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1. Introduction

The theory of the supermembrarig is a key element in the intricate network of related sys-
tems which are expected to define the consistent non perturbative aspects of quantum superstrings.
It was originally constructed as tH2 = 11 extended object which propagates consistently on a
supergravity background but its role M-theory turn out to have more implications. It was shown
in [2] that when the supermembrane is immersed D & 11 Minkowski space its spectrum is
continuous from[0, c] but it is still unknown if there is a massless sector corresponding to the
D = 11 supergravity. It was also argued in Re3] fhat the supermembrane on a compact target
space should also have a continuous spectrum. In contrast the spectrunbefthe supermem-
brane wrapping a two cycle when the configuration space satisfies the topological condition which
implies a non trivial central charge in the supersymmetric algebra, was shown to be a discrete set
with finite multiplicity [4].

In this paper we focus in the low energy spectrum of the supermembrane wrapped on a two
cycle by considering the covariant quantization of the associated superparticle. As we show below,
the resulting action describes a massive superparticle with an additional spinorial term arising from
the non trivial wrapping of the supermembrane on the two-cycle. In the massless case, as is well
known, the covariant quantization of the Casalbuoni-Brink-Schwarz superpartible=ri0 [5]
present similar obstacles related to the mixing of first and second class constraints associated with
the x-symmetryp], as the Green-Schwarz superstring. The covariant gauge fixing of the symmetry
was performed inf, 8, 9] by introducing an infinite tower of auxiliary fields . More recently, a new
formulation was advanced in terms of pure spinors which requires a finite number offfijldgje
dynamics of a superparticle with a central charge was first consideréd,ihd] and later in [L3].
However the central charges arose in these cases from considerations different to those presented
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here. The covariant quantization of this superparticle differs from the usual massive superparticle
since the central charge implies the existence afsymmetry additionally to the second class
constraints already present for the massive superparticle. Several formulation to quantize the su-
perparticle with central charges were proposkgl [L4, 15]. For example in 15 a BRSTcharge

was constructed also from a infinitely reducible set of first class constraints. Fortunately as we dis-
cuss in section 4 the structure of the system allows a direct approach in which the physical degrees
of freedom are identified in a covariant way.

2. The Supermembrane inM® x =

The supermembrane action immerse®ir- 11 target space was obtained originally in Ref.
[1] and is given by,

1 . o _
| = _877r2/d3§ [\ﬁgqln{‘nm —\/?g—l—IS'Jkﬂi“ithl[/ruv&kl[/}

ijk

. _ _ i _ — —
+ [Sljkﬂiullfrpvaj II/[I/rvaklI/— 58 llfr‘uvai wwr\/a] ‘I“I”I’rvak‘l/] ) (21)

wherey is a Majorana spinor and
7L'i‘u = aiX“ — il;_/r“ail// (2.2)

with X* the space time coordinate of the membrane. The supermembrane tension has been fixed
to 1.

We are interested in the case whenlihe 11 target space has a compactified sector admitting
a minimal immersion from the base manifdd< Rinto it. X is a Riemann surface of gengs> 0
andR corresponds to the range of the time variahle

To be specific let us consider the case in wiiidh a torus and the compactified target space is
M9 x St x SL[16, 4, 17], although more general compactified target spaces for which there exists a
minimal immersion fronk into the target space may also be treated along the lines we follow here
[18].

The minimal immersion is constructed from the harmonic one forms ew@enoted bydX",
r =1,2. We consider a pair of harmonic one-forms okeatisfying

7§ d¥ —2zm, . rs=172 2.3)
JCs
whereny are integers an@; is a basis of the homology dn together with
/ d% A dRS = nAS) £0 (2.4)
z

wheren = detni andA(Z) is the area o&. The first condition implies that eact may define a
map over a circlés'. It also implies the equality ir2(4). The conditionA(X) # 0 is the non trivial
part of this relation.

The map from onto St x St is given, withP, a fixed point in%, by

P
Pezﬁ/ d¥ mod(2zn), r=1.2 . (2.5)
Po
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Condition @.4) implies that the algebra of the supermembrane has a non-trivial central charge
Z's = £"SnA(Z) with n the number of times the supermembrane wigps S'. It may be shown
that the above map is a local minimum of the hamiltonian of the supermemMr@jrend defines
a minimal immersion fronk to St x St [18]. It is a solution of the supermembrane field equations
which preserves one half of the original supersymmetry. The most general configuration space
and hamiltonian for the supermembrane with the above base manifold and target space with a
non-trivial central charge was obtained #) L7, 16] and shown to have a discrete spectrum. We
are interested here in the quantization of the corresponding superparticle with non-trivial central
charges.

3. Compactification of the Supermembrane

We consider now the covariant quantization of the center of mass of the supermembrane which
corresponds to a superpatrticle. To do so we restrict the configuration space by the following con-
ditions,

X™=X"(t) , m=0,...,8 (3.1)
v =vy(T) , (3.2)
X8 =%(c) , r=12 (3.3)

wherec?,a= 1,2 denote local coordinates ovEr On this class of configurations the supermem-
brane action reduces to

S— k/d’L’ (elwmwm—e— ivfﬁ(;crrsgrs)ﬁyvﬂ> )
oM =X"—jyrMy . (3.4)

whereC is the charge conjugation matrixih= 11 andl s is the antisymmetric produét(rrl's—
I'slv).(The conventions for th€ matrices are given in the appendi€l,s is symmetric on the
spinorial indices). The constakis given byk = ”Q%).

In the following section we perform the covariant quantization of this system following a
direct approach by introducing a new action for the superparticle with central charges with first
class constraints only, that allows to obtain the space of physical states in a covariant way.

We use now a particular representation of the Dirac matrices. We considen=0,...,8

the set of Dirac matrices iD = 9 satisfying{y*, 7"} = —2n*". We take as in13],

m_ | 0 iym _|oi
r_[—iymol ,r9_[iO]. (3.5)

Then we havg y*,y"} = —2n*Y, u,v=0,...,9,11, with

10
r—rort o= . 3.6
0 _I (3.6)
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The charge conjugation matrix b = 11 in terms of the corresponding onebn= 9 is (see the
appendix)

0 —iC
C=|.x , 3.7
iC O 3-7)

whereCT = —C andCT = €. Now we decompose tHe = 11 spinors in terms of thB = 9 ones

V= <92> . (3.8)

The Majorana conditiony = —y'C in D = 11 implies
0a=6,C , (3.9)
wheref, = 6;{)/0. The action for the superparticle with central charges reduces then to
S= k/dr (€ L™ — e~ iBa6a) (3.10)

where now
o™ =X"—iopy"on - (3.11)

4. The Hamiltonian for the Superparticle with central charges

Let us introduce here the mass paramater 2k and the projectors,

1
Pt = (M 7"pm) (4.)
which satisfy
PP, = —i(p2+mz)+P P_P :—i(pZerz)—kP
+r+ 4rnz + —r— 4”]2 —
_ _ 1 . _
PP =P P =_5(p +m?), P+P =1. (4.2)
The conjugate momenta X" are
Pm = 2ke o , (4.3)

and the conjugate momentafg, with m= 2k are
7Tp = 2imOaP_ (4.4)

or equivalently
A = —2imP,9A . (45)

Introducing the Lagrange multipliér = 4, the hamiltonian may then be expressed as
A = A(p?+nP) (4.6)

subject to
a+2imP_6, =0 , 4.7)
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which are a mixture of first and second class constraints.
The set of constraints}(7) together with the mass shell conditipd+ nm? = 0 are equivalent

to
p?+mf =0, (4.8)

P+7L'A — 0 5 (49)

P a4+ 2imP. 65 =0 . (4.10)

Now (4.8) and @.9) are first class constraints whild.(0 is a mixture of first and second class
constraints.
We may then consider the set,

p>4+m* =0 (4.11)
Py (m +im) =0 (4.12)
+(7‘C1—i7l'2) =0 (4.13)
Q=P (ﬂ1+|7t2)+2|mP (61+162) =0 (4.14)
Q, =P (n1—|n2)+2|mP (91—i92> 0 (4.15)
with the non trivial bracket,
{Q1,Q2} = —4imP_ . (4.16)

We also note that the symplectic terms in the canonical adi®a may be decomposed as
. 1T— . . 1— . .
Taba = 5 (T +172) (61— 16) + 5 (7~ 172) (61 +162) (4.17)

and we identify the conjugate paifs; + im2),(61 —i6,) and (71 — im),(61+162). We notice
here that the paif2; and Q, may be regarded as a first class constraidi) (and an associate
gauge fixing condition@,). The contribution of this pair to the functional measure when taken
as a pair of second class constraints or in the way proposed is exactly theZ@nje]. With
this observation we can finally define our system as a gauge system restricted by the set of first
class constraints4(11), (4.12 and @.14). If one then would like to impose4(15 as a partial
gauge fixing condition the original set of constraints is recovered, but there is freedom to impose a
different set of admissible gauge fixing conditions since the functional integral is invariant to this
choice (In this case there are no gauge anomalies).

To continue we consider the partial gauge fixing conditions,

P (91—I92) =0, (4.18)
P (6,—i6,) =0, (4.19)

corresponding to the symmetry generatedggyandQ; respectively. This gauge fixing condition
contributes to the functional integral with a constant factor independent of the fields. The canonical
variables(m +im) and(61 —i62) may then be integrated out from the functional integral.

We are thus left with the canonical action,
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L = pX+TpOp— A (4.20)
S
= PX 4 5(m —im) (61 +i6) (4.21)

constrained by4.11) and @.13. Let us introduce the variablés= 6, +i6, and# = %(731 —im).
Notice that6 is a complex spinor which does not satisfy the pseudo Majorana conditiofC
We may finally consider the partial gauge fixing condition

P, (61+i65) =0, (4.22)

and perform a canonical reduction to

& =pX+(P_7)(P_6) , (4.23)
subject to the mass shell conditioh®. The space of physical states is obtained by considering
superfields depending 2.6 and not on its complex conjugate. Since we have Fhat P, = 1
without usingp? + m? = 0 the degrees of freedom i 6 are exactly half of the ones . They
are therefore 2bosonic and fermionic on-shell degrees of freedom. It corresponds as we discuss
below to aD = 9 KKB multiplet.

5. Conclusion

We have covariantly quantized tie= 9 superparticle associated to the= 11 supermem-
brane wrapped on a torus with a non trivial central charge.
The Hilbert space of states we obtained is described in terms of an on-shell supt(fiéld_).
The spinorial variablé_ has 8 independent variables. The superfield Raderees of freedom
that fit neatly in aD = 9 massive supermultiplet with central charge. The general form of this
central charge id = 9 arising from the supermembrane algebr®ia- 11 is [23]

71 =78 — (Ryo® —Pygo?) | (5.1)

with a BPS mass given by

M=./Ps+P%+|Z] . (5.2)

In this paper we have takdé® = P, = 0. The multiplet that we have obtained from the quantization

of theD = 9 superparticle corresponds to a ultrashort KKB supermultigi@t [

Due to the nature of our central charge we are studying the winding modes of the supermembrane
on a torus and neglecting the Kaluza-Klein modes. As is well kn@®«hthis states should cor-
respond to the Kaluza-Klein modes of the IIB superstring wrappest o®ur results confirm this
correspondence.
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A. Appendix:Dirac matrices and Central charges

We collect here some useful results about the supersymmetry algebra i, We take the
"mostly plus” signature with the Dirac matrices satisfyfig', v} = —2n*¥. We construct these
matrices recursively. Lep* be a set of Dirac matrices ib — 1 dimensions) even), then irD
dimensions we have,

F“:[O S”] ’ §0=S)=]I S=yy° (A.1)

3 0 S §oTPLloyp

In an even dimensional space there exist mati&C andC such that

Br4B—1=—(r#)* BreB—1=(r*)* B=BW

= - A2
crict=—rmT crrc =+ c=nre (A-2)

with W = ilP/2t1r0 D |n odd dimensions there exist eith@, C) or (B,C). There exist also a
matrix By in D = 9 and a matrixB;1 in D = 11 defined by,

Bo=1'vyy’ , Bu=rrerere, (A-3)
such that 3 .
B 0 | o &
Bi1= [ 0 _39] , Cu= & 0 ] (A.4)

To make contact with our notation of section 3, call that set of matfigethey are related t6*
by a unitary transformation

urkut =r u:[ci)fo] . (A.5)

From here follows directly equatio (7).
The most general supersymmetry algebr@ ia 9 andN = 2 with Lorentz invariant central charges
is

{Qais Qoj} = 28ijpu(¥*C Han+ZijCap (A.6)
with Z;; a real symmetric matrix. Note that we can write
- 0J ~ JO
C = C= J'=3020=1I. A7
o] e aos w

Since these two matrices commute they can be simultaneously diagonalized. Then the algebra in
the rest frame takes the form

30
0 g T4

{Qai, Qvj} = 2m§; [ 03

J O] . (A.8)

The algebra of the 32 supercharges splits into»4 88locks. In our casé; = 2mg; and we find

[Qui Qoj} = 4ms, [‘; 8] . (A9)

The entire representation may be obtained now as usual. We notice that half of the
supersymmetries are not present and the other half build a representatfostate?.
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