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Recently, the proposal of the remnant effects of Lorentz symmetry and CPT breaking in non-
relativistic Quantum Mechanics has been investigated in the presence of the non-minimal cou-
plings. Such a possibility opens up the way to study new type of phase generation and we can
investigate the influences of this background on a variety of phase transitions. In the present
work, we propose to reasses the Bose-Einstein Condensates (BEC) starting from a relativistic
theory with non-minimal coupling to a Lorentz and CPT breaking background to compute its
non-relativistic limit and study the contribution of the background to the Gross-Pitevskii equation
for the BEC. The non-minimal coupling is the one that generates an Aharonov-Casher phase,
motivated by the fact that we would like to study circular states in this system.
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1. Introduction

Studies about consequences of spontaneous symmetry breaking in context of a fundamental
theory have received special attention over the past years. The immediate consequence is the non-
equivalence between particle and observer Lorentz transformations [1] . In the last decade a line of
works [2] explored this breaking in the context of string theories. Models with Lorentz symmetry
and CPT breaking have been used as a low-energy limit of an extension of the Standard Model,
valid at the Plank scale [3]. An effective action that incorporates CPT and Lorentz symmetry
violation is obtained and it keeps unaffected the SU(3)× SU(2)×U(1) gauge structure of the
underlying theory.

Concerning the gauge sector of the Standard Model Extension (SME), many studies has been
developed that focuses on many different aspects [4]-[5]. The fermion sector has been investigated
as well, initially by considering general features (dispersion relations, plane-wave solutions, and
energy eigenvalues) [3], and later by scrutinizing CTP-violating probing experiments [6] conceived
to set up upper bounds on the breaking parameters.

Our approach to the Lorentz symmetry breaking consists in adopting the 4-dimensional ver-
sion of a Chern-Simons topological term, namely εµνκλ vµAνFκλ , where εµνκλ is the 4-dimensional
Levi-Civita symbol and vµ is a fixed four-vector acting as a background. This idea was first set-
tled down in the context of QED in [17]. A study of the consequences of such breaking in QED
is extensively analyzed in [7], [8]. An extension of the Carroll-Field-Jackiw model in (1+3)
dimensions, including a scalar sector that yields spontaneous symmetry breaking (Higgs sector),
was recently developed and analyzed, yielding in an Abelian-Higgs gauge model with violation of
Lorentz symmetry [9].

On the other hand, the study of a vortex nature in a Bose-Einstein Condensates (BEC) was a
subject of great deal of papers and the most relevant results have been reported in an interesting
review work by Fetter [12]. Its nature is closely related to the existence of an order parameter of the
kind Φ(r, t) =

√
n(r, t)exp(iS (r, t)) , which represents an irrotational flow from a hydrodynamic

viewpoint; actually, from the Gross-Pitaevskii Equation (GPE) for the order parameter, one can de-
rive the equations of motion that resemble the equation of irrotational hydrodynamics, from which
the phases S (r, t) plays the role of a velocity field potential, i.e.,

→
v = h̄

m ∇S (r, t). The existence of
the vortex is related to the fact that

→
v is nothing but the gradient of the phase S (r, t). Without any

discontinuity in this quantity, one should observe divergence lines for
→
v ; but, with second deriva-

tive discontinuity the violation of the Bianchi identity for that phase, [∂i,∂ j]S (r, t) 6= 0, a kind
of singularity emerges, which implies that the velocity field has a non-zero circularity, yielding
∇×→

v = h̄
m δ 2 (x), and the vortex charge is defined as h̄

m .

Recently, in a paper by Petrosyan and You [13], it has been shown that the quantum topological
Aharanov-Casher phases [14] may be used to create circulating states of magnetically trapped
atomic BEC’s, after associating these states with vortex-states. This has been shown [15]. In
another context, out of the atomic condensates systems, it was explored that a kind of Lorentz
breaking implication in Quantum Mechanics [16] is that topological phases may be induced by the
coupling of an external electric and magnetic field with a vector background responsible for the
breaking Lorentz Symmetry. This breaking may be implemented by a non-minimal coupling in
the covariant derivative. A special situation pointed out in [16] is that some configurations could
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produce AC phase, important in the study of vortex of BEC systems as discussed above.
In this paper, we propose to reassess this discussion in the light of the Lorentz breaking in

Quantum Mechanics.

2. Effective Vector Potential in the Gross-Pitaevskii Equation.

The Hamiltonian that describes the system follows from the Dirac Equation for a spin- 1
2 parti-

cle and linear in the fields. The applicability for neutral bosons was stressed in [15] for the standard
case that matter field couple to the electromagnetic fields in a non-minimal way. In this work, it is
proposed to write the Hamiltonian with the same procedure, but introducing another kind of non-
minimal coupling that breaks the Lorentz symmetry. The motivation for this kind of coupling in
the problem of confined Bose-Einstein Condensates is that, as it is explored in [16], the background
responsible for breaking the Lorentz symmetry generates a kind of Aharanov-Casher phase even
in the case of neutral particles even in the spin-0 case, which makes of the BEC system a very
interesting example for this application.

The starting point is the Dirac equation below

(iγµDµ −m)Ψ = 0, (2.1)

where the covariant derivative is chosen to be

Dµ = ∂µ + eAµ + igvν
∼
Fµν , (2.2)

where vµ is a fixed four-vector acting as a background which breaks the Lorentz symmetry [17].
The Hamiltonian obtained after the non-relativistic limit is worked out read as follows:

H =
1

2m
−→
Π

2 + eϕ− e
2m

−→
σ · (

−→
∇ ×−→A )+

1
2m

gv0−→
σ · (

−→
∇ ×−→B )+

g
2m

−→
σ ·

−→
∇ × (−→v ×−→E ). (2.3)

The generalized canonical moment is

−→
Π =

(−→p − e
−→
A +gv0−→B −g−→v ×−→E

)
. (2.4)

One can also add to (2.2) a torsion-like term, igaγ5vν
∼
Fµν , which will contribute to the Hamiltonian

with an extra term
HgA =−→

σ ·
(

gav0−→B −ga
−→v ×−→E

)
+ga

−→v ·−→B , (2.5)

so that, the total Hamiltonian becomes

Ht = H +HgA . (2.6)

The second quantized description of a collection of such fully polarized neutral bosons with
spin-s is given, from (2.6), by a Lagrangian, enriched by a contact interaction term with coupling
constant λ , as below:

L = ψ
† (ih̄∂t + µBS)ψ− 1

2m
ψ

† (−ih̄∇−ae f f )
2

ψ− λ

4
(
ψ

†
ψ
)2

+Lnm, (2.7)
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and Lnm is the contribution of the non-minimal term in the lagrangian;

Lnm =
g

2m
ψ

†
(

S·v0−→
∇ ×−→B +S·

−→
∇ × (−→v ×−→E )

)
ψ

+gAψ
†
(

S·v0−→B−S·(−→v ×
−→
E )
)

ψ +gAψ
†
(−→v ·

−→
B )
)

ψ. (2.8)

Carrying out the adiabatic approximation to “freeze out ” the spin degree of freedom in a state with
quantum number ms, in the same way as in the work of ref.[15], eq. 2.8 can be cast as

Lnm =
g

2m
msψ

†
(

v0−→
∇ ×−→B +

−→
∇ × (−→v ×−→E )

)
ψ

+msgAψ
†
(

v0−→B−(−→v ×−→E )
)

ψ +gAψ
†
(−→v ·

−→
B )
)

ψ. (2.9)

Finally, in order to obtain the Gross-Pitevskii Equation for the order parameter, we should take the
variational principle in the total Lagrangian of the system. The result is:

ih̄∂tΦ = [
1

2m
(−ih̄∇−ae f f )

2−msµB+
λ

4
Φ
∗
Φ+

− g
2m

ms

(
v0−→

∇ ×−→B +
−→
∇ × (−→v ×−→E )

)
+

+msgAv0−→B−(−→v ×−→E )+gA

(−→v ·
−→
B )
)
]Φ (2.10)

and
ae f f =−e∗

−→
A +gv0−→B −g−→v ×−→E . (2.11)

This term contains the Aharanov-Bohm, the Aharanov-Casher and an extra phase due to the gv0−→B
-term.

We first whish to verify the stability of the state of minimum energy. For that we adopt the
following parametrization:

Φ = χ(r)einθ . (2.12)

Notice that the effective potential to be taken into account is

V (Φ∗
Φ) = V (Φ∗

Φ)−Φ
∗
( g

2m
ms

(
v0−→

∇ ×−→B +
−→
∇ × (−→v ×−→E )

))
Φ+

+Φ
∗
(

msgA

(
v0−→B−(−→v ×−→E )

)
+gA

(−→v ·
−→
B )
))

Φ, (2.13)

with,

V (Φ∗
Φ) = Φ

∗
(
−msµB+

λ

4
Φ
∗
Φ

)
Φ. (2.14)

If we consider only the term above V (Φ∗Φ), the minimum is χ(r) = 2
√

msµB
λ

. The analysis of
the complete potential V (Φ∗Φ) does not change the sign of the term Φ∗Φ, and the conditions for
the minimum are still ensured. Notice that the non-minimal coupling contributes to an increasing
in the mass term and the condensate becomes more stable.

We next address the question of the transition to the condensate phase.
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3. Transition from normal to Condensate State

The influence of the non-minimal coupling in the phase transition is a relevant aspect to be
investigated. In the previous section we have obtained a contribution that increases the effective
mass term, so the non-minimal coupling could contribute to the behavior in the inertia of the con-
densate. To investigate this point, we take the eq. (2.10) in the stationary limit, without gauge field
and background contributions, so that we have:

0 =
(

1
2m

(−ih̄∇)2−msµB+
λ

4
Φ
∗
Φ

)
Φ. (3.1)

The transition from the normal to the condensate state initiates with the order parameter inten-
sity starting from zero. Close to the transition, we can neglect the msµB -term. The equation above
becomes

0 =
(

1
2m

(−ih̄∇)2− λ

4
Φ
∗
Φ

)
Φ, (3.2)

by making α = λ

4 Φ∗Φ, we get,

0 =
(

1
2m

(−ih̄∇)2−α

)
Φ, (3.3)

0 =
(

∇
2− 2m

h̄2 α

)
Φ (3.4)

Solving the equation above for one spatial dimension, we obtain Φ = exp(− x
ξ
), with ξ = h̄√

2m|α|
.

The ξ parameter, in a BEC, is called healing length. α , which parametrizes the two-body interac-
tions, is given by α = 4π h̄2an

m , where n is the density of the condensate, m is the mass term and a is
the s- wave scattering length, and ξ = (8πna)−1/2. If we take into account the gauge contribution,
ae f f =−e∗

−→
A +gv0−→B , to the eq. (2.10),

0 =
(

1
2m

(
−ih̄∇+ e∗

−→
A −gv0−→B

)2
−msµB+α

)
Φ. (3.5)

The contribution of msµB in a trapped condensate is usually the harmonic trap, given in the most
general form by Vext = m

2

(
ω2

x x2 +ω2
y y2 +ω2

z z2
)
. In the Landau gauge ~A = (0,Hx,0), the equation

above becomes,

(
∂

∂x

)2

Φ+
(

∂

∂y
− e∗H

ih̄
x
)2

Φ+

(
∂

∂ z
− gv0−→B z

ih̄

)2

Φ+ξ
−2

Φ+VextΦ = 0. (3.6)

It is clear, from the equation above that the non-minimal coupling yields a harmonic-type
oscillator, in addition to the one coming from the trap. When both the oscillators are in resonance,
we claim that they take the condensate to an excited state.

The order parameter depends on x,y, and z. The problem turns into a Schroedinger equation
for a charge in an external magnetic field. We put

5
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Φ = ϕ(x)exp(ik2y+ ik3z), (3.7)

and we obtain thereby that,

(
∂

∂x

)2

ϕ−
(

k2 +
e∗H

h̄
x
)2

ϕ−
(

k3 +
gv0H

h̄

)2

ϕ +VextΦ+ξ
−2

ϕ = 0. (3.8)

ω0 = e∗H
m and ξ−2 is the healing length fixed by the Gross-Pitaevskii equation

ξ
−2 =

2mE
h̄2 . (3.9)

This yield the equation:

(
∂

∂x

)2

ϕ−
(

k2 +
mω0

h̄
x
)2

ϕ−
(

k3 +
gv0H

h̄

)2

ϕ +VextΦ+
2mE
h̄2 ϕ = 0. (3.10)

We set k3 = gv0H
h̄ , and the oscillator equation comes about:(

∂

∂x

)2

ϕ−
(

k2 +
mω0

h̄
x
)2

ϕ +VextΦ+
2mE
h̄2 ϕ = 0, (3.11)

with the oscillator frequency ω0 and energy E. If we assume that the confining potential Vext do not
change the energy spectrum of the oscillator above, therefore we have

E = h̄ω0(n+ 1
2). Taking into account (3.9), we get the relationship

h̄2

2mξ 2 =
h̄e∗H

m

(
n+

1
2

)
(3.12)

For n = 0, we have the minimum that corresponds to the condensate without vortices (H = Hc2):

Hc2 =
h̄

e∗ξ 2 =
φ0

πξ 2 , (3.13)

where φ0 = π h̄
e is the magnetic flux quantum. The solution for the lowest energy level is a Gaussian

function,

ϕ = C exp

[
− 1

2ξ 2

(
x− h̄k2

2eHc2

)2
]

(3.14)

The complete solution can be finally written down:

Φ = C exp

[
− 1

2ξ 2

(
x− h̄k2

2eHc2

)2
]

exp(ik2y+ i
gv0H

h̄
z) (3.15)

then we can observe that the Lorentz breaking contribution is in the appearance of a phase in the
expression of the condensate order parameter. Then the velocity field assume the form,

→
v = h̄

m ∇S (r, t) = gv0H
m + k2, therefore this contribution must affect the vortex solution.
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3.1 Concluding Comments and Prospects

The main idea we have tried to convey in this paper concerns the possible relation we may
establish between the formation of the Bose-Einstein Condensates and a scenario defined by the
presence of a background that parametrizes the breaking of Lorentz symmetry form the particle
transformations point of view.

The Lorentz symmetry violation background is non-minimally coupled to the Gross-Pitaevskii
equation and through a number of steps discussed above, we can keep track of its effect to the phase
that yields the vorticity of the condensate fluid. The ground state solution is worked out under some
assumptions. It would be a natural step further to get the excited states and to really demonstrate
our conjecture that the resonance among the trap and the Lorentz-symmetry violating background
take the condensates to their excited states.
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