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Neutrino flavor oscillations have been supposed as an explanation for neutrino discrepancies in 
varied contexts. One of them is the atmospheric neutrino problem. As a consequence of the 
spherical geometry of the neutrino source volume, it is predicted that atmospheric neutrino flux 
is up-down symmetric. If this symmetry is not observed then a possible explanation is neutrino 
oscillation. In this work the evolution operator of the neutrino system at variable electron 
density is computed as the product of partial operators in the context of existence of two 
neutrino flavors with extension for three flavors. The relations between survival probability and 
energy and mixing angles at vacuum are analysed. The up and down fluxes are calculated 
considering neutrino oscillation to energy 5 GeV for down neutrinos that cross the upper mantle. 
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1. Introduction 

In context of Standard model, neutrinos are considered massless particles. However, 
observations about solar and atmospheric neutrino fluxes present some results whose possible 
explanation is the mass attribution to neutrinos, consequently oscillations between flavors can 
happen [1, 2]. 

Oscillation parameters, vacuum mixing angles and mass-squared differences, are 
determined through the analysis of neutrino fluxes in the several experiments. In some cases 
there are limitations in data exploration caused by features as the source extension for solar 
neutrinos and, in the case of reactor and accelerator neutrinos, the immobility of the source and 
of the detector. However, these problems can be got round in analysis of atmospheric neutrinos. 

Atmospheric neutrinos are produced by the interaction of cosmic rays with the atmosphere 
and the main production channels are [3]: 

 ( )µ µπ µ ν ν± ±→ +  

           ( ) ( )e ee µ µµ ν ν ν ν± ±→ + +  

It is expected that atmospheric neutrino flux presents up-down symmetry [4]. This 
symmetry means that the neutrino flux reaching directly a specific point of earth surface with a 

zenith angles θ (up-neutrino) is equal to the neutrino flux with an angle π-θ (down-neutrino). If 

the possibility of neutrino oscillation is admitted, the different paths of up and down neutrinos 
and the MSW effect modify the situation and up-down asymmetry can take place [3]. Thus, 
measures of these fluxes can be used to determine the physical parameters that describe neutrino 

oscillations. In this case, different situations can be explored with the variation of the angle θ or 

of the energy of the neutrinos. 
In this work the neutrino production and the oscillation probabilities at variable matter 

density and vacuum are computed so that up and down neutrino fluxes can be analysed 
considering oscillation possibility. The emphasis is given to the evolution equation of the 
neutrino system, particularly at variable matter density. In this case the strategy of Lisi is 
adopted, consisting in to take partial evolution operators [5]. The procedure is applied for a 
specific situation for which the incidence angle is 70º and the neutrino energy is 5 GeV. 

For zenith angle larger than 70º only the upper mantle is crossed by down neutrinos. Then 
for the calculations, it is chosen this value for which the largest path difference among up and 
down neutrinos with a continuous electronic density can be got. The energy of 5 GeV is chosen 
so that the calculation of the neutrino production of the reference [6] can be used. 

2. Neutrino Production 

Taking atmospheric neutrinos with energy around some GeV or above the effect of the 
geomagnetic field is negligible, the showers can be taken as unidimensional and the energy 
range of the solar neutrino is avoided [4]. For this case, the atmospheric neutrino production can 
be obtained by analytical methods [6]. 

Following the procedure adopted by Lipari [6], the neutrino production is obtained starting 
from the meson and muon fluxes of the atmospheric showers; these are related to the primary 
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flux whose composition can be approximate as being of nucleons. The meson and muon fluxes 
are calculated in the high and low energy limits and the generalization is made by interpolation. 

Besides, the hadronic interaction lengths are considered constant, the fluxes are described 
as a power law in the energy, it is admitted that hadrons are not produced due to decays and that 
they don't lose considerable energy. The polarization [7, 8] and energy loss [9] of the muons are 
taken into account. The parameters that describe the primary flux, the interaction lengths, the 
hadronic interaction factors and the muon energy loss parameters are supplied by Gaisser [10]. 
The model of the atmosphere necessary to analyse the interaction of cosmic rays is described by 
[6]. The muon neutrino production rate as a function of the distance between the source and a 
detector for energy of 5 GeV and zenith angle of 70º is obtained and it is represented 
graphically in the figure 1. 

 
Figure 1: Muon neutrino production rate as a function of the distance 

between the source and an eventual detector. 

3. Oscillations of Neutrinos 

Attributing Dirac or Majorana mass to neutrinos, their propagation in the ultra-relativistic 

limit is described by the Schrödinger equation [11] that in the base of flavor states fν  to 

neutrinos of energy E is given by 

 ( )2d 1
( ) ( )

2f fi x x
dx E

= +-1
ν UM U A ν  (1) 

where U  couples flavor and mass eigenstates as ( ) ( )f px x=ν Uν  and M is diagonal matrix of 

mass of the neutrinos. In the context of three neutrino flavors, 7 5 2i i ie e eψ φ ωΛ Λ Λ=U , where 

2 5 7, eΛ Λ Λ  are Gell-Mann matrices. The diagonal matrix of squared-mass, the flavor and mass 

eigenvectors are defined in this case respectively by the relations: 
2
1

2 2
2

2
3

0 0

M 0 0

0 0

m

m

m

 
 =  
 
 

,  

( )

( ) ( )

( )

e

f

x

x x

x
µ

τ

ν
ν ν

ν

 
 =  
 
 

 and 
1

2

3

( )

( ) ( )

( )
p

x

x x

x

ν
ν ν

ν

 
 =  
 
 

, 
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where the states 1,2,3ν  represent particles of masses 1,2,3m . 

The term A  contains the matter effect on the neutrino propagation that, in this case, is 

 
0 0

0 0 0

0 0 0

A 
 =  
 
 

A , 

with 2 2 F eA G N E= , for which FG  is the Fermi Constant and eN  the electronic density in 

matter [12]. In the mass base, the equation (1) becomes 

 ( )2d 1
( ) ( )

2p pi x x
dx E

= + -1
ν M U AU ν . (2) 

The solution of (1) in a general way is ( ) ( ) ( )0 0,f fx x x x=ν G ν , where ( )0,x xG  is the 

evolution operator of the neutrino system. Or in terms of particle eigenstates (2), 

( ) ( ) ( )0 0,p px x x x=ν G ν , where ( ) ( )1
0 0, ,x x x x−=G U G U . The evolution operator is explicitly: 

 ( )
0

0, Exp ( )d
x

x

x x i x x
 

′ ′= − 
  
∫G H , 

where ( )21
( )

2
x

E
= +-1H UM U A  is the Hamiltonian of the system and the symbol Exp concern 

to expansionals that represent a expansion in orderly multiple integrals. 

 ( )2

0 0 0 0

Exp ( )d 1 ( )d ( )d ( )d ...
x x x x

i x x i x x i x x x x
′ 

′ ′ ′ ′ ′ ′ ′′ ′′− = − + − + 
 
∫ ∫ ∫ ∫H H H H  (3) 

that for [ ]( ), ( ) 0x x′ =H H  it is reduced to usual exponential. This is the case of neutrinos 

traveling the vacuum and the matter of constant density, because in these two situations the 
Hamiltonian is independent of the neutrino position. 

At vacuum the neutrino evolution equation as a function of pν  is reduced to the equation 

 2d 1
( ) ( )

2p pi x x
dx E

=ν M ν , 

whose solution in mass base is easily obtained for j= 1,2,3 as 

 
( )

2

02
0( ) ( )

jm
i x x

E
j jx e xν ν

− −
= . 

The probabilities of µν , for example, to be detected as eν , µν  or τν  after traveling a 

distance x are respectively 

2 2 2 2 2 2 2 2 231 3221
22 21 23 21 23 22( , ) 1 4 sin 4 sin 4 sin

4 4 4
P U U x U U x U U x

E E Eµ µν ν
     ∆ ∆∆

= − − −    
     

, 

 2 2 231 3221
11 12 21 22 13 23 11 21 12 22( , ) 4 sin 4 sin sin

4 4 4eP U U U U x U U U U x U U x
E E Eµν ν

    ∆ ∆∆ = − − +     
       

 (4) 

2 2 231 3221
32 22 31 21 33 23 31 21 32 22( , ) 4 sin 4 sin sin

4 4 4
P U U U U x U U U U x U U x

E E Eµ τν ν
      ∆ ∆∆= − − +     
       

, 

where Uij are elements of the unitary matrix U. 
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In the case of neutrinos that cross matter of constant density, the Hamiltonian is 

diagonalized for the unitary matrix Uɶ  and (1) becomes 

 2d 1
( ) ( )

2p pi x x
dx E

=ν M νɶɶ ɶ , 

where effective states ( )p xνɶ  are coupled to flavor states as ( ) ( )f px x=ν Uνɶ ɶ  and the diagonal 

matrix of effective squared-mass is ( )2 1 2−= +-1M U UM U A Uɶ ɶ ɶ . 

In terms of ( )p xνɶ  the solution of evolution equation to constant matter density is 

( )
2

02
0( ) ( )

jm
i x x

E
j jx e xν ν

− −
=

ɶ

ɶ ɶ . 

Therefore, the survival and transition probabilities amplitudes for muon neutrinos are 

2 2 2 2 2 2 2 2 231 3221
22 21 23 21 23 22( , ) 1 4 sin 4 sin 4 sin

4 4 4
P U U x U U x U U x

E E Eµ µν ν
     ∆ ∆∆= − − −    

     

ɶ ɶɶ
ɶ ɶ ɶ ɶ ɶ ɶ , 

 2 2 231 3221
11 12 21 22 13 23 11 21 12 22( , ) 4 sin 4 sin sin

4 4 4eP U U U U x U U U U x U U x
E E Eµν ν

      ∆ ∆∆= − − +     
       

ɶ ɶɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (5) 

2 2 231 3221
32 22 31 21 33 23 31 21 32 22( , ) 4 sin 4 sin sin

4 4 4
P U U U U x U U U U x U U x

E E Eµ τν ν
      ∆ ∆∆= − − +     
       

ɶ ɶɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ , 

here ijUɶ  represents the elements of matrix Uɶ  and 2 2
ij i jm m∆ = −ɶ ɶ ɶ . Considering the typical 

energies and paths of atmospheric neutrinos [13, 14] and 31 32 21∆ ≈ ∆ ∆ɶ ɶ ɶ≫ , 

( ) ( )
2 2

2 2 2 2 2 2 231 31
23 21 22( , ) 1 4 sin 1 4sin cos 1 sin cos sin

4 4
P U U U x x

E Eµ µν ν ψ φ ψ φ
   ∆ ∆

− + − −   
   

ɶ ɶ
ɶ ɶɶ ɶ ɶ ɶ ɶ≃ ≃ , 

( ) ( )
2 2

2 2 2 2 2 2 231 31
13 33 23( , ) 4 sin 4sin cos 1 sin cos sin

4 4xP U U U x x
E Eµν ν ψ φ ψ φ

   ∆ ∆
+ −   

   

ɶ ɶ
ɶ ɶɶ ɶ ɶ ɶ ɶ≃ ≃ , 

with ( , ) ( , ) ( , )x eP P Pµ µ µ τν ν ν ν ν ν= + . Moreover it is gotten in ref. [11] that ψ ψ→ɶ  and 

equations to 2sin 2φɶ  and 31∆ɶ  recover that ones obtained in the context of existence of two 

flavors approach: 

 
( )

2 2
2 31

2 2 2
31 31

sin 2
sin 2

cos2 sin 2A

φφ
φ φ
∆

∆ − + ∆
ɶ ≃  (6) 

 2 2
31 31 312 cos2A A φ∆ ∆ + − ∆ɶ ≃ . (7) 

Hence, from the definition 

 ( )2 2 2 2 2sin 2 4sin cos 1 sin cosα ψ φ ψ φ≡ −ɶ ɶɶ , (8) 

follows that the survival and transition probabilities of muon neutrinos can be rewritten as 

 2 2 31( , ) 1 sin 2 sin
4

t
P

Eµ µν ν α ∆−
ɶ

ɶ≃  (9) 

 2 2 31( , ) sin 2 sin
4x

t
P

Eµν ν α ∆ɶ
ɶ≃  (10) 

that are similar to those obtained in the two flavor context. The difference is the mixing angle 

redefined as αɶ . 
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For neutrinos propagating in an inhomogeneous medium, that is the case of that cross the 
Earth, the Hamiltonian term that takes into account the interaction with the matter depends on 

their position. Thus, [ ]( ), ( ) 0H x H x′ ≠  and the evolution operator must be written as a function 

of expansion in eq. (3), making difficult the treatment of the evolution operator. 
The strategy of Lisi [5] is to divide the path in partial elements j in which the electronic 

density is given by ( )jN x  and the neutrino propagation is described by the Hamiltonian ( )j xH . 

The evolution operator is taken as a partial operator product 

 ( ) ( )0 1, ,F j j j
j

x x x x −= ∏G G . 

In the reference [5], the simplified situation of oscillation between two flavors is 
considered, for which the equation (1) assumes the explicit form 

 ( ) 21 21
21

21 21

( ) cos2 sin 2d 1
( ) ( )

sin 2 cos2 ( )d 4f f

A x
i x xA

A xx E

θ θ
θ θ

 − ∆ ∆ 
= +∑ +  ∆ ∆ −  

ν ν  

here 2 2
21 2 1m m∆ = − , 2 2

21 2 1m m∑ = + , 2 2 ( )F eA G EN x=  and θ  is the mixing angle. 

Thus, the Hamiltonian, except for the proportional term to the identity ( )21 A∑ +  that just 

introduces in the evolution operator a constant phase factor, can be defined in each partial 

element, with 21

2
k

E

∆= , as 

 
2 ( ) cos2 sin 21

2 sin 2 cos2 2 ( )

F j

j

F j

G N x k k

k k G N x

θ θ
θ θ

 −
 =
 − 

H . (11) 

The partial evolution operator ( )1,j j jx x −G  is associated to this Hamiltonian jH . 

The electronic density in the path element is defined as the average electronic density plus 

a perturbation term ( ) ( )j j jN x N N xδ= + , so ( )j j j xδ= +H H H . The constant part of jH  is 

 
2 cos2 sin 21

2 sin 2 cos2 2

F j

j

F j

G N k k

k k G N

θ θ
θ θ

 −
 =
 − 

H  (12) 

and the perturbation 

 
( ) 02

( )
0 ( )2
j

j F
j

N x
x G

N x

δ
δ

δ
 

=   − 
H . (13) 

Then, 
 1( ) ( , ) ( )f F j j j f I

j

x x x x−= ∏ν U ν  (14) 

where the partial evolution operator is 

 
1

1( , ) Exp ( ) d
j

j

x

j j j j j

x

x x i x xδ
−

−

  
 = − +  

  
∫U H H . (15) 

As jH  is constant, 

 ( ) ( ) ( )1 1 1

1

1( , ) Exp d ( )
j

j j j j j j j

j

x
i x x i x x i x x

j j j j

x

x x e i xe x eδ− − −

−

− − − − − −
−

 
 = −
  
∫

H H H
U H . (16) 



P
o
S
(
I
C
2
0
0
6
)
0
5
7

Approximate Solution of the Evolution Operator of the Neutrino System J. S. S. Oliveira 

 
     7 

 
 

Dividing the path in small elements, the partial evolution operator, in first approximation 
order, can be written as 

 ( ) ( ) ( )1 1 1

1

1( , ) d ( )
j

j j j j j j j

j

x
i x x i x x i x x

j j j j

x

x x e i xe x eδ− − −

−

− − − − − −
− − ∫

H H H
U H≃ . (17) 

Performing the integral in Eq. (17), the following expression is obtained 

 
1

cos2 sin 2
( , )

sin 2 cos2

sin 2 cos2 sin 2
sin 2

cos2 sin 2 sin 22

j j j
j j j

j j j

j j j

j j j

c is is
x x

is c is

C C i Si

C i S C

θ θ
θ θ

θ θ θ
θ

θ θ θ

−

 + −
=   − − 

 −
−   + − 

U
ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ
ɶ

ɶ ɶ ɶ

, (18) 

where 

1cos
2

j j
j m

x x
c k −− 

=  
 

,  1sin
2

j j
j m

x x
s k −− 

=  
 

, 

( )( )
1

2 d ( )cos
j

j

x

j F j m

x

C G x N x k x xδ
−

= −∫ , ( )( )
1

2 d ( )sin
j

j

x

j F j m

x

S G x N x k x xδ
−

= −∫  

and 1

2
j jx x

x −+
= , 2 2

21 21 212 cos2A A θ∆ = ∆ + − ∆ɶ , 21

21

sin 2 sin 2θ θ∆=
∆

ɶ

ɶ
, 21

2mk
E

∆=
ɶ

. 

However, the partial evolution operator the evolution operator in first order approximation 
as presented in Eq. (18) it is not automatically unitary, being necessary to normalize it. The 

unitarity of 1( , )j j jx x −U  is guaranteed by the redefinition 

 
( )1 1

2 2 2

2
( , ) ( , )

4 sin 2
j j j j j j

j j

x x x x
S Cθ

− −′ =
+ +

U U
ɶ

 (19) 

As discussed previously, for atmospheric neutrinos the oscillation probabilities among 
three flavors can be described as a function of the oscillation probabilities among two flavors, 

being enough to redefine the mixture angle αɶ  giving in Eq. (8). Thus the survival and transition 

probabilities of muon neutrinos at variable matter density in the context of three flavors can be 
defined as oscillation probabilities between muon and another type of neutrino obtained from 
the partial evolution operator with effective mixing angle αɶ  

 
( )1

2 2 2

cos2 sin 22
( , )

sin 2 cos24 sin 2

sin 2 cos2 sin 2
sin 2

cos2 sin 2 sin 22

j j j

j j j
j j j

j j

j j j

j j j

c is is
x x

is c isS C

C C i Si
C i S C

α α
α αα

α α α
α α α α

−

+ − 
′ =  − −+ −  

− 
−  + − 

U
ɶ ɶ

ɶ ɶ
ɶ

ɶ ɶ ɶ

ɶ
ɶ ɶ ɶ

 (20) 

Treating of atmospheric neutrinos, it is used the Earth electronic density described by 

PREM [15]. The vacuum oscillation parameters used in the calculations are 3 2
32 3 10 eV−∆ = × , 

2sin 0,6ψ =  and 2sin 0,01φ =  supplied by the reference [13]. The reason to use this particular 

choice is that it is studied only the behavior of solution rather than to make any precise 
predictions about the neutrino oscillation probabilities. 
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Figure 2: Transition probability (dashed line) and survival probability (solid line) 

considering two neutrino flavors for 3, 4 and 5 GeV energy values. 
 

To observe the energy influence in the oscillation amplitudes, in figure 2 it is shown the 
oscillation probabilities of neutrinos in the framework of two neutrino oscillations that cross the 
Earth with 3, 4 and 5 GeV energy values and reach it with 70ºθ =  and in the initial state 

 
1 2

( )
1 2

f Ixν
 

=  
 
 

. 

In the graph, y is the ratio between the distance traveled by the neutrino inside of the Earth and 
the Earth radius. 

In this analysis, it was noted that the first order term of the evolution operator for the 
variable matter density is negligible since for path elements sufficiently small, the electronic 
density can be considered constant. 

4. Atmospheric muon neutrino flux 

The up and down muon neutrino fluxes without oscillation are simply obtained by the 
integration of the production rate in the distance l between the source and the detector. For 
energy of 5GeV and zenith angle of 70º, it was obtained the muon neutrino flux 

 4 2 14,25076 10 ( . . . )cm s sr GeV
µνφ − −= ×  (21) 

Even considering oscillation among flavors, the muon neutrino flux, without consider the 
eletronic chanel, is calculated by the relation 

 
0

( , )
l

P dl
l

µ

µ

ν
ν µ µ

φ
φ ν ν

∂
=

∂∫  (22) 

here 
l

µνφ∂

∂
 is the neutrino production rate and ( ) 2

, ( )P xµ µ µν ν ν= . 

For neutrinos, the atmosphere can be approximated as vacuum, so the flavor state of the 
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muon neutrino produced at the distance l of the detector at the sea level is 

 
32 32

32

4 4

4

( ) cos cos2 sin

( ) sin 2 sin

l l
E E

l
Ex

l i

l
µν α

ν α

∆ ∆

∆

 + 
=   

   
 (23) 

it follows that 

 2 2 32( , ) 1 2 sin
4

l
P S

Eµ µν ν α ∆−≃ , (24) 

where ( )2 2 2 2 22 4 1S S C S Cα ψ φ ψ φ= − . 

Using the oscillation parameters from ref. [13] 3 2
32 3 10 eV−∆ = × , 2sin 0,6ψ =  and 

2sin 0,01φ = , we get 2 2 0,96S α = . In this case, for energy value of 5 GeV and zenith angle of 

70º, one finds 

 4 2 14,25048 10 (cm .s.sr.GeV)
µνφ − −= ×  (25) 

In the case of down neutrino, part of the path is in the atmosphere, for which the 
oscillation conditions are the same ones appearing for neutrinos up, and part is inside the Earth. 
Thus, the flavor state for down neutrinos initially of muon flavor is obtained multiplying the 
state given in Eq. (23) for the evolution operator in the Earth in zero order of approximation, 
since the term of first order doesn't contribute significantly. 

 
32 32

32

4 4

4

cos2 sin 2( ) cos cos2 sin
sin 2 cos2( ) sin 2 sin

l l
j j j E E

l
j j jj Ex

c is isl i

is c isl
µ α αν α

α αν α

∆ ∆

∆

 + −   + 
=       − −      

∏
ɶ ɶ

ɶ ɶ
 

The survival probability of muon neutrino is ( ) 2
, ( )P xµ µ µν ν ν= . Muon neutrino flux is 

obtained multiplying the muon neutrino rate by this probability and integrating in l, the result is 

 5 2 16 10 ( . . . )cm s sr GeV
µνφ − −= ×  (26) 

for energy value of 5GeV, with zenith angle of 70º and oscillation parameters from ref. [13]. 

5. Discussion 

The up neutrinos fluxes practically doesn't change when taking into account the flavor 
oscillation possibility. However the down neutrino flux calculated with oscillation corresponds 
to approximately 15% of the flux obtained without considering oscillation. Thus the flavor 
oscillations are revealed as a possible explanation for an eventual up-down asymmetry. 

The extension of the calculation accomplished in this work for different values of energy 

and zenith angles is direct for 70ºθ ≥  and since the approach of unidimensional showers can be 

maintained. Note that from our results the up-down asymmetry for neutrino flux can be used as 
an element to determine the values of physical parameters related to flavor neutrino oscillation. 
Varying the energy of neutrinos or incident angle, different oscillation probability is obtained 
and the parameter values can be properly adjusting to reproduce the asymmetry data 

The negligible influence of the first order term of the evolution operator in the Earth 

allows considering the constant electronic density and equal to jN  for each element of the path. 

Disregarding of the disturbance, the oscillation in the context of three families described by the 
evolution operator in the Earth upper mantle can be introduced without much trouble. 
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In a general way, the approximation 31 32 21∆ ≈ ∆ ∆ɶ ɶ ɶ≫  is not reasonable for atmospheric 

neutrinos that cross the Earth. Without this consideration, the survival and transition 
probabilities of muon neutrinos in two family approximation are got like that of Bernabéu [13] 
or Gonzales-Garcia [14]. However, with these expressions the method of Lisi is not directly 
aplicable. Therefore, it is viable to extend to three neutrino flavors the procedure of Lisi since it 
could be aplied in all cases. This is the next step of our work. 
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