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1. Introduction and Motivation

The dynamical properties of gauge systems appear as a topic of renewed interest, as one can
realize from the remarkable efforts recently devoted to the analysis of the stability of gauge field
configurations [1]. Being a cornerstone of theoretical physics, gauge theories have been intensively
investigated; we may say that we presently have a comprehensive, but non-exhaustive, picture of
such a successful theoretical framework. One (promising) aspect of such systems is the room for
coherent soliton solutions, that may play a crucial role in the understanding of physical phenomena
like, for instance, quark confinement. On the other hand, the search for chaotic regime windows
in gauge theories seems to be as much important as the former analysis; it sets up a stimulating
approach that may lead to answers to key-problems, like for instance (and again) the confinement
phenomenon [1, 2, 3]. In the eighties, a method for investigating chaos in field theories has been
developed and applied to Yang-Mills systems [2, 4]. The main idea is to reduce the model to its
mechanical limit, by considering spatially homogeneous field configurations. The verification of
chaotic evolution in this restricted regime is conjectured to be sufficient to ensure chaotic behavior
for the full field theory [2, 5].

In this context, a relevant matter is the possibility of establishing a systematic procedure to
clarify the relationship between gauge symmetries and the control of chaotic dynamics. In the
framework of gauge field theories, one should eventually care about supersymmetric systems, con-
sidered either as manifestations of a more fundamental symmetry or enriched models conceived to
be a tool to better describe physical situations. It is advisable to stress that our work has been mo-
tivated by a question stated some years ago [6], which, for the time being, has not been answered;
namely, whether or not supersymmetry would have a stabilizing role for those field theories that,
in their non-supersymmetric version, display chaotic behavior.

Planar (2+1) Maxwell-Chern-Simons-Higgs (MCSH) theories, as candidates for an effective
description of high-T, superconducting phenomena, have recently been chosen to be elegible mod-
els in considering order-to-chaos transition studies. In this scenario, Bambah et al. [7] have consid-
ered both the (proven to be) integrable minimally coupled Chern-Simons-Higgs (CSH) model and
its higher momenta natural extension, namely, the minimally coupled Maxwell-Chern-Simons-
Higgs system. The latter failed when submitted to an integrability criterion, the Painlevé test,
leaving room for a chaotic regime that happened to be confirmed by numerical Lyapunov expo-
nents and phase plots analysis. Recently, Escalona et al. [8] have performed a similar work in a
MCSH system endowed with both minimal and non-minimal couplings in the interaction sector.
The non-minimal coupling stands for a Pauli-type term describing a field-strength/matter-current
interaction, admitted in (2+1)-D regardless the spin of the matter field [9]. Moreover, if quantum
extension is a claim, such a non-minimal coupling should be considered from the start [10]. In the
work of Ref.[8], the extended CSH system is argued to be still integrable, while the non-minimal
MCSH exhibits “alternating windows of order and chaos", as the non-minimal coupling constant g
is varied, while the other parameters define a set of constant inputs. The model they adopt is the
bosonic projection of an already established N=1-supersymmetric system. As a matter of fact, a
non-minimally interacting MCSH system had formerly deserved an extension endowed with on-
shell N=2-susy[11]. As far as soliton solutions are a subject of interest, the N=2 extension defines
the proper framework, allowing for the self-dual regime [12, 13]. On this token, Antillén, Escalona
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et al. had found, in a previous paper [14], by working with such an N = 2 extendable model, a self-
dual static non-topological vortex solution, motivating their later search for spatially homogeneous
chaotic dynamics as an interesting counterpart of their previous result. Nevertheless, even if one
assumes the validity of the conjecture that relates the mechanical limit to the full theory, a problem
is immediately raised: the vortex has been found in an N=2-susy framework, while the procedure
of varying g, adopted in [8], necessarily drives the system out of the N=2-susy-bosonic projection
situation. As clearly assumed in [11], a critical coupling, namely, g = —e/k, has to be verified
to ensure on-shell N=2-susy, where e is the minimal coupling constant and x is the Chern-Simons
mass parameter. Moreover, the scalar potential is forbidden to be anything but the non-topological
mass-like ¢2 term. So, varying g, while keeping e and k constant, and adopting V = A (¢? — \/2)2
render their model a sector of, at most, an N=1 system.

Alternatively, another planar N=2 non-minimal MCSH model has been recently proposed [15],
defining a richer spectrum that presents both non-topological and topological self-dual static vortex
solutions [16]. These solutions are numerically obtained after the adoption of the critical coupling
relation. Such a system exhibits off-shell-realized N=2-susy, and it is derived from an N=1-D=4
ansatz, after dimensional reduction is carried out and a suitable N=2-covariant superfield identi-
fication is implemented. Two important differences arise, if one compares both versions of the
non-minimal MCSH models: in the N=2-off-shell case, there appears an “additional” ' neutral
scalar field ; also, in the N=2-off-shell case, no relation between the coupling constants and pa-
rameters is required to ensure N=2-susy (though the vortex excitations have so far been shown to
prevail in the particular g = —e/x regime). In other words, if the model of Ref.[15] is consid-
ered, the strategy of varying g freely and the presence of a topologically non-trivial scalar potential
happen to be compatible with N=2-susy.

Motivated by the features reported above, we carry out the analysis of the reduced (mechan-
ical) version for the Lagrangian extracted from the Ref.[16] for the bosonic sector. In Section 2,
we present the theory and its spatially homogeneous version, the one-dimensional effective La-
grangian. The associated conjugate momenta and a constant of motion are then taken into account,
leading to a suitable reparametrization and, ultimately, to the proper Hamiltonian and canonical
equations of motion. In Section 3, we move back to a (general regime) second-order formula-
tion, and we start up our analysis of integrability; we adopt two alternative analytical criteria - the
Noether point symmetries approach [17] and the Painlevé test procedure [19, 20]. Both present
negative results as one seeks for a global integrability pattern. In Section 4, we adopt the critical
coupling relation regime, and we arrive at first-order equations for the gauge degrees of freedom.
We re-consider the Painlevé test, which indicates that the critical coupling regime shows up an even
worse feature concerning the presumed strict negativeness of the dominant exponents. Revisiting
the Noether point symmetries approach also gives no clues on possible integrable setups. In Section
5, an analysis of chaos is performed with physically acceptable values of the parameters. Finally,
we present our Concluding comments.

'A common, improper, terminology. The “minimum" content forbids interesting excitations, like topological vor-
tices.
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2. Describing the Model

We start off [16] with:

1
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and V¢ = (9 —ieA, —igF,)@. G is defined as G = 1 — g?||*.

Adopting the gauge choice Ag = 0 and imposing the spatial homogeneity, namely, 0;(V field) =
0, the phase of the scalar field becomes a variable with vanishing time-derivative, and one can elim-
inate it without loss of generality. So, one ends up with a real scalar field. Also, as we start from
the field equations obtained by means of the extremization of (2.1), an effective Lagrangian for the
mechanical system can be derived:
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where G = 1—g2¢? and Q = Kk + 2egd?. The corresponding equations of motion coincide with the
reduced version of those obtained from (2.1).
The canonically conjugate momenta, defined, as usually, by p = 3 , have the expressions:

m :GAl—F%AQ;ﬂz:GAz—EAl 5 Do =0—gOM; Py =M—g0¢.

Before we proceed to the canonical Hamilton equations, let us notice that the quantity
1 = A27’L’1 *AITCZ (2.2)

is a constant of motion. Motivated by this fact we reparametrize the gauge sector adopting polar
coordinates, instead of Cartesian ones. We have: A} = Acos{, Ay = Asen(, and the “new" set of
variables is (A, {,¢,M). The Lagrangian now reads:

.2 .2
=S 2+ a2@y] - & (2¢) + ML gopnr+ L
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yielding the same expressions for py and Py, and bringing about py = a A =GA , pe = gé

GAZC — %AZ. One can easily check that p; = —/, resulting p; = 0. The corresponding Hamiltonian
follows:
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and the canonical equations of motion may be written down:
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3. Integrability Analysis: General Case

We present two Lagrangian analytical criteria to address the issue of integrability: Noether
point symmetries, better suited for establishing the constants of motion, and the Painlevé test,
taylored to check for an overall property (the dependent variables being meromorphic for movable
singularities on the complex time plane) that indicates integrability.

3.1 Noether point symmetries

An important issue regarding a Lagrangian system concerns its Noether point symmetries,
linking symmetries of the action to conserved quantities. Here we address the question of Noether
point symmetries in our system following the method shown in reference [17].

We seek for infinitesimal point transformations of the form

A=A+eng:C=C+enc: 0 =0+eny; M=M+eny:7=1+eT,

for na, M¢, Mm, My and 7 functions of the fields and the time, and € an infinitesimal parameter. These
infinitesimal transformations leave the action functional invariant up to the addition of an irrelevant



On the Integrability and Chaos of an N=2 MCS-Higgs L.P.G. De Assis

numerical constant if and only if the following Noether symmetry condition [17] is satisfied,

DLy P L O O 3L

(g2 55+ f¢>§—¢+<nM—rM>§AL4+

+ tL=F, 3.1)

F being a function of the fields and the time. If such a function can be found, there is a Noether
point symmetry and an associated Noether invariant / given by

1= + + 8L+ oL (Aa—L+CaL+¢aL Mﬁ—L)—F (3.2)
Mga T Mg Tgg T Mo~ T 9a T 5 %96 T am S
In the Noether symmetry condition, the time derivatives are to be understood as total deriva-
tives, e.g.,
81 81 at
= —— 33
1= CC + ¢ + M+ o (3.3)

Inserting the Lagrangian given by (2.3)in (3. 1), we obtain that a cubic polynomial in the veloc-
ities must vanish. The coefficients of equal powers of velocities vanishing, we obtain a coupled set
of linear partial differential equations determining both the symmetries and the Noether invariants.
The cubic terms yield simply

T=1(1), (3.4)

that is, the transformed independent variable is a function of time only. The equations associated to
quadratic terms, however, are a set of ten coupled partial differential equations which, apparently,
do possess a closed form solution only in the minimal coupling case g = 0. Restricting the treatment
to this almost trivial case, and proceeding to the first and zeroth order terms, we just found time-
translation and { translation symmetries. These symmetries are linked, according to (3.2), to the
energy and p conservation laws. These are almost obvious results, showing that the nonlinearity
and coupling in the potential gives no much space for the existence of conservation laws of the
system, even in the g = 0 case. This is a signature of non-integrability. However, other methods
for investigating conservation laws of the system like Lie point symmetries [18] were not used.

3.2 Painlevé test

We now go back to a second-order configuration space formalism in order to settle the frame-
work for the application of Painlevé test [19, 20]. The iterated equations stemming from the set
(2.4) are cast below:

2
G*A = 28°GoPA + 1% - (§)2A —e(kg+e)9p?A , where C = pe s (3.5)
202
G'§ = G799~ $2GP9A* - £ f;z ? eClrg+2e)0 - i(Kg+2e)2¢A2 +
+ (02 e 2+ o)+ (2K g — )9 +2eg 0¥
— (kg+e) [K— ev’g+ (3eg— Kg2)¢2 —2eg’ 9 + (Kg+e)M] oM (3.6)
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Assuming time to be a complex variable, the first step of the Painlevé test is concerned with
the leading singularity behavior. One supposes the leading terms to be of the general form A ~
alt —10)%,¢ ~ b(t —10)P .M ~ c(t —1))7, where a,,7 < 0. Such an assumption turns the last
three equations into the following asymptotic (+ — ty) relations (with T =t —ty):

gabtofa—1+2p]1% P2 ~ 0 ;
VBB —1]T7P2 ~ BT P2 — 2eg (kg + )b cTPTY 4 (kg + )b TP

cy(y—1)e1 72 ~ B (2B — 1)1 2

Starting from the last equation, one gets ¥ = 23 and ¢ = gh?/2. Inserting y = 23 in the second
equation reduces the balancing to the first two terms, so leading to & = f8 and a® = (28 — 1)b?/B.
But the first equation shows the impossibility of having o, 8 < 0, as & + 2 — 1 = 0 is required,
spoiling the Painlevé test procedure. Another possibility would be to set @ = 0 in the first equation,
leaving it behind as an identity. One could then drop the second term (first on right-hand side) of
the second equation, and the balancing of the remaining three terms would lead to an interesting
set of negative values for y and f3: y = —4, B = —1, provided that the following relation holds:

(kg+e)*c? —2(kg+e)eg’b*c+3g°p° = 0.

Still, one has to deal with a zero “dominant” exponent, which spoils the Painlevé test.

As one faces a problem with the gauge sector dynamics, the adoption of the critical coupling
relation (vortex excitations have been established for such a coupling) may serve as a valuable tool
of investigation. In fact, ¢ = —e/K leads to first-order equations for the gauge field [16].

4. Critical coupling regime

If g = —e/Kk, one gets kF, = —_Z, , and the reduction to spatially homogeneous configura-
tions yields

K'G(goijA.j = *€2Ai¢2 y (41)

where &1, = +1 = —&5;. From this set of equations one can arrive at G% (A% +A%) =0, and, as far
as G > 0 (a condition inherited from the original N=2-susy framework), this implies that A% +A% is
a constant of motion (thus reproducing the “pure" minimally coupled Chern-Simons-Higgs situa-
tion). Adopting polar coordinates, A} = Ccos{, Ay = Csen§ (so A% +A3 = C?), and manipulating
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the set (4.1), one finds C = —e%¢?/kG. Following the same route chosen in the general (non-
critical) case, we seek for the effective Lagrangian and Hamiltonian, settle the canonical equations
of motion and, as we aim at the Painlevé test for integrability, iterate them to get second-order
coupled differential equations. One can easily verify that the following Hamiltonian leads to the
proper set of field equations:

1 pCZ 2 2

— | == Py>+2 P

5G| a2 +Op¢ +po~+Pu”+280pyPu | +
242412 2

e“0°M e 2
¢2 +—8G(¢2—v2+(2x/e)M+2g¢2M) ,

Hcan. =

+% (0/2)° +¢2Gg?| A%+

where ¢ = —e/k, G =1—(¢*/k*)¢?, and p; = —kC?/2 2. The system of iterated second-order
equations may readily be derived from Hcay.. We do not quote them here.

Again, for the Painlevé test, the asymptotic relations are found: ¢ : B =0or B =1/2. If one
takes the B = O case, one is left with two problematic outputs, as the equation for M is considered:
either y= B =0, or B =0, b*> = 1/g?, y undetermined. So the signature of lack of strong Painlevé
property remains.

5. Analysis of chaos

Since the analytical approaches suggest that the system may not be integrable, we now turn to
a numerical study to verify if such a non-integrability feature is presented in a chaotic form.

5.1 SALI method

The most well-known method used to detect whether a system is chaotic or not is the maximal
Lyapunov Characteristic Exponent (LCE), &;. If o1 > 0 the flow is chaotic. The o] is computed
[21, 22] from

, performing the limit oy = lim L,,
[—o0

where w(0), w(z) are deviation vectors and the time evolution of w is given by solving the equations
of motion and associated variational equations.

Since these vectors tend to acquire an exponential growth in short time intervals, many calcu-
lations of Ly, , as w(z) evolves for a short time 71, are carried out after each w(t) is normalized. With
this procedure, the mean value of Lz, is computated as

)
o1 = — LT,v
Ni:I

For Hamiltonian sytems, this computation becomes very lengthy with poor convergence, and
this long procedure may point to a false chaos diagnosis.

2In fact, such a relation between the conserved quantities p¢ and A? (= C2) must be imposed to ensure first-order

¢ = —2¢?/xG equation of motion
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We have chosen to adopt the method developed by Skokos, Antonopoulos, Bountis and Vra-
hatis, the so-called Smaller Alignment Index, SALI, for brevity[23, 24]. The reason for this choice
is that the SALI method is computationally faster and less unstable than the Lyapunov exponent
analysis, improving the adequacy of the former for the system we investigate. The SALI is a in-
dicator of chaos that tends to zero for chaotic orbits, while it exhibits small fluctuations around
non-zero values for ordered ones. So, the SALI is defined as:

?1@) _ Vivz(f) H}’ 5.1
i@l (w20
where w (1) and w,(¢) are the evolutions of two deviations vectors with different initial conditions,
|| - || is the Euclidean norm and ¢ is the time. The authors of SALI method showed that SALI can
be approximated by means of the difference of the two largest Lyapunov characteristic exponents,
o) and 0».

The main advantage of the SALI in chaotic regions is that it uses two deviation vectors and

SALI(z) = min { H ||:V:Vig§|| * VV28H H ’ '

(w2

exploits at every step the convergence from all previous steps. The SALI value tends to zero for
chaotic flows at a rate which is a function of the difference of the two largest Lyapunov character-

91-02)  As usually done in numerical computations, we need to

istic exponents o7, 02: SALI o< e
define a threshold to indicate that a computed number must be considered null. In most situations,
the selected value is < 107>, So, similarly to the Lyapunov exponent analysis, such a criterion shall

here be used, in the context of the SALI method, to distinguish between order and chaos.

5.2 Equations of motion and requirements

The integration of the system was performed by means of a Gear algorithm, in a variable step
mode, starting from the minimal step size h = 0.0001, and eventually getting reduced in order to
preserve the value of the Hamiltonian and p¢, known to be constants of motion. Another constraint
maintained along the integration was that G (G = 1 — g2¢?) should be greater than zero. The first
order equations of motion used in the numerical integration are those quoted in (2.4).

For the sake of simplicity, we have adopted the following notation:

C=q1,A=q2, ¢ =q3, M = q4, pc = p1,Pa = P2, Pp = P3, Pu = pa.

For each set of parametric inputs the numerical integration was performed and SALI method
used after transient damped. In the following, we display representative samples of our findings.

5.3 Case with g=0

Since our model comes from a supersymmetric version of Maxwell-Chern-Simons-Higgs with
non-minimal coupling, it is not clear whether we shall recover dynamical properties similar to the
ones observed in other studies [8, 7] when g = 0 is adopted, and the model is so reduced to the
minimal coupling case. The two main properties found in the cited papers were the existence
of chaos in the presence of Maxwell term and the asymptotic evolution - order versus chaos -
sensibility to initial conditions. To verify these properties in our model, we have chosen the initial
conditions defining a fixed point of the system, and then we varied g3 from 0 to 2 with parameters
set as e =2, k =2, v =2, and as mentioned above, g = 0. The initial conditions are ¢;(0) = 1,
q2(0) =1, g4(0) =2, p1(0) =0, p2(0) = —1, p3(0) = 0 and p4(0) = 0. The results are presented
in Figure 1, where we display a graph of SALI as a function of g3.
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Figure 1:

We can see from Figure 1, with the help of the break in the vertical axis, that for g3 = 0.55 the
behavior of the system becomes chaotic with SALI assuming values between 103 and 10~3.

5.4 Case with g ## 0 but outside critical coupling regime

Now, we use g # 0, but outside critical coupling regime, to check whether the inclusion of this
kind of coupling may turn some configuration dynamics into chaotic, with initial conditions that,
in the case g = 0, lead to regularity. To do that, we fix the parameters and the initial conditions as
e=2k=2v=2and q(0) = 1, 02(0) = 1, ¢3(0) = 0.25, ga(0) =2, p1(0) =0, p2(0) = —1,
p3(0) =0 and p4(0) = 0 and we analyze the model with the following values of g: 0.1, 0.7, 1.5
and 2.5. For all these cases, the behavior remained the same, indicating that the variation of g does
not change the behavior of the system from regular to chaotic.

5.5 Case with g in the critical coupling regime

Now, we explore the critical coupling regime where g = —2. We fix the parameters k = 2,
v =2 and vary e, keeping the initial conditions as a perturbation case of the fixed point; but, in this
case, we shall have a different set of initial conditions for each e, since the general expression for
fixed point element p4(0) depends on e. With this in mind, we keep the same values for ¢;(0) = 1,
¢2(0) =1, p1(0) =0, p2(0) = —1, p3(0) =0, p4(0) = 0 and set ¢g3(0) = 0.7, a value that makes
the system chaotic in the case g = 0 and ¢q4(0) = e. In this case, g3(0) = 0.7 is the perturbation,
since in the fixed point ¢3(0) = 0.0. As in the case g=0, we plotted a graph of e versus SALI (figure
2). In the SALI graphs, we break the vertical axis to show that the minimal SALI values are above
the threshold of chaos, according to the expectations of the SALI method, that is, SALI < 107>,

10
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Figure 2:

6. Concluding comments

The comparison between the integrable “pure Chern-Simons” system with critical coupling,
presented in the work of Ref.[8], and our extended N=2-susy descent model indicates that the extra
susy is responsible [25] for the global non-integrability (in the strong Painlevé sense) situation
found even in the C.S.-like regime.

In studying chaos, two main possibilities have been checked. First, we have verified if non-
vanishing values of g were able to drive the system (previously with initial conditions and parame-
ters such that regularity was achieved for g = 0) into a chaotic regime. The second point we have
tackled concerns the opposite effect, namely, if a configuration which is chaotic for g = 0 may
become regular whenever g becomes non-trivial.

In the case of a non-critical coupling, as g increases from zero, a configuration that is stable for
g = 0 keeps its stability as g varies. In those cases, the difference is that, for larger values of g, the
system becomes slightly more unstable, but its dynamics is still regular. Something similar happens
for configurations that exhibit chaos for g = 0. In such cases, the system remains chaotic, but a
little more unstable. For critical coupling, orbits that were chaotic for g = 0 become now regular;
this may indicate that the critical coupling plays the role of a stabiliser of our model. These results
may be interpreted on the basis of two points:

1. For the critical coupling regime, there occurs a partial decoupling between the variables ¢
and M, and this reduces the non-linearity of the system.

2. The quantity G(G = 1 — g2¢?) must be positive, with 0 < G < 1. This must be so in order to
ensure positivity of the energy, and the existence of a stable ground state. In Egs. (3.5),(3.6)
and (3.7), G accompanies all terms with time derivatives, and for large enough g or ¢, G
becomes small, rendering the algebraic sectors of these equations dominant. This fact may
have a stabilising consequence, implying that, in the case of a non-critical coupling, the
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dynamics for g # 0 is not that different from the case with g = 0. In the critical coupling
regime, the stabilising effect could be a combination of both arguments just presented.

It is also noteworthy to point out that, for negative values of G, the phase space volume is no
longer conserved, and, as a consequence, we do not have any longer a Hamiltonian system. For
this reason, the results reported above make sense only if the initial conditions and the parameters
ensure the positivity of G. Finally, as far as configurations whose behavior is more regular than
the ones found in Ref.[8] (as g increases) show up in this model, we wonder whether special
physical conditions - extended supersymmetry in the original system - might be responsible for
this stabilising effect.

As we have already stated in the Introduction, we address here the question as to whether
supersymmetry would have, or not, a stabilizing role for those field theories that, in their non-
supersymmetric version, display chaotic behavior [6]. This question may actually be interpreted in
two ways: (i) Should supersymmetric theories be less chaotic than their ordinary (non-supersym-
metric) counterparts? (ii) Could it happen that, under specific conditions, supersymmetry renders
regular a theory that, in its non-supersymmetric version, displays chaos? Our work sets out to
answer these two questions. In our study, we point out that, in a supersymmetric scenario, the
parameters of the theory are more severely constrained, which contributes to render the supersym-
metric theory less integrable than the originally non-supersymmetric version. The loss of freedom
to play with the parameters also implies that a chaotic ordinary theory should generally persist as
such even after supersymmetry is brought about. In addition, we also answer the second question
when we show that, in the very special critical coupling regime (a characteristic of supersymmetric
theories), our model leads to a regularization of the dynamics under consideration, suppressing its
chaotic behavior.
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