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1. Introduction

The kink solution of a field theory is an example of a soliton in 1+1 dimensions [1, 2, 3, 4, 5].
From field theoretic superpotential [6] evaluated on the domain states, the algebraic framework of
supersymmetry in quantum mechanics (SUSY QM), as formulated by Witten [7], may be elabo-
rated. The SUSY QM generalization of the harmonic oscillator raising and lowering operators has
several applications [8]. The generalization of SUSY QM for the case of matrix superpotential, is
well known in the literature for a long time. See, for example, for one-dimensional systems the
works in Ref. [9] about non-relativistic quantum systems, in [10, 11] about one single field and in
[12, 13, 14] with two-field and in [15] on a three-field potential models in 1+1 dimensions.

The classical configurations with domain wall solutions are bidimensional structures in 3+1 di-
mensions. They are static, non-singular, classically stable Bogomol’nyi [16] and Prasad-Sommerfield
[17] (BPS) soliton (defect) configurations, with finite localized energy associated with a real scalar
field potential model. Domain walls have several applications in condensed matter and cosmology.
The BPS states are classical configurations that satisfy the first order differential equations and the
second order differential equations (equations of motion).

Recently, marginal stability and the metamorphosis of BPS states have been investigated [18],
via SUSY QM, with a detailed analysis for a 2-dimensionalN = 2−Wess-Zumino model in terms
of two chiral superfields, and composite dyons inN = 2-supersymmetric gauge theories. Domain
walls have been recently exploited in a context that stresses their connection with BPS-bound states.
While Rajaraman has applied the trial orbit method for the equation of motion, here we use the trial
orbit method for the first order differential equations associated to three real scalar fields. However,
for solitons of three coupled scalar fields there are no general rules for finding analytic solutions
since the nonlinearity in the potential increases the difficulties to obtain the solutions of the BPS
equations and field equations.

This paper is organized as follows: In Section II, we investigate domain walls configurations
for three coupled scalar fields, and supersymmetric non-relativistic quantum mechanics with three-
component wave functions is implemented. In Section III, a scalar potential model of three coupled
scalar fields is investigated. Our Conclusions are presented in Section IV.

2. Three coupled scalar fields

We consider the classical soliton solutions of three coupled real scalar fields in 1+1 dimensions.
They are static, nonsingular, classically stable and finite localized energy solutions of the field
equations.

Recently, a superfield formulation of the central charge anomaly in quantum corrections to
soliton solutions with N=1 SUSY has been investigated [19]. The superaction in terms of the
superfield and the superpotential in superspace(xµ ;Θα),α = 1,2, is written as

SN=1 =
1
2

∫
dx2d2Θ

(
3

∑
i=1

D̄ΦiDΦi +W(Φ1,Φ2,Φ3)

)
, (2.1)

whereD is the supercovariant derivative given by
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D = ∂Θ̄ + iΘ̄γµ∂µ (2.2)

and theγµ are represented in terms of the Pauli matrices,γ0 = σy andγ1 = iσx. The superpotential
W(Φ1,Φ2,Φ3), yields the component-field potentialV(φi), whereΦi are chiral superfields which,
in terms of bosonic (φi), fermionic(ψi) and auxiliary fields(Fi), areΘi−expanded as shown below:

Φi = φi + Θ̄iψi +
ΘiΘ̄i

2
Fi , (2.3)

whereΘi andΘ̄i = Θ∗
i are Grassmannian variables.

The Lagrangian density for such nonlinear system in the natural system of units(c= h̄= 1), in
(1+1)dimensional space-time with Lorentz invariance, in terms of the bosonic fields only, is written
as

L
(
φ j ,∂µφ j

)
=

1
2

3

∑
j=1

(
∂µφ j

)2−V(φ j), (2.4)

where∂µ = ∂
∂zµ , zµ = (t,z), φ j = φ j(t,z), ( j = 1,2,3) are real scalar fields andηµν = (+,−)

is the metric tensor. The potentialV(φ j) = V(φ1,φ2,φ3) is any positive definite functional ofφ j .
The general classical configurations obey the equation bellow:

∂ 2

∂ t2 φ j − ∂ 2

∂z2 φ j +
∂

∂φ j
V = 0, (2.5)

which, for static soliton solutions, is equivalent to the following system of nonlinear second order
differential equations

φ ′′j =
∂

∂φ j
V, ( j = 1,2,3), (2.6)

where prime represents differentiation with respect to space variable. There is, in literature, a trial
orbit method for finding static solutions for certain positive potentials, which constitutes a "trial
and error" technique [2].

We can get the masses of the bosonic particles, using the results above, from the second deriva-
tives of the potential:

m2
φi
≡ ∂ 2V

∂φ2
i

|z→±∞ , i = 1, ,2,3. (2.7)

2.1 Linear Stability and SUSY QM

Since the potentialV(φ j) is positive it can be written in the following square form, analogous to
the case with only a single field [6],

V(φ j) = V(φ1,φ2,φ3) =
1
2

3

∑
j=1

U2
j (φ1,φ2,φ3), U j(φ1,φ2,φ3)≡ ∂W

∂φ j
, ( j = 1,2,3). (2.8)

In this case, one can write the total energy
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E =
∫ +∞

−∞
dz

1
2

[(
φ ′1

)2 +
(
φ ′2

)2 +
(
φ ′3

)2 +2V(φi)
]
, (2.9)

in the BPS form, consisting of a sum of squares and surface terms,

E =
∫ +∞

−∞
dz

(
1
2
(φ ′1−U1)2 +

1
2
(φ ′1−U2)2 +

1
2
(φ ′3−U3)2 +

∂
∂z

W

)
(2.10)

which are always positive. Thus, the lower bound of the energy (or classical mass) is given by the
fourth term, viz.,

E ≥
∣∣∣∣
∫ +∞

−∞
dz

∂
∂z

W[φ1(z),φ2(z),φ3(z)]
∣∣∣∣ , (2.11)

where the superpotentialW =W[φ1(z),φ2(z),φ3(z)] will be discussed below. The BPS mass bound
of the energy resulting in a topological charge is given by

EBPS= Ti j = |W[M j ]−W[Mi ]|, (2.12)

whereMi andM j represent the BPS vacuum states and are the extrema ofW..
In this case the BPS states satisfy the following set of first order differential equations associ-

ated to three real scalar fields:

φ ′j = U j(φ1,φ2,φ3). (2.13)

Now, let us analyze the classical stability of the soliton solutions in this nonlinear system, which
can be investigated by considering small perturbations aroundφ1(z),φ2(z) andφ3(z):

φ j(t,z) = φ j(z)+η j(t,z), ( j = 1,2,3), (2.14)

where the fluctuationsη j(t,z) can be expanded in terms of the normal modes as

η j(t,z) = ∑
n

ε j,nη j,n(z)eiω j,nt , ω1,n = ω2,n = ω3,n = ωn, (2.15)

with ε j,n being real constant coefficients. Thus, the stability equation for the field becomes a
Schrödinger-like equation of a three-component eigenfunctionΨn,

H Ψn = ω2
nΨn, n = 0,1,2, · · · , (2.16)

where

H ≡−I
d2

dz2 +VF(z), (2.17)

with I being the 3x3 identity matrix. The termVF(z) is the 3x3 fluctuation Hessian matrix and the
excited mode is given by

Ψn(z) =




η1,n(z)
η2,n(z)
η3,n(z)


 . (2.18)

4



P
o
S
(
I
C
2
0
0
6
)
0
6
2

SUSY QM from Three Domain Walls in a Scalar Potential R. de Lima Rodrigues

Since

VFi j =
∂ 2

∂φi∂φ j
V =

∂ 2

∂φ j∂φi
V = VF ji (2.19)

we see thatH is Hermitian. Hence the eigenvaluesω2
n of H are real.

The Schrödinger-like equation (2.16) and the Hessian matrixVF(z) are obtained by considering
a Taylor expansion of the potentialV(φ j) in terms ofη j(t,z) and retaining the first order terms in
the equations of motion.

From (2.17) we find a bilinear form ofH given by

H = A +A −, (2.20)

where

A ± =±I
d
dz

+W(z), A + = (A −)†, W†(z) = W(z). (2.21)

Using these first order differential operators that appear in analysis of classical stability asso-
ciated to a single field [6], we find

(
A +A −)

j j =− d2

dz2 +
∂ 2

∂φ2
j

V, (2.22)

which are exactly the diagonal element ofH . Therefore, it is easy to show that the linear stability
is satisfied, which means that

ω2
n =< H >=< A +A − >= (A −Ψ̃n)†(A −Ψ̃n)≥ 0, (2.23)

as was stated. Also, the ground state ofH becomes

Ψ(0)
− (z) =




U1[φ(z)]
U2[φ(z)]
U3[φ(z)]


 (2.24)

which represents the bosonic three-component zero mode.
The 3x3-matrix superpotential satisfies the following Ricatti equation associated to the non-

diagonal fluctuation HessianVF(z):

W2 +W′ = VF(z) =




VF11(z) VF12(z) VF13(z)
VF12(z) VF22(z) VF23(z)
VF13(z) VF23(z) VF33(z)



|φi=φi(z)

. (2.25)

The Ricatti equation (2.25) holds the BPS states only. According to the Witten’ SUSY model
[7, 8], we have

Ψ(n)
SUSY(z) =

(
Ψ(n)
− (z)

Ψ(n)
+ (z)

)

1x6

, (2.26)
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whereΨ(n)
± (z) are three-component eigenfuctions. In this case, the graded Lie algebra of the super-

symmetry in quantum mechanics for the BPS states may be readily realized as

HSUSY= [Q−,Q+]+ =

(
A +A − 0

0 A −A +

)

6x6

=

(
H− 0
0 H+

)
, (2.27)

[HSUSY,Q±]− = 0 = (Q−)2 = (Q+)2, (2.28)

whereQ± are the 6x6 supercharges of Witten SUSY model, viz.

Q− = σ−⊗A −, Q+ = Q†
− =

(
0 A +

0 0

)
= σ+⊗A +, (2.29)

with the intertwining operators,A ±, in terms of 3x3-matrix superpotential, are given by Eq. (2.26)
andσ± = 1

2(σ1± iσ2), whereσ1 andσ2 are the Pauli matrices. Of course, the bosonic sector of

HSUSYis exactly the fluctuating operator given byH− = H =−I d2

dz2 +VF(z), whereV− = VF(z)
is the non-diagonal fluctuation Hessian. The supersymmetric fluctuation operator partner ofH− is

H+ = A −A + = A +A −+[A −,A +] = H−−W′(z), (2.30)

so that the SUSY partner is given byV+ = V−−W′(z).
Starting with

H−Ψ(n)
− = E(n)

− Ψ(n)
− =⇒A +A −Ψ(n)

− = E(n)
− Ψ(n)

− (2.31)

and multiplying (2.31) from the left byA− we obtain

A −A +(A −Ψ(n)
− ) = E(n)

− (A −Ψ(n)
− )⇒H+(A −Ψ(n)

− ) = E(n)
− (A−Ψ(n)

− ). (2.32)

SinceA −Ψ(0)
− = 0, comparison of (2.32) with

H+Ψ(n)
+ = A −A +Ψ(n)

+ = E(n)
+ Ψ(n)

+ , (2.33)

leads to the immediate mapping:

E(n)
+ = E(n+1)

− , Ψ(n)
+ ∝ A−Ψ(n+1)

− ,n = 0,1,2, . . . . (2.34)

Repeating the procedure but starting with (2.33) and multiplying the same from the left byA+

leads to

A +A −(A +Ψ(n)
+ ) = E(n)

+ (A +Ψ(n)
+ ), (2.35)

so that it follows from (2.31), (2.34) and (2.35) that

Ψ(n+1)
− ∝ A +Ψ(n)

+ ,n = 0,1,2, . . . . (2.36)

The intertwining operatorA −(A +) converts an eigenfunction ofH−(H+) into an eigenfunction

of H+(H−) with the same energy and simultaneously destroys (creates) a node ofΨ(n+1)
−

(
Ψ(n)

+

)
.
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These operations just express the content of the SUSY operations effected byQ+ andQ− connect-
ing the bosonic and fermionic sectors of the SUSY fluctuation operator (2.27).

The SUSY analysis presented above in fact enables the generation of a hierarchy of Hamiltoni-
ans with the eigenvalues and the eigenfunctions of the different members of the hierarchy in a sim-
ple manner. CallingH− asH1 andH+ asH2, and suitably changing the subscript qualifications,
and by repetition of the above procedure leads to the generation of a hierarchy of Hamiltonians
given by

Hn =−1
2

d2

dx2 +Vn(x) = A +
n A −

n +E(0)
n = A −

n−1A
+

n−1 +E(0)
n−1, (2.37)

A ±
n =±I

d
dz

+Wn(z), W†
n(z) = Wn(z) (2.38)

whose spectra satisfy the conditions

En−1
1 = En−2

2 = . . . = E(0)
n , n = 2,3, . . . ,M, (2.39)

Ψn−1
1 ∝ A +

1 A +
2 . . .A +

n−1Ψ(0)
n . (2.40)

Note that the nth-member of the hierarchy has the same eigenvalue spectrum as the first member
H1 except for the missing of the first(n−1) eigenvalues ofH1. The (n-1)th-excited state ofH1 is
degenerate with the ground state ofHn and can be constructed with the use of (2.40) that involves
the knowledge ofAi(i = 1,2, . . . ,n−1) andΨ(0)

n .

3. A potential model of three scalar fields

Let us consider the following generalized potential in terms of bosonic fields only

V = V(φ1,φ2,φ3) =
1
2

(
λφ2

1 +
α
2

φ2
2 +

α
2

φ2
3 −

m2

λ

)2

+
1
2

(−αφ1φ2 +β2φ2
3 −β2

)2
,

+
1
2

φ2
3 (αφ1−2β2φ2−αβ1)

2 (3.1)

whereα > 0 andβi ≥ 0. Note that the symmetryZ2xZ2 is only preserved ifφ2 = 0 or β1 = β2 = 0
condition is satisfied. Whenφ3 = 0 this potential becomes the two-field potential model recently
investigated [13, 14].

From (2.6) and (3.1) the equations of motion under static limit, for each bosonic component-
field, become

φ ′′1 = 2λφ1

(
λφ2

1 +
α
2

φ2
2 +

α
2

φ2
3 −

m2

λ

)

− αφ2
(
β2φ2

3 −αφ2φ1−β2
)

− αφ2
3 (2β2φ2−αφ1 +αβ1) , (3.2)
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φ ′′2 = αφ2

(
λφ2

1 +
α
2

φ2
2 +

α
2

φ2
3 −

m2

λ

)

− αφ1
(
β2φ2

3 −αφ1φ2−β2
)

− 2β2φ2
3 (−2β2φ2 +αφ1−αβ1) (3.3)

φ ′′3 = αφ3

(
λφ2

1 +
α
2

φ2
2 +

α
2

φ2
3 −

m2

λ

)

+ 2β2φ3
(
β2φ2

3 −αφ1φ2−β2
)

+ φ3(−2β2φ2 +αφ1−αβ1)
2 . (3.4)

The corresponding superpotential model in field theory is given by

W(φ j) =
m2

λ
φ1− λ

3
φ3

1 −
α
2

φ1φ2
2 −

α
2

φ1φ2
3 +β2φ2φ2

3 −β2φ2 +
1
2

αβ1φ2
3 , (3.5)

whereα > 0 andβi > 0. Thus, it is required that allφ j , j = 1,2,3 satisfy the BPS state conditions:

φ ′1 =−
(

λφ2
1 +

α
2

φ2
2 +

α
2

φ2
3 −

m2

λ

)

φ ′2 = β2φ2
3 −αφ2φ1−β2

φ ′3 =−φ3(αφ1−2β2φ2−αβ1). (3.6)

Note that the BPS states saturate the lower bound so thatEBPS= |Wi j | is the central charge of
the realization ofN = 1 SUSY in 1+1 dimensions. Thus, the vacua are determined by the extrema
of the superpotential

∂W
∂φ j

= 0, j = 1,2,3 (3.7)

which provides the possible vacuum states.
Let us now consider a projection on the(φ1,φ2) plane in order to find an explicit form of

domain walls. In this case, if we chooseφ3 = 0 andβ2 = 0, the superpotentialW(φi), becomes

W(φi) =
m2

λ
φ1− λ

3
φ3

1 −
α
2

φ1φ2
2 , (3.8)

which has been discussed recently and some orbits for this projection have been investigated in
references [13, 14]. Indeed, using the vacuum states, the following trial orbit,

G(φ1,φ2) = c1φ2
1 +c2φ2

2 +c3 = 0, (3.9)

from dG
dx = ∂G

∂φ1
φ ′1+ ∂G

∂φ2
φ ′2 = 0,φ ′i = dφi

dz and the BPS states (3.6), we obtain the constant coefficients,
ci . Therefore, the ground state for this projection on the(φ1,φ2) plane becomes

8
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Ψ(0)
− (z) =



−λφ2

1(z)− α
2 φ2

2 (z)+ m2

λ
−αφ2(z)φ1(z)

0


 (3.10)

which represents the bosonic three-component zero mode. However, we have seen that ifΨ(0)
− is

a normalizable three-component eigenstate, one cannot writeΨ(0)
+ in terms ofΨ(0)

− in a similar

manner to ordinary supersymmetric quantum mechanics. Also,A− = ψ(0)
−

(− d
dx

)
1

ψ(0)
−

, is only valid

for the unidimensional case with one-component eigenstate. There the superpotential is given by

W(x) =
d
dx

lnψ(0)
− (x). (3.11)

This can not be seen in the example treated here of the classical stability analysis for three coupled
real scalar fields.

The matrix superpotentials in SUSY QM for other projections of the system considered here
will be investigated in a forthcoming paper, which can not be written as Eq. (3.11).

4. Conclusion

In this paper, we consider the classical stability analysis for BPS domain walls associated with
a potential model of three coupled real scalar fields, which holds for non-ordinary supersymmetry
(SUSY). The approach of effective quantum mechanics provides a realization of the SUSY algebra
in the three-domain wall sector of the non-relativistic formalism.

The tensions can be deduced from the charge central properties in a model that presentN = 1
SUSY, which depend on the manifold of vacuum states,Ti j = |W[M j ]−W[Mi ]|, whereMi andM j

represent the vacuum states.
We have shown that the positive potentials with a square form lead to three-component non-

negative normal modesωn
2 ≥ 0, analogous to the case with a single field [6], so that the linear

stability of the Schrödinger-like equations is ensured.
A general three-component zero-mode eigenfunction is deduced. The Ricatti equation (2.25)

holds the BPS states only. A detailed analysis in SUSY QM for such of a potential model will be
reported separately.

In a three-field potential model there is a static classical configuration inside a topological
soliton. We point out that the superpotential model investigated here can be applied in order to
implement new string junctions [20] by extendeding BPS domain walls and string theory of three
bosonic moduli [21]. The set of potential BPS junctions that have been identified in [22] contain the
junctions that appear in [23]. Also, the BPS saturated objects with axial symmetry (wall junctions,
vortices), in generalized Wess-Zumino models, have been investigated in Ref. [24].
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