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1. Introduction

Homotopy groups play a very important role when applied in topological mystd@hey lead
us to a kind of solution - the so-called topological defect of the theory.drc#ise of abelian gauge
systems with Chern-Simons-Maxwell-Higgs terms the nontrivial homotopypgsaie fundamen-
tal one. Vortices solutions are related with gauge theory by a Higgs fietd,lm more precise by
a spontaneous symmetry breaking (SSB) mechanism. Besides, when #mglagrshows SSB
and the ground state of a scalar field (vacuum value) is different ofae the fundamental group
is nontrivial we have vortices solutions. This is the case in question. Im abelian system we
obtain self-dual vortices equations. For this purpose we first intrqdntbe second section, the
principal ideas of the model. In the third section we find the self-dual equga#ind then solve the
system in an weak field approximation for the regime 0.

2. TheModel

Following the work of Choonkyu Lee et al [1], we start with a lagrangiansity defined in a
(2+1) dimensional flat spacetime given by

1 1
+ [Duel®+ < uN) ~V(eN), (2.1)

whereD,, = 9, —ieAy, @is a scalar complex field ard a neutral scalar field. Clearly, the system
is aU (1) gauge theory. The potential of model is

V(ON) = 2 (elgf + uN—ed)? + N2l 22)

When the symmetry is broken there appears two degenerate states in thegroend state.
However, the most important case, in the sense of topological solutiangs sip when

|@lfin = N(1+u/e). (2.3)

In the ground state, the system is not invariantk{l) action, and the first homotopy group
ist
mU((1)/1)=2. (2.4)
If we look for self-dual equations first we need to write down the enéuggtional related to
the lagrangian given by e@2.1), so

€= / d®x < Fo+5 F12+\Docp|2+\D<pF (aoN> (dN>2+V). (2.5)

2

Here the first and the second terms are the electric and magnetic field chotrshuespectively,
and the intermediary terms are the Higgs scalar field contribution besidesyisfec the neutral
field and the potentidl The next section is dedicated to obtain the self-dual equations.

1The complete proof is in the appendix.
2Note that there’s no contribution from Chern-Simons term. In fact, this texs no dynamics and do not depend
on the metric. The energy-momentum tenso%m&:“"pFuvAp is zero.
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3. Bogomoal’ nyi’s Equations

Is well known that this kind of system [6] have the minimum of energy propaal to the
magnetic flux © in our notation). So, working out equati¢®.5) one finds

1 1
€= ea2|6|+/d2x<2F,S+2Ffz

+ [Do@l?+|(D1+iD2)@f?
1 1
+ eR2l ¢+ 5(0N)* + 5(aN)

1
+ (gl + pN —e)?

+ e2N2|(p\2:Fea2F12> . (3.1)

Where we made use of a “key equation”
IDg? = |(D1£iD2)p* LeB gl + €703, (32)

without considering the superficial term and writing down explicitly the poténtiae Gauss
law is given by
—0iFo + uF12—eb =0, (3.3)

with

Jo = —i[¢"(Do®) — (Dog)* ). (3.4)
We want to write the equatiof8.1) like a sum of squares. To do it we first note that

1 1 1
5(Fo£aN)? = SR3+ Fod +NZ(aN)% (3.5)

1 1
Q[Flzi (elp?uN —ed))* = §F122i Fi2(€l@°uN — edf)
1

X é(e|<p\2+uN—eaz)2 (3.6)

and
Do ¥ iegN|* = |Dog|*+ €N?|pf* T eNb,. (3.7)

With this equations and taking into account the constraint imposed by the Gaua® have
2 1 2
£ — eaz\@\Jr/d X( 5(FoaN)
1
+ 5[Fi2+ (%9 + uN —ef)?

. . 1
+ [DogFiegNIZ +(D1:£1D2)gf + (N2, (38)
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Now we are able to write the self-dual equations. To this purpose let'sétggN = 0 (static
configuration). We have the minimum energy for the syster €&|0|) when

Fo+dN =0, (3.9)
Fio+ (€?|@|? + uN —edf) =0, (3.10)
DopFiepN =0 (3.11)
and
(D]_:l:iDz)(p: 0. (312)

As we are interested in the static configurations of the fields, we can toadHacabove
equations to

eA F&;ojin|g| =0, (3.13)
—O?N+ (U2 +2€°|9°)N — ep(a®— |¢|*) = 0 (3.14)

and
—O2In||? + 2e(e|@|? + uN —ed) = 0. (3.15)

At this point we can search for solutions. We shall work in a special gordtion of fields
called rotationally symmetric, given by the following ansatz

@=g(r)exp(inB) (3.16)
and
_aifi(d
eA 7i7 <g n), (3.17)

wheren is a nonnegative integer and prime medggdr. Our expectation is that the fields
are well defined when — 0 and, wherr — « we expecig — a andN — 0, since this boundary
conditions gives rise to finite energy solutions.

To solve completely the equatiofi8.14) and(3.15), together with the ansatz we would need
numerical analysis. However, as it was mentioned before we shall usey @anvenient approx-
imation. First, let's defingy(r) = exp(y(r)) and then pick up only the first (linear) term in the
equation(3.15) and after chose, without lost of essential generality, the vacuum fiklé egual
to one. Our approximation consists into analyze the system in the limit of weag.flalgractical
terms it means to considerer only linear terms in the expansion gf expndN. So, gathering alll
these modifications and considerations in the self-dual equations we have

2N — (2€% + u?)N — 2uey=0 (3.18)

and
%y — 2’y — peN=0. (3.19)
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A bit of simple algebra led to the following result
2 n 1 " l 1 /

%y —(r—2+Kl)y +F<r—2—K1>y Koy =0, (3.20)
whereK; = 4€? + u? andK; = 4¢* are constants. Now the equatié®20) can be integrated out
without computational analysis. The solution is a complicated combination cdifidcssecond kind
modified Bessel equations given by

y(r) = CrYo(X(r)) + Cado(X (1)) + CaYo(X (1)) +Cado(X(r)), (3.21)

whereJ(0) andY (0) are the Bessel’s functions (of zero index) of first and secund kasgpactively
and

y(iV) +

_ T 2
x(r) = 2\/—2K1—2\/—4K2+K1 (3.22)
/ . r 2
X (r) = 2\/—2K1+2\/—4K2+ K2. (3.23)

Let's see now what it happens when- 0. In this range the asymptotic behavior of Bessel’s
functions is

Jo(x) ~ 1 (3.24)
and

Yo(X) ~ %In(x). (3.25)

So, our solution becomes

r r
2\/—2K1—2,/—4K2+Kf 2\/—2K1+2\/—4K2—|—Kf
+ C+Cy, (3.26)

or in terms of scalar field

y = CiIn +Csln

C
_ T / 2
g= (2\/—2K1—2 —4K5 + K1>
Cs
r / 2
X (2\/—2K12 —4K2+K1>

x exp(Ca+Cy). (3.27)

Adjusting the integration constants;(= Cz = 2) we have a interesting situation
g(r) = 4’ exp(Co + Ca)r?. (3.28)

So, the scalar field increases withshowing up a good behavior (comparing figures 1 and 2).
Unfortunately whem — oo the fieldg goes to zero with a factor/1/r and it does not saturate to
the vacuum value. Then, our approximation fails in this sector.
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Figure1: Grafic ofg(r) in the range — 0, showing up a desirable behavior.

4. Final Remarks

The model we considered is the simplest case with Chern-Simons and M#emaditogether
in the lagrangian. A little more complicated model can be find in [1]. The main diife is the
presence of another scalar field. However the system worked h&®ggood example of planar
vortices in abelian gauge theories. Our method of solving the Bogomol'nyiiatens is, again,
based upon on a trick to linearize fields equations in an weak field approximaatd then, adjust
the integration constants to obtain physical solutions.

The calculation uses a special kind of configuration called rotationally syrumdtr this
case we obtain a solution given by second kind modified Bessel's equatiofect, it's a direct
consequence of cylindrical symmetry of the system.

To conclude, we call the attention for the fact of that this trick reprodia®hution for a little
bit more simple model with a Chern-Simons-Higgs lagrangian given by

L= b &M ARy + (Dl = V(). @.)
The energy functional is
e— [ d*(|(D1:£1D2)pf ¥ Bl + [Dogl+V (|, 42)

without the surface term. Proceeding from similar way to the previous caseave
€= a2]O|+/d2x<|Docp]2
= (g%~ a)pl? + |(D1£1Dz) o
+ Vilo) — Slo% (0~ 27). @3)

thus the Bogomol'nyi's equations are

(D1+iD2)@ =0, (4.4)
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ie
Do = qcﬁucowz—azw (4.5)

and 2
V(lgl) = Flfplz(lwz—az)z- (4.6)

Working once again with rotationally symmetric field configuration and weakampation
the scalar field assumes the form

2
g= exp([ln(;) +a]lo(r) + %

r4 1. rb 1 1
(A4 D) (L = ) e 4.7
* 22.42( +2)22.42.62( +2+ 3)+ )’ (4.7)

wherea is an arbitrary constant agl(r) is given by

2 r4 r6
=1+ %+ 2ptZgzet (4.8)

The behavior of scalar field can be better visualized in the figure 2. Notéofwdogical
stability whenr — o showing a good behavior.
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Figure 2: Grafic ofg(r) versusr. Note the topological stability.

5. Appendix

Here we will give a proof of the isomorphism between the ciliand the additive group of
integersZ (1a(S') = 2) [8].

Proof.: To each classroom of homotoy= [a] of closed paths ir§* we will associate the
entiren(a). The degree(a) depends only on the classroom louhot of the closed wag that we
choose to represent it. Thus we can speak in the degoeeof classroontr and get an application
n: m (S — Z. Since thahis a homomorphism bijective we have an isomorphismig¢s!) on Z.
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