
P
o
S
(
I
C
2
0
0
6
)
0
6
9

On the Quantization of Massive Superparticles

N.Hatcher,
Universidad Simón Bolívar, Departamento de Matemáticas, Apartado Postal 89000,
Caracas 1080-A, Venezuela.
E-mail: nhatcher@fis.usb.ve ,

A.Restuccia and J.Stephany ∗

Universidad Simón Bolívar, Departamento de Física, Apartado Postal 89000,
Caracas 1080-A, Venezuela.
E-mail: arestu@usb.ve ,stephany@usb.ve

We consider the action of theD = 11 supermembrane wrapping a compactified sector of the target

space in such a way that a non trivial central charge in the SUSY algebra is induced. We show

that the dynamics of the center of mass corresponds to a superparticle inD = 9 with additional

fermionic terms associated to the central charges . We perform the covariant quantization of this

system following a direct approach which introduces an equivalent action for the system which

has only first class constraints allowing to obtain the space of physical states in a covariant way.

The resulting multiplet contains 28 states corresponding to aKKB ultrashort multiplet.

Fifth International Conference on Mathematical Methods in Physics — IC2006
April 24-28 2006
Centro Brasilerio de Pesquisas Fisicas, Rio de Janeiro, Brazil

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:nhatcher@fis.usb.ve
mailto:arestu@usb.ve
mailto:stephany@usb.ve


P
o
S
(
I
C
2
0
0
6
)
0
6
9

On the Quantization of Massive Superparticles J.Stephany

Contents

1. Introduction 2

2. The Supermembrane inM9×Σ 3

3. Compactification of the Supermembrane 4

4. The Hamiltonian for the Superparticle with central charges 5

5. Conclusion 7

6. Acknowledgments 7

A. Appendix:Dirac matrices and Central charges 8

1. Introduction

The theory of the supermembrane [1] is a key element in the intricate network of related sys-
tems which are expected to define the consistent non perturbative aspects of quantum superstrings.
It was originally constructed as theD = 11 extended object which propagates consistently on a
supergravity background but its role inM-theory turn out to have more implications. It was shown
in [2] that when the supermembrane is immersed in aD = 11 Minkowski space its spectrum is
continuous from[0,∞] but it is still unknown if there is a massless sector corresponding to the
D = 11 supergravity. It was also argued in Ref. [3] that the supermembrane on a compact target
space should also have a continuous spectrum. In contrast the spectrum of theD = 11 supermem-
brane wrapping a two cycle when the configuration space satisfies the topological condition which
implies a non trivial central charge in the supersymmetric algebra, was shown to be a discrete set
with finite multiplicity [4].

In this paper we focus in the low energy spectrum of the supermembrane wrapped on a two
cycle by considering the covariant quantization of the associated superparticle. As we show below,
the resulting action describes a massive superparticle with an additional spinorial term arising from
the non trivial wrapping of the supermembrane on the two-cycle. In the massless case, as is well
known, the covariant quantization of the Casalbuoni-Brink-Schwarz superparticle inD = 10 [5]
present similar obstacles related to the mixing of first and second class constraints associated with
theκ-symmetry[6], as the Green-Schwarz superstring. The covariant gauge fixing of the symmetry
was performed in [7, 8, 9] by introducing an infinite tower of auxiliary fields . More recently, a new
formulation was advanced in terms of pure spinors which requires a finite number of fields[10]. The
dynamics of a superparticle with a central charge was first considered in [11, 12] and later in [13].
However the central charges arose in these cases from considerations different to those presented
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here. The covariant quantization of this superparticle differs from the usual massive superparticle
since the central charge implies the existence of aκ-symmetry additionally to the second class
constraints already present for the massive superparticle. Several formulation to quantize the su-
perparticle with central charges were proposed [13, 14, 15]. For example in [15] a BRSTcharge
was constructed also from a infinitely reducible set of first class constraints. Fortunately as we dis-
cuss in section 4 the structure of the system allows a direct approach in which the physical degrees
of freedom are identified in a covariant way.

2. The Supermembrane inM9×Σ

The supermembrane action immersed inD = 11 target space was obtained originally in Ref.
[1] and is given by,

I =− 1
8π2

∫
d3

ξ

[√
−ggi j

π
µ

i π jµ −
√
−g+ iε i jk

π
µ

i π
ν
j ψ̄Γµν∂kψ

]
+
[

ε
i jk

π
µ

i ψ̄Γµν∂ jψψ̄Γν∂kψ− i
3

ε
i jk

ψ̄Γµν∂iψψ̄Γν∂ jψψψ̄Γν∂kψ

]
, (2.1)

whereψ is a Majorana spinor and

π
µ

i = ∂iX
µ − iψ̄Γµ

∂iψ (2.2)

with Xµ the space time coordinate of the membrane. The supermembrane tension has been fixed
to 1.

We are interested in the case when theD = 11 target space has a compactified sector admitting
a minimal immersion from the base manifoldΣ×R into it. Σ is a Riemann surface of genusg > 0
andRcorresponds to the range of the time variableτ.

To be specific let us consider the case in whichΣ is a torus and the compactified target space is
M9×S1×S1 [16, 4, 17], although more general compactified target spaces for which there exists a
minimal immersion fromΣ into the target space may also be treated along the lines we follow here
[18].

The minimal immersion is constructed from the harmonic one forms overσ denoted bydx̂r ,
r = 1,2. We consider a pair of harmonic one-forms overΣ satisfying∮

Cs

dx̂r = 2πmr
s , r,s= 1,2 (2.3)

wheremr
s are integers andCj is a basis of the homology onΣ, together with∫

Σ
dx̂r ∧dx̂s = nA(Σ) 6= 0 , (2.4)

wheren = det mr
s andA(Σ) is the area ofΣ. The first condition implies that each ˆxr may define a

map over a circleS1. It also implies the equality in (2.4). The conditionA(Σ) 6= 0 is the non trivial
part of this relation.

The map fromΣ ontoS1×S1 is given, withP0 a fixed point inΣ, by

P∈ Σ→
∫ P

P0

dx̂r mod(2πnr) , r = 1,2 . (2.5)
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Condition (2.4) implies that the algebra of the supermembrane has a non-trivial central charge
Zrs = ε rsnA(Σ) with n the number of times the supermembrane wrapsS1×S1. It may be shown
that the above map is a local minimum of the hamiltonian of the supermembrane [19] and defines
a minimal immersion fromΣ to S1×S1 [18]. It is a solution of the supermembrane field equations
which preserves one half of the original supersymmetry. The most general configuration space
and hamiltonian for the supermembrane with the above base manifold and target space with a
non-trivial central charge was obtained in [4, 17, 16] and shown to have a discrete spectrum. We
are interested here in the quantization of the corresponding superparticle with non-trivial central
charges.

3. Compactification of the Supermembrane

We consider now the covariant quantization of the center of mass of the supermembrane which
corresponds to a superparticle. To do so we restrict the configuration space by the following con-
ditions,

Xm = Xm(τ) , m= 0, . . . ,8 (3.1)

ψ = ψ(τ) , (3.2)

Xr+8 = x̂r(σ) , r = 1,2 (3.3)

whereσa,a = 1,2 denote local coordinates overΣ. On this class of configurations the supermem-
brane action reduces to

S→ k
∫

dτ

(
e−1

ω
m

ωm−e− iψβ (
1
2

CΓrsε
rs)βγ ψ̇

γ

)
,

ω
m = Ẋm− iψ̄Γm

ψ̇ . (3.4)

whereC is the charge conjugation matrix inD = 11 andΓrs is the antisymmetric product1
2(ΓrΓs−

ΓsΓr).(The conventions for theΓ matrices are given in the appendix.CΓrs is symmetric on the
spinorial indices). The constantk is given byk = nA(Σ)

8π2 .

In the following section we perform the covariant quantization of this system following a
direct approach by introducing a new action for the superparticle with central charges with first
class constraints only, that allows to obtain the space of physical states in a covariant way.

We use now a particular representation of the Dirac matrices. We considerγm, m= 0, . . . ,8
the set of Dirac matrices inD = 9 satisfying{γµ ,γν}=−2ηµν . We take as in [13],

Γm =

[
0 iγm

−iγm 0

]
, Γ9 =

[
0 i
i 0

]
. (3.5)

Then we have{γµ ,γν}=−2ηµν , µ,ν = 0, . . . ,9,11, with

Γ11 = Γ0Γ1 . . .Γ9 =

[
I 0
0 −I

]
. (3.6)
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The charge conjugation matrix inD = 11 in terms of the corresponding one inD = 9 is (see the
appendix)

C =

[
0 −iC̃
iC̃ 0

]
, (3.7)

whereCT =−C andC̃T = C̃. Now we decompose theD = 11 spinors in terms of theD = 9 ones

ψ =

(
θ1

θ2

)
. (3.8)

The Majorana condition̄ψ =−ψTC in D = 11 implies

θ̄A = θ
T
A C̃ , (3.9)

whereθ̄A = θ
†
Aγ0. The action for the superparticle with central charges reduces then to

S= k
∫

dτ
(
e−1

ω
m

ωm−e− iθ̄Aθ̇A
)

(3.10)

where now
ω

m = Ẋm− iω̄Aγ
m

ω̇A . (3.11)

4. The Hamiltonian for the Superparticle with central charges

Let us introduce here the mass parameterm= 2k and the projectors,

P±=
1

2m
(m± γ

mpm) , (4.1)

which satisfy

P+P+ = − 1
4m2(p2 +m2)+P+ , P−P− =− 1

4m2(p2 +m2)+P− ,

P+P− = P−P+ =
1

4m2(p2 +m2) , P+ +P− = I . (4.2)

The conjugate momenta toXm are
pm = 2ke−1

ωm , (4.3)

and the conjugate momenta toθA, with m= 2k are

π̄A = 2imθ̄AP− (4.4)

or equivalently
πA =−2imP−θA . (4.5)

Introducing the Lagrange multiplierλ ≡ e
4k, the hamiltonian may then be expressed as

H = λ (p2 +m2) (4.6)

subject to
πA +2imP−θA = 0 , (4.7)
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which are a mixture of first and second class constraints.
The set of constraints (4.7) together with the mass shell conditionp2 +m2 = 0 are equivalent

to

p2 +m2 = 0 , (4.8)

P+πA = 0 , (4.9)

P−πA +2imP−θA = 0 . (4.10)

Now (4.8) and (4.9) are first class constraints while (4.10) is a mixture of first and second class
constraints.

We may then consider the set,

p2 +m2 = 0 (4.11)

ϕ1 = P+(π1 + iπ2) = 0 (4.12)

ϕ2 = P+(π1− iπ2) = 0 (4.13)

Ω1 = P−(π1 + iπ2)+2imP−(θ1 + iθ2) = 0 (4.14)

Ω2 = P−(π1− iπ2)+2imP−(θ1− iθ2) = 0 (4.15)

with the non trivial bracket,

{Ω1,Ω2}=−4imP− . (4.16)

We also note that the symplectic terms in the canonical actionπ̄Aθ̇A may be decomposed as

π̄Aθ̇A =
1
2
(π1 + iπ2)(θ̇1− iθ̇2)+

1
2
(π1− iπ2)(θ̇1 + iθ̇2) , (4.17)

and we identify the conjugate pairs(π1 + iπ2),(θ̇1− iθ̇2) and (π1− iπ2),(θ̇1 + iθ̇2). We notice
here that the pairΩ1 and Ω2 may be regarded as a first class constraint (Ω1) and an associate
gauge fixing condition (Ω2). The contribution of this pair to the functional measure when taken
as a pair of second class constraints or in the way proposed is exactly the same [20], [21]. With
this observation we can finally define our system as a gauge system restricted by the set of first
class constraints (4.11), (4.12) and (4.14). If one then would like to impose (4.15) as a partial
gauge fixing condition the original set of constraints is recovered, but there is freedom to impose a
different set of admissible gauge fixing conditions since the functional integral is invariant to this
choice (In this case there are no gauge anomalies).

To continue we consider the partial gauge fixing conditions,

P+(θ1− iθ2) = 0 , (4.18)

P−(θ1− iθ2) = 0 , (4.19)

corresponding to the symmetry generated byϕ1 andΩ1 respectively. This gauge fixing condition
contributes to the functional integral with a constant factor independent of the fields. The canonical
variables(π1 + iπ2) and(θ1− iθ2) may then be integrated out from the functional integral.

We are thus left with the canonical action,

6
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L = pẊ + π̄Aθ̇A−H (4.20)

= pẊ +
1
2
(π1− iπ2)(θ̇1 + iθ̇2) , (4.21)

constrained by (4.11) and (4.13). Let us introduce the variables̃θ = θ1 + iθ2 andπ̃ = 1
2(π1− iπ2).

Notice thatθ̃ is a complex spinor which does not satisfy the pseudo Majorana conditionθ̄ = θ TC̃
We may finally consider the partial gauge fixing condition

P+(θ1 + iθ2) = 0, (4.22)

and perform a canonical reduction to

L = pẊ +(P−π̃)(P−θ̃) , (4.23)

subject to the mass shell condition (4.8). The space of physical states is obtained by considering
superfields depending inP−θ̃ and not on its complex conjugate. Since we have thatP−+ P+ = 1
without usingp2 +m2 = 0 the degrees of freedom inP−θ̃ are exactly half of the ones iñθ . They
are therefore 28 bosonic and fermionic on-shell degrees of freedom. It corresponds as we discuss
below to aD = 9 KKB multiplet.

5. Conclusion

We have covariantly quantized theD = 9 superparticle associated to theD = 11 supermem-
brane wrapped on a torus with a non trivial central charge.
The Hilbert space of states we obtained is described in terms of an on-shell superfieldΨ(xµ , θ̃−).
The spinorial variablẽθ− has 8 independent variables. The superfield has 28 degrees of freedom
that fit neatly in aD = 9 massive supermultiplet with central charge. The general form of this
central charge inD = 9 arising from the supermembrane algebra inD = 11 is [23]

Zi j = Zδ
i j − (P9σ

3−P10σ
1) , (5.1)

with a BPS mass given by

M =
√

P2
9 +P2

10+ |Z| . (5.2)

In this paper we have takenP9 = P10 = 0. The multiplet that we have obtained from the quantization
of theD = 9 superparticle corresponds to a ultrashort KKB supermultiplet [23].
Due to the nature of our central charge we are studying the winding modes of the supermembrane
on a torus and neglecting the Kaluza-Klein modes. As is well known [24] this states should cor-
respond to the Kaluza-Klein modes of the IIB superstring wrapped onS1. Our results confirm this
correspondence.
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A. Appendix:Dirac matrices and Central charges

We collect here some useful results about the supersymmetry algebra inD = 9. We take the
"mostly plus" signature with the Dirac matrices satisfying{Γµ ,Γν}=−2ηµ,ν . We construct these
matrices recursively. Letγµ be a set of Dirac matrices inD−1 dimensions (D even), then inD
dimensions we have,

Γµ =

[
0 Sµ

S̄µ 0

]
,

S0 = S̄0 = I Si = γ iγ0

S̄i =−Si = I SD−1 = γ0 . (A.1)

In an even dimensional space there exist matricesB, B̃,C andC̃ such that

BΓµB−1 =−(Γµ)∗ B̃Γµ B̃−1 = (Γµ)∗ B = B̃W
CΓµC−1 =−(Γµ)T C̃ΓµC̃−1 = (Γµ)T C = B̃Γ0 (A.2)

with W = i[D/2+1]Γ0....ΓD. In odd dimensions there exist either(B,C) or (B̃,C̃). There exist also a
matrix B̃9 in D = 9 and a matrixB11 in D = 11 defined by,

B̃9 = γ
0
γ

1
γ

3
γ

5
γ

7 , B11 = Γ2Γ4Γ6Γ8 , (A.3)

such that

B11 =

[
B̃9 0
0 −B̃9

]
, C11 =

[
0 C̃9γ0

−C̃9γ0 0

]
. (A.4)

To make contact with our notation of section 3, call that set of matricesΓµ

H they are related toΓµ

by a unitary transformation

UΓµ

HU† = Γµ U =

[
i 0
0 γ0

]
. (A.5)

From here follows directly equation (3.7).
The most general supersymmetry algebra inD = 9 andN = 2 with Lorentz invariant central charges
is {

Qai,Qb j
}

= 2δ i jpµ(γµC̃−1)ab+Zi jC̃ab , (A.6)

with Zi j a real symmetric matrix. Note that we can write

γ
0C̃ =

[
0 J
J 0

]
, C̃ =

[
J 0
0 J

]
, JT = J, J2 = I . (A.7)

Since these two matrices commute they can be simultaneously diagonalized. Then the algebra in
the rest frame takes the form{

Qai,Qb j
}

= 2mδi j

[
J 0
0 −J

]
+Zi j

[
J 0
0 J

]
. (A.8)

The algebra of the 32 supercharges splits into 4, 8×8 blocks. In our caseZi j = 2mδi j and we find

{
Qai,Qb j

}
= 4mδi j

[
J 0
0 0

]
. (A.9)

The entire representation may be obtained now as usual. We notice that half of the
supersymmetries are not present and the other half build a representation of 28 states.
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