn andΩp,q(Y) is the
space of smooth(p,q)-forms onY. The exterior derivatived on a complex manifold is splitted into
a direct sum of two differential operators∂ and∂̄ such thatd = ∂ + ∂̄ , d2 = ∂ 2 = ∂̄ 2 = ∂ ∂̄ + ∂̄ ∂ =

0 . Differential operators act on the spaceΩp,q(Y) as follows:

∂ : Ωp,q(Y) −→ Ωp+1,q(Y), ∂̄ : Ωp,q(Y) −→ Ωp,q+1(Y) ,

d : Ωp,q(Y) −→ Ωp+1,q(Y)⊕Ωp,q+1(Y) . (2.6)

Consider a sequence of homomorphisms

Ωp,0(Y)
∂̄

−→ Ωp,1(Y)
∂̄

−→ ...
∂̄

−→ Ωp,n(Y) −→ 0. (2.7)

Since∂̄ 2 = 0, the direct sumΩp,•(Y) =
n
⊕

q=0
Ωp,q(Y) of the spacesΩp,q(Y) is a differential complex,

calledthe Dolbeault complex. A (p,q)-form ω is called∂̄ -closedif ∂̄ω = 0. In the caseq= 0 such
∂̄ -closed forms are calledholomorphic. Let

Zp,q
∂̄ (Y) := Ker∂̄ ∩Ωp,q(Y) = {ω ∈ Ωp,q(Y) such that̄∂ω = 0} (2.8)

is the space of̄∂ -closed(p,q)-forms, i.e. Dolbeaultq-cocycles in the language of differential
complexes, and let

Bp,q
∂̄ (Y) := Im∂̄ ∩Ωp,q(Y) = {τ ∈ Ωp,q(Y), such that τ = ∂̄ ν for some ν ∈ Ωp,q−1(Y)} (2.9)
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is the space of̄∂ -exact(p,q)-forms, i.e. Dolbeaultq-coboundaries. Denote byE p(Y) := Zp,0
∂̄ (Y)

the space of holomorphic(p,0)-forms. The quotient spaceH p,q
∂̄ (Y) = Zp,q

∂̄ (Y)/Bp,q
∂̄ (Y) is called

the(p,q)-th Dolbeault cohomology spaceof Y. The direct sum

H p,•

∂̄ (Y) =
n
⊕

q=0
H p,q

∂̄ (Y) (2.10)

is calledthe Dolbeault cohomologyof Y.
Čech complex. We turn to the construction of thěCech cohomology following the lines

of the books [2, 3]. For any smoothn-dimensional manifold one can choose an open covering
U = {Uα}α∈I such that each nonempty finite intersection of the open setsUα is diffeomorphic to
an open ball inRn (or biholomorphic to a Stein manifold for the case of complexn-manifolds).
Such a covering will be called agood covering. For a good covering the Poincaré lemma holds
on each finite intersection of the open setsUα , α ∈ I . An ordered collection〈Uα0, ...,Uαm〉 of
m+1 open sets from the coveringU such thatUα0 ∩ ...∩Uαm 6= /0 is called them-simplex. The set
Uα0...αm := Uα0 ∩ ...∩Uαm is called asupport of the m-simplex〈Uα0, ...,Uαm〉.

Let us consider the spaceS of forms of a particular type defined locally on various open sets.
Depending on the structure of manifolds (smooth or complex-analytic) this may be the space of
smoothk-forms, holomorphic(p,0)-forms etc. In other words, we consider various sheaves of
forms over manifolds [2,3]. ǍCechm-cochaincm with values in the spaceS is a collectioncm =

{cα0...αm} of elementscα0...αm fromS defined on supportsUα0...αm of m-simplex〈Uα0, ...,Uαm〉. The
space ofČechm-cochains for the coveringU with values inS will be denoted byCm(U,S ). Let
us denote byρα the restriction operator acting on elements fromS as follows: ifΣ ∈S is defined
on an open setU thenραΣ is defined onU ∩Uα . Now letr us consider the mapδ := {ρ[α...]},

δ : {cα0...αm} −→ {ρ[α0
cα1...αm+1]} , cm = {cα0...αm} ∈Cm(U,S ),

δcm = {ρ[α0
cα1...αm+1]} ∈Cm+1(U,S ) (2.11)

and [α0...αm+1] means antisymmetrization with respect to the indicesα0, ...,αm+1. The operator
δ is calleda coboundary operator. Sinceραρβ = ρβ ρα , we haveδ 2 = 0. Therefore, one can
consider a sequence of homomorphisms

C0(U,S )
δ

−→ ...
δ

−→Cm−1(U,S )
δ

−→Cm(U,S )
δ

−→Cm+1(U,S )
δ

−→ ... , (2.12)

which gives thěCech complexC•(U,S ) = ⊕
m≥0

Cm(U,S ) . The coboundary operatorδ is a differ-

ential operator of this complex in the terminology of differential complexes. Denote by

Zm(U,S ) := Kerδ ∩Cm(U,S ) = {z∈Cm(U,S ) : δz= 0} (2.13)

the space of̌Cechm-cocycles, and by

Bm(U,S ) := Imδ ∩Cm(U,S ) = {b∈Cm(U,S ) : b = δc for some c∈Cm−1(U,S )} (2.14)

the space of̌Cechm-coboundaries. It is evident thatBm(U,S ) ⊂ Zm(U,S ) ⊂Cm(U,S ) . There-
fore, we can introduce the spaceHm(U,S ) = Zm(U,S )/Bm(U,S ) of nontrivialČechm-cocycles,
where two distinct elements ofZm(U,S ) are regarded as equivalent inHm(U,S ) if they differ by
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a coboundary. We callHm(U,S ) the m-thČech cohomology spaceof the coveringU with coeffi-
cients in the spaceS . The direct sum

H•(U,S ) = ⊕
m≥0

Hm(U,S ) (2.15)

is calledthe Čech cohomologyof U with coefficients inS . The result depends to some extent
on the choice of coveringU, but for a good covering this dependence disappear (for proof see
e.g. [2,3]).

Complexes of coherent sheaves.Let F • denote a complex of coherent sheaves,

F
• : . . .

δ j−2

−→ F
j−1 δ j−1

−→ F
j δ j

−→ F
j+1 δ j+1

−→ . . .

Hereδ jδ j−1 = 0; for details we refer the reader to the book [12]. Cohomology groups of the com-
plex F • can be defined as follows:H j(F •) = Ker δ j/Im δ j−1. Then a morphism of complexes
α : F • → E • induces a morphism of cohomology groupsH(α) : H•(F •) → H•(E •). A mor-
phismα is said to be a quasi-isomorphism ifH(α) is an isomorphism. For homotopy equivalent
morphismsα andβ one getsH(α) = H(β ).

2.1 Isomorphisms of cohomologies

For a differentiablen-manifold, we denote byΩk the space of locally definedk-forms and by
C ⊂ Ω0 the space of locally constant functions. For a complexn-manifold, byΩ(p,0) we denote
the space of locally holomorphic(p,0)-forms, and byO = Ω(0,0) the space of locally holomorphic
functions. In other words, we consider the sheavesC , O of locally constant functions and locally
holomorphic functions respectively, and the sheavesΩk, Ω(p,0) of forms.

Theorem 1. The de Rham cohomology H•d(X) andČech cohomology H•(X,C ) of a differentiable
n-manifold X are isomorphic.

Theorem 2. The Dolbeault cohomology Hp,•

∂̄ (Y) andČech cohomology H•(Y,Ω(p,0)) of a complex
n-manifold Y are isomorphic.

For the proof of Theorem 1 and 2 we refer the reader to the book [3].2

3. Abelian theories

The field-theoretic description of the de Rham and Dolbeault cohomologies can be given re-
spectively by the following action functionals [4,5]:

SdR =
∫

X

ℓ

∑
k=1

ω(n−k)∧dω(k−1) , (3.1)

SDol =
∫

Y

n

∑
q=1

ω(n−p,n−q)∧ ∂̄ω(p,q−1) , (3.2)

5
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whereω(s) ∈ Ωs(X) ares-forms onX, s= 0,1, ...,n, ℓ =
[

n+1
2

]

is the integer part of the number
(n+1)/2, ω(ℓ,s) ∈ Ωℓ,s(Y). The Euler-Lagrange equations for these action functionals are

dω(k) = 0 , k = 0,1, ...,n−1 , (3.3)

∂̄ω(p,q−1) = 0 , ∂̄ω(n−p,n−q) = 0 , q = 1, ...,n . (3.4)

Solutions of equations associated with de Rham action are elements fromZk
d(X). Exact forms from

Bk
d(X) give trivial solutions. Therefore, the space of nontrivial solutions (moduli space) is given by

the space
n−1
⊕

k=0
Hk

d(X). The de Rham theory generalizes Abelian Chern-Simons theory and Abelian

topological BF theory defined respectively by the actions

SACS =
∫

X3

A∧dA , (3.5)

SABF =
∫

X
B∧F , (3.6)

whereA := ω(1) ∈ Ω1(X3),dimR X3 = 3, B := ω(n−2) ∈ Ωn−2(X), F := dω(1), andω(1) ∈ Ω1(X).
As an example, one can compareSACS with SdR for n= 3: SdR =

∫

M(ω(2)∧dω(0) +ω(1)∧dω(1)) .

Let us consider a complexn-manifoldY. The moduli space of solutions is a vector space which

has the form
n
⊕

q=1

(

H p,q−1
∂̄ (Y) ⊕Hn−p,n−q

∂̄ (Y)
)

. The Dolbeault theory described bySDol generalizes

Abelian holomorphic BF theory with the action functional

SAhBF =
∫

Y
Bn,n−2∧F0,2 , (3.7)

whereBn,n−2 := ω(n,n−2) ∈ Ωn,n−2(Y), F0,2 = ∂̄ω(0,1), ω(0,1) ∈ Ω0,1(Y).

4. Non-Abelian theories

There exist non-quadratic topological field theories for which partition functions can be exactly
determined as well-defined quantities without actually having to evaluate the functional integrals.
It happen when the theory is endowed with a lot of symmetry. Symmetries lead to constraints
on the structure of the theory after quantisation. If there is enough symmetrythen the structure
of the quantum theory may completely determined by the constraints.1 A topological gauge
theory is by definition endowed with an abundance of symmetry: it is invariantunder both gauge
transformations and space diffeomorphisms. It has been realised that in the case of the Chern-
Simons gauge theory the resulting constraints on the structure of the quantised theory are strong
enough to completely determine the partition function and expectation values of the Wilson loop
observables without actually having to evaluate the functional integrals in general.2

Chern-Simons theory. Let U = {Uα} be a good covering of oriented smooth 3-manifoldX,
G a matrix Lie group, andg its Lie algebra. Denote byA a connection 1-form on a (topologically

1A classic example where this happens is in the two-dimensional WZW conformal field theory. In fact there the con-
straints resulting from the conformal symmetry completely determine the structure of the quantum theory, in particular
the fusion rules.

2The possibility that topological invariants could be obtained via Chern-Simons gauge theory had been discussed
in [6].
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trivial) principal G-bundleP overX. For such bundlesA is ag-valued 1-form onX. Consider the
action functional of non-Abelian topological Chern-Simons (CS) theory

SCS(A) =
1

4π

∫

X
Tr(A∧dA+

2
3

A∧A∧A); (4.1)

field equations have the formFA ≡ dA+ A∧A = 0. In the Chern-Simons gauge theory the fields
are theSU(N) gauge fields on a general closed oriented 3-manifoldX, i.e. the 1-forms onX with
values in the Lie algebrasu(N). (More general gauge groups can also be considered.) SolutionsA
define flat connections onP, i.e. differential operatorsdA = d+A such thatd2

A = 0.
Analogously, non-Abelian holomorphic Chern-Simons theories are defined on complex 3-

manifolds and describe flat (0,1)-connections (holomorphic structures). SolutionsA can be con-
sidered as de Rham 1-cocycles in the non-Abelian de Rham cohomology. On each open set
Uα equations are solved trivially:A = {Aα}, Aα = f−1

α d fα , where f = { fα} is a collection of
smoothG-valued functions on{Uα}. To obtain a global solutionA on X from local solutions
Aα = f−1

α d fα , one should solve the differential equationsf−1
α|β d fα|β − f−1

β |αd fβ |α = 0, fα|β := hβ fα ,
on each intersectionUα ∩Uβ 6= /0, which simply mean thathβ Aα = hαAβ onUα ∩Uβ 6= /0. These
equations are equivalent to the equationsd( fα|β f−1

β |α) = 0 . We see thatcαβ := fα|β f−1
β |α is a lo-

cally constantG-valued function defined onUα ∩Uβ . The collection{cαβ} of G-valued func-
tions is aČech 1-cocycle in the non-AbeliaňCech cohomology [7–10], where the cocycle condi-
tions are(hγcαβ )(hαcβγ)(hβ cγα) = 1 onUα ∩Uβ ∩Uγ 6= /0. Therefore, solutions of field equations
dA+A∧A= 0 can be obtained by splitting locally constantG-valued functionscαβ , satisfying co-
cycle conditions, into a product of two smoothG-valued functionsfα and f−1

β , defined onUα and

Uβ , respectively. Then, by virtue of the de Rham-Čech correspondence, a collection{ f−1
α d fα}=: A

gives a global solution to field equations.
Topological BF theories.A generalization of Chern-Simons theories to arbitrary dimensions

is given by (topological) BF theories. The action functional for non-Abelian topological BF theory
has the following form:

SBF =
∫

X
Tr(B∧FA), (4.2)

whereFA is the curvature of a connection 1-formA on a topologically trivial principalG-bundle
P over X, andB is a g-valued(n− 2)-form on X. The variation of the action with respect to
B gives the Chern-Simons field equations, while variation with respect toA gives the equations
dAB = dB+ A∧B−B∧A = 0. Thus, topological BF theories describe flat connectionsdA on a
bundleP over X andg-valueddA-closed(n− 2)-forms B on X. Differential Cher-Simons field
equations are equivalent to functional cocycle equations which are solved bycαβ = fα|β f−1

β |α for

some smoothG-valued functions{ fα}, and for a flat connectionA = { f−1
α d fα}. EquationsdAB =

dB+A∧B−B∧A = 0 can be easily reduced to equationsd( f B f−1) = 0 from standard de Rham
cohomology.

LetY be a complexn-dimensional manifold,G a complex matrix Lie group,g its Lie algebra,P
a topologically trivial principalG-bundle overY, A a connection 1-form onP, andFA = dA+A∧A
its curvature. Consider holomorphic BF theories with the action functional

ShBF =
∫

Y
Tr(Bn,n−2∧F0,2

A ), (4.3)

7
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whereBn,n−2 is ag-valued(n,n−2)-form onY andF0,2
A is the (0,2)-component of the curvature

tensorFA = F2,0
A + F1,1

A + F0,2
A . The field equations arē∂A0,1 + A0,1∧A0,1 = 0, ∂̄Bn,n−2 + A0,1∧

Bn,n−2−Bn,n−2∧A0,1 = 0, whereA0,1 is the (0,1)-component of a connection 1-formA= A1,0+A0,1

onP. If a representation ofG in the complex vector spaceCℓ is given, we can associate withP the
complex vector bundleE = P×G C

ℓ and use vector bundles in the description of BF theories.

It follows from field equations that models (3.6) describe flat (0,1)-connections∂̄A = ∂̄ +A0,1

onG-bundles over complexn-manifoldsY and∂̄A-closedg-valued(n,n−2)-formsBn,n−2 onY.

One can consider a procedure of constructing solutions to field equationsand mapping solu-
tions into one another (dressing transformations) [10]. This cohomological method of solving field
equations is based on the equivalence ofČech and Dolbeault descriptions of holomorphic bundles
and is a generalization to arbitrary dimensions of the dressing approach (Riemann-Hilbert prob-
lems) to solving integrable equations in two dimensions.

Remark 1. The de Rham-̌Cech isomorphism reduces differential equationsdω(k) = 0 onk-
formsω(k) (de Rhamk-cochains) on a smoothn-manifoldX to the functional equationsρ[α0

cα1...αk+1]

= 0 onČechk-cochains{cα0...αk} from Ck(U,S ) defined on open subsets{Uα0...αk} of X. Thus,
solutions of topological Chern-Simons and BF theories can be constructedby means of̌Cech co-
cycles. Symmetries of these theories can be described in terms ofČech 1-cocycles with values in
the sheaf of locally constant maps of the spaceX into the Lie groupG.

The Dolbeault-̌Cech isomorphism reduces differential equations of motion on(p,q)-forms
(Dolbeaultq-cochains), defined on a complexn-manifoldY, to functional equations oňCechq-
cochains fromCq(U,E p) defined on open subsets{Uα0...αq} of Y. By using this isomorphism, one
obtains another description of solutions of holomorphic Chern-Simons and BF theories.

Non-Abelian cohomological structure.Results of of holomorphic structure of BF theory can
be formulate in terms of elements of homological algebra using sheaves of non-Abelian groups. Let
G be a (complex) semisimple matrix Lie group,g its Lie algebra,P a principalG− bundle over
complexn−manifoldY. Let F be the sheaf of germs of smoothG−valued functions onY andE

its subsheaf of holomorphicG−valued functions. LetP0 be a (trivial)G−bundle overY andA 0,1

the sheaf of flat (0,1)-connections onP0 (germs of solutions to the equation of motions of (4.3) for
the (0, 1)-component of a connection 1-form onP).

Let us introduce the sets of the following quatity:C0(U,F ) of 0-cochains of the covering
U = {Uα} of a manifoldY with values inF , Z0(U,F ) of 0-cocycles with values inF , C1(U,F )

of 1-cochains with values inF , Z1(U,F ) of 1-cocycles of the coveringU with values in the
sheafF and the 1-cohomologyH1(U,F ). It is clear that these sets contain the subsetsC0(U,E ) ,
Z0(U,E ) , C1(U,E ) , Z1(U,E ) andH1(U,F ) respectively (for definitions we refer the reader to the
book [11]). By definitionH0(Y,F ) = Z0(U,F ) , H0(Y,A 0,1) = Z0(U,A 0,1). One can choose
a coveringU = {Uα} such thatH1(U,F ) = H1(Y,F ) , H1(U,E ) = H1(Y,E ). 3 Then some of
spaces and groups are defined as follows:M ≃ H0(Y,A 0,1)/H0(Y,F ), whereM is the moduli
space of flat (0, 1)-connectionsA0,1 parametrizing holomorphic structures of the (0, 1)-part of

3This is realized for instance whenUα ’s are Stein manifolds.
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exterior derivative on the bundleP0. One can construct the exact sequence of sheaves [7–9]

e−→ E
σ

−→ F
δ̄ 0

−→ A
0,1 δ̄ 1

−→ e,

whereσ : E → F is an embedding ofE into F , δ̄ 0 : F → A 0,1 is a map given for any open
setU of the spaceY, δ̄ 1 maps any flat (0, 1)-connection into zero, ande is a marked element of
the considered sets, i.e. identity in the sheafE ⊂ F and zero in the sheafA 0,1. Then the exact
sequence of cohomology sets holds

e−→ H0(Y,E )
σ∗−→ H0(Y,F )

δ̄ 0
∗−→ H0(Y,A 0,1)

δ̄ 1
∗−→ H1(Y,E )

λ
−→ H1(Y,F ) ,

where the mapλ coincides with the canonical embedding by the embedding of sheavesσ : E →F .
The kernel Kerλ = λ−1(e) of the mapλ coincides with a subset of equivalence classes of topologi-
cally trivial holomorphic bundlesP. The following result holds [10]:M ≃ H0(Y,A 0,1)/H0(Y,F )

≃ Kerλ .

5. Categories

A categoryC consists of the following data:

• A class ObC of objectsA, B, C, . . .;

• A family of disjoint sets of morphisms Hom(A, B), one for each ordered pairA, B of objects;

• A family of maps Hom(A,B)×Hom(B,C) → Hom(A,C), one for each ordered tripletA, B,
C of objects.

These data obey the axioms:

A 3. If f : A→ B , g : B→C , h : C → D , then composition of morphisms is associative,
that is,h(g f) = (hg) f .
A 4. To each objectB there exists a morphism 1B : B→ B such that 1B f = f , g1B = g for
f : A→ B andg : B→C.

Additive category. An additive category is a category in which each set of morphisms
Hom(A,B) has the structure of an abelian group. The following axioms hold:

A 5. Composition of morphisms is distributive:(g1 + g2) f = g1 f + g2 f , h(g1 + g2) =

hg1 +hg2 for anyg1,g2 : B→C , f : A→ B , h : C→ D.
A 6. There is a null object 0 such that Hom(A, 0) and Hom(0,A) consist of one morphism
for anyA.

A 7. To each pair of objectsA1 andA2 there exists an objectB and four morphismsA1
j1
→

B
ℓ2→A2

j2
→B

ℓ1→A1, which satisfy the identitiesℓk jk = 1Ak, (k= 1,2), j1ℓ1+ j2ℓ2 = 1b, ℓ2 j1 =

ℓ1 j2 = 0.

Abelian category. It is an additive categoryA which satisfies the additional axiom:

A 8. To each morphismf : A → B there exists the sequenceK
k
→ A

i
→ I

j
→ B

c
→ K

′

with the properties:ji = f ; K is a kernel off , K
′
is a cokernel off ; I is a cokernel ofk and

a kernel ofc.

9
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The category of coherent sheaves is the abelian categoryA.
The derived category.The definition of derived categoryD(A) proceeds as follows [12] (see

also [13]):

• We begin with category of complexes of coherent sheavesKom(A): Ob Kom(A) =
{complexesB• of coherent sheaves}; Hom(B•, C•) = morphisms of complexesB• →C•.

• The homotopy categoryK (A) can be determined as follows: ObK (A) = Ob Kom(A), Mor
K (A) = Mor Kom(A) modulo homotopy equivalence.

• Finally the derived categoryD (A) is determined as follows: ObD (A) = ObK (A).

The morphisms ofD (A) are obtained from morphisms inK (A) by inverting all quasi-isomorphisms.
The derived categoryD (A) is the additive category.

6. Topological D-branes

Let us address to a specific set of topological field theories with target spaceX. The sum of all
such topological field theories givesD(X). The objects inD(X) is calledtopological branes[16].
These topological field theories can be build by making use the following processes:

• Take into account Witten’s B-model [14,15].

• Add the notion of integral grading [16].

• Construct specific kinds ofmarginaldeformations of this theory to form a more general class
of objects.

The dynamics of off-shell open string modes in the topological B-model is captured the holo-
morphic Chern-Simons action which defines a cubic string field theory. In order to write down
this action, we must regard a holomorphic bundleE on Y as aC∞ vector bundle equipped with
a connectionA so thatF0,2(A) = 0. The off-shell boundary fields form an associative algebra
A = ⊕3

p=0Ω0,p(Y,End(E)), wherep represents the ghost number. A morphism∂̄A represents the
BRST operatorQ acting on off-shell states, which defines a structure of differential graded al-
gebra onA. The massless spectrum of the theory is parameterized by the graded vector space
H =⊕3

p=0H0,p(Y,End(E)), and the boundary chiral ring structure is defined by the Yoneda pairing
on H. In addition the physical on-shell operators in string field theory correspond to elements of
degree one inH, that is cohomology classes inH0,1(Y,End(E)).

It has been proved that the sum of a certain class of topological field theories on an algebraic
varietyX is equivalent (in some sense) to the bounded derived category of coherent sheaves (see,
for example, the review paper [18]). The finite collection of nontrivial sheavesE n is the objects
in our category. We can say that the objects are D-branes and the morphisms are open strings.
Composition of morphisms is then given by the Yoneda pairing [19]:

Extp(E ℓ,E m)⊗Extq(E m,E n) −→ Extp+q(E ℓ,E n), (6.1)

10
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which means that two open strings joining along a common boundaryE m. There are the following
conditions that these objects and morphisms need to satisfy in order to be a category: For every
object there exists an identity morphism which is given by 1n ∈ Ext0(E n,E n); the morphisms are
associative.

The content of a topological field theory is given completely by its operator algebra. The
topological field theory we are discussing is therefore completely equivalent to this category. By
our construction we have described a category with a finite number of objects. The categoryT(X)

of all possible topological D-branes onX has an infinite number of objects. Thus, the category
associated to a particular topological field theory is a subcategory ofT(X).

The open strings vertex operators (which deform the theory) must be ghost number one. Let
us consider a theory with a single D-brane which is given by the locally freesheafE . Then the
ghost number one we have Ext1(E ,E ). Ignoring potential obstructions in the moduli space this
agrees with the expected deformations of the sheafE (E can be associated with a vector bundle
E, in that case Ext1(E ,E ) = H1(X,End(E))). Let a open string stretching between two possibly
distinct D-branes. It can be done assuming that eachE n is actually a direct sum of two sheaves
for all n, i.e. the sumE n⊕F n. We can restrict the maps in this complex for a particular string to
being block-diagonal:δ E

n : E n → E n+1,δ F
n : F n → F n+1, δ 2 = 0 and with noδ maps mixing the

E ’s andF ’s. Then we have two D-branes; one associated toE • and one associated toF •. The
topological field theory is specified by a complex of locally free sheaves:

E
• (F •) : . . . −→ E

−1(F−1)
δ E
−1 (δ F

−1)
−→ E

0(F 0)
δ E

0 (δ F
0 )

−→ E
1(F 1)

δ E
1 (δ F

1 )
−→ . . . . (6.2)

The original vector bundleE is finite-dimensional, thus this complex is bounded. Let us consider
the sheaf given byHom(E m,F n). The vector spaces Hom(E m,F n) is difer from the sheafs
Hom(E m,F n) which associates an open setU with local holomorphic maps from sections of the
bundleEm overU to sections of the the bundleFn overU . The mapsδ E

n andδ F
n induce a double

complex:

δ E
1

��

δ E
1

��δ F
−1

// Hom(E 1,F 0)
δ F

0
//

δ E
0

��

Hom(E 1,F 1)
δ F

1
//

δ E
0

��δ F
−1

// Hom(E 0,F 0)
δ F

0
//

δ E
−1

��

Hom(E 0,F 1)
δ F

1
//

δ E
−1

��

(6.3)

while the single complex has the form

. . . // Hom0(E •,F •)
δ̄0

// Hom1(E •,F •)
δ̄1

// . . . (6.4)

HereHomq(E •,F •) = ⊕nHom(E n,F n+q) , δ̄ = δ E + δ F , andδ E andδ F anti-commute. The
operator product is a generalization of the Yoneda pairing HomP(E •,F •)⊗HomQ(F •,G •) →

HomP+Q(E •,G •) . Taking into account a decompositionE = ⊕n∈ZE n, whereE n is a B-brane
with ghost numbern, we may construct a general collection of D-branes in terms of a locally-free

11
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sheafE . In addition the ghost number one operators in this B-model are thereforeelements of
Extk(E n,E n−k+1) for anyn andk.

7. Deformations in category

Remark 2. A functor F from categoryA to categoryB associates from each objectA of A
objectF(A) from B and from each morphismα : A→ B of A morphismF(α) : F(A) → F(B) of B
such thatF has the composition and identity morphisms:F(α ◦β ) = F(α) ◦F(β ),F(1A) = 1F(A).
If functor has propertiesF(A) → F(B) andF(B) → F(A) then it called thecovariant functor.

Remark 3. A chain map which induces an isomorphism on the cohomology groups of the
complex is called aquasi-isomorphism.

Theorem 3. Let A be an abelian category, and letKom(A) be the category of complexes overA.
There exists a categoryD(A) and a functorQ : Kom(A)→D(A) such that the following properties
hold:

• For any quasi-isomorphism f ,Q( f ) is an isomorphism.

• Any functorF : Kom(A) → B transforming quasi-isomorphisms into isomorphisms can be
uniquely factorized throughD(A). It means that there exists a unique functorG : D(A) → B
which satisfyF = G◦Q.

Following the lines of [18] let us consider the categoryKLF(X) of complexes of locally free sheaves
on X and the morphisms in this category which are chain maps: a chain inKLF(X) maps to the
corresponding D-brane inT(X), and a chain map inKLF(X) maps to an element of Hom0(E •,F •)

in T(X).
Mapping cone construction.Let f be a quasi-isomorphism between two complexesf : E • →

E •. Note that f ∗ is an isomorphism. Indeed, letE • (F •) be acyclic (be a complex with trivial
cohomology) and letF • (E •) be any complex. In this case the cohomology of HomP(E •,F •)

(HomP(E •,F •)) is trivial for anyE • (F •). Let us introduce theConeof a mapf of complexes.

Definition 1. The mapping coneCone( f : E • → F •) can be defined as the complex

//E 1⊕F 0

(

δE 0
f δF

)

//E 2⊕F 1

(

δE 0
f δF

)

//E 3⊕F 2 // . . . (7.1)

Cone( f : E • → F •) is acyclic iff the mapf is a quasi-isomophism. As an example, for chain

complexE • ⊕ E •[1]⊕ E • we haveδ =







δA 0 0
−Id δA [1] Id
0 0 δA






. If f is a quasi-isomorphism then its

cone is acyclic. and the groups HomP(Cone( f ),F •) associated to the cone are zero. Thus
f ∗ : HomP(E •,F •) → HomP(E •,F •). provides the canonical isomorphism. Therefore a quasi-
isomorphism inKLF(X) maps to an isomorphism inT(X). Let us take into accout complexes over

12
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an abelian category, it gives a possibility to use Theorem 3. Consider the category of coherent
sheaves (the smoller category of locally-free sheaves is not abelian, since it does not contain its
own cokernels). Let as beforKom(X) denote the category of bounded complexes of coherent
sheaves onX. We can defined a functor fromKom(X) to T(X), and therefore by Theorem 3 can
constructed a functorG : D(X) → T(X) (see for details [18]).

8. Monodromy

The monodromy acting on the derived categoryD(A) and is induced by a so-called Furier-
Mukai transform [16] associated with some generatorK• ∈ D(A). Action of the monodromy on a
complexB• is given by

B
• 7−→ Rp1∗(K

•
L
⊗ p∗2(B

•)). (8.1)

The projection maps fromX×X to its first and second factors is:

△
⋂

X×X
p1

ւ
p2

ց
X X

Here△⊂X×X is the diagonal embedding ofX. For the monodromy action formula we have used
the following transformations:

• Complex of sheavesB• onX has beenpulling backto the inverse-image complex of sheaves
p∗2(B

•) onX×X.

• The left-derived complex (hence the capital letterL ) of sheaves onX has been constructed
by taking the tensor-product with the generatorK•.

• The right-derived complex (hence the capital letterR) of sheaves onX has been constructed
by pushing-forwardto the direct image complexp1(•).

In the case of A-branes monodromy associated with a movement around loops in the mod-
uli space is purely classical. Way around non-contractible loops in the moduli space of complex
structure leads to a non-trivial monodromy associated with the periods of theholomorphic 3-form
over integral 3-cycles. In that case the monodromy can be interpreted asan automorphism of group
H3(Y,Z) which preserves the intersection form between 3-cycles. The homology classes of A-
branes undergo monodromy and as a consequence the A-branes themselves undergo monodromy.

In the B-brane case the brane charge is an element ofHeven(X,Z). Considering the case of the
quintic 4 one can map betweenH3(Y,Z) andHeven(X,Z). Therefore the monodromy action from
the A-model into the B-model can be copied.

4Let, as an example,Y be the quintic hypersurface inCP
4. We can defined the mirrorM as the orbifoldY/Z

3
5. Since

the virtue of mirror symmetry [20] the Kähler moduli space ofY is identified with the complex structure moduli space
of M, which is described by the Picard-Fuchs equation:{θ4

z +5z∏1
ℓ=4(5θz+ℓ)}ωk(z) = 0. Here the complex variablez

spans the complex structurte moduli spaceM, θz = zd/dz. Point of the Landau-Ginzburg potential of the moduli space
Y is mirror toz= ∞. The limit of the large radius ofY is mirror tos= 0, while the conifold point ofY is mirror toz= 1.
The periodsωk(z) correspond to these three points are singular.

13
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As an example, let us begin with a particular sheafF and then compute the monodromy ac-
tion on Chern character ch(F ). We can find examples where the resulting element ofHeven(X,Z)

cannot correspond to the Chern character of any sheaf. (In the case of hyperbolic geometry some
explicit results for the index of a Dirac operator, the Chern character and lowest K-groups, asso-
ciated with topological charges of branes, the reader can find in [17].) But going to the derived
category solves these problems [18]. In category language we have a functor fromD(X) to D(X)

that is a bijection on the (isomorphism classes of) objects and that preserves the corresponding
morphisms. Such situation onD(X) is always induced by a Fourier-Mukai transform.

Monodromy of the quintic. As an example, let us consider a monodromy about the Landau-
Ginsburg point in the K ¨ahler moduli space of the quintic. Such a monodromy is generated by [18]

K•
LG = 0−→ O ⊠O(1) −→ O△(1) −→ 0, (8.2)

where the notationA⊠ B to meanp∗1A⊗ p∗2B for A,B ∈ D(X) has been introduced. The explicit
monodromy calculations forO ∈ D(A) the reader also can find in [18].

9. Hochschild cohomology of D-branes category

The closed string correlators perhaps can be constructed from the open ones using topological
string theories as a model. This conjecture has been partially verifyed by means of computation of
the Hochschild cohomology of the category of D-branes.

Definition 2. Let A be an associative algebra overC. The Hochschild cochain complex with coef-
ficients in A is the sequence of vector spaces Cn(A) = HomC(A⊗n,A), n= 0,1, . . ., equipped with
an operatorδ : Cn(A) →Cn+1(A) defined by

(δ f )(a1, . . . ,an+1) = a1 f (a2, . . . ,an)+
n

∑
i=1

(−1)i f (a1, . . . ,ai−1,aiai+1,ai+2, . . . ,an)

+ (−1)n+1 f (a1, . . . ,an)an+1 . (9.1)

The cohomology ofδ in degreen will be denoted HHn(A),

HHn(A) :=
Ker(δ : Cn(A) −→Cn+1(A))

Im(δ : Cn−1(A) −→Cn(A))
(9.2)

and calledthe Hochschild cohomology of A with coefficients in A. The connection between Hoch-
schild cohomology and infinitesimal deformations ofA is given by HH2(A). Denote the product in
A by m, an infinitesimally deformed product bymt = m+ tϕ , wheret2 = 0, then the mapA2 → A is
a Hochschild cocycle and the trivial deformations are given by Hochschild coboundaries. Indeed,

mt(mt(a1,a2),a3)) = a1a2a3 + t(ϕ(a1,a2)a3 +ϕ(a1a2,a3)),

mt(a1,mt(a2,a3)) = a1a2a3 + t(a1ϕ(a2,a3)+ϕ(a1,a2a3)),

a1ϕ(a2,a3)−ϕ(a1a2,a3)+ϕ(a1,a2a3)−ϕ(a1,a2)a3 = 0 (since associativity ofmt).

The last condition is simply the conditionδϕ = 0. A trivial deformation is given by the condition
that A with the new multiplication is isomorphic to the original algebra structure. Thus there is

14
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a linear bijectionσt : A → A such thatmt(σt(a1),σt(a2)) = σt(a1a2). Let σt := I + tλ , where
λ : A→ A is a linear map. We get

mt(a1,a2) = σt(σ−1
t (a1),σ−1

t (a2)) = a1a2− t(a1λ (a2)−λ (a1a2)+λ (a1)a2)

= a1a2− t(bλ )(a1,a2).

Therefore coboundaries give rise to trivial deformations. HH2(A) classifies nontrivial deformations
of the associative algebra structure onA. The total Hochschild cohomology HH•(A) classifies
infinitesimal deformations ofA in the class ofA∞ algebras.

Definition 3. Let A be aZ2-graded algebra and Ap be a degree−p component of A, such that Ap ·

Aq ⊂ Ap+q. We say that element f of Cn(A) has an internal degree p if f(a1, . . . ,an) ∈ Ap+k1+···+kn,

ai ∈Aki . The vector space Cn(A) is graded by the internal degree, and the total degree of an element
has the form C•(A) = ⊕nCn(A). The Hochschild complex is graded by the total degree, and the
Hochschild differential can be expressed in the form

(δ f )(a1, . . . ,an+1) = (−1)a· f a1 f (a2, . . . ,an)+
n

∑
j=1

(−1) j f (a1, . . . ,a j−1,a ja j+1,a j+2, . . . ,an)

+ (−1)n+1 f (a1, . . . ,an)an+1. (9.3)

Definition 4. LetA = (A,Q) be a differential graded algebra (DG-algebra). The degree-1 deriva-
tion Q as the map Q: Ap → Ap+1 satisfies Q2 = 0, and given by

(Q f)(a1, . . . ,an) = Q( f (a1, . . . ,an))−
n

∑
j=1

(−1)v1+...+v j−1+ f+n−1 f (a1, . . . ,a j−1,Qai ,a j+1, . . . ,an).

(9.4)

On the bigraded vector spaceC•(A) there are two comute differentials:Q and δ . Thus the
Hochschild cohomology ofA is defined to be the cohomology of(−1)nQ+ δ . In the category
of DG-algebras HH•(A ) classifies deformations of(A,Q) regarded as anA∞ algebra.

Remark 4. Closed topological string states are related to infinitesimal deformations of the
open-string theory. If in the theory exists a single D-brane then all the information is encoded in
an associative algebraA equipped with a BRST differentialQ of ghost number one (i.e. in DG-
algebra) and an invariant scalar product. Equivalence classes of deformations of these data are
described by a Hochschild cohomology theory of(A,Q). The conjecture is [21]: The space of
physical closed-string states is isomorphic to the Hochschild cohomology of(A,Q).

Let a D-brane be an object of an additive category, and let the space of open strings between
two D-branes be the space of morphisms. The algebra of open string statesfor a particular D-
brane is its endomorphism algebra. Then BRST operators give rise to differentials on all spaces of
morphisms, and it is convenient to dealing with a differential graded category. 5 In order to analyse
the space of physical open-string states between two D-branes, one has to know the cohomology
of the BRST operator on the space of morphisms. The appropriate cohomology is the Hochschild

5The grading is given by the ghost number.
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cohomology which classifies equivalence classes of deformations of such categories. A heuristic
conjecture is: The space of physical closed strings is isomorphic to the Hochschild cohomology of
the category of D-branes.

For the topological Landau-Ginzburg models the category of D-branes can be thought of as
the category of curved differential graded modules (CDG-modules) over a certain commutative
CDG-algebra [22]. The Hochschild cohomology of the category of Landau-Ginzburg branes has
been computed in [21]. Note also Landay-Ginzburg models on orbifolds, which can provide an
alternative description of certain Calabi-Yau sigma-models (or so-called Gepner models [23]).
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